
1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2326409, IEEE Transactions on Parallel and Distributed Systems

1

Dynamic Cloud Instance Acquisition
via IaaS Cloud Brokerage

Wei Wang, Student Member, IEEE, Di Niu, Member, IEEE, Ben Liang, Senior Member, IEEE,
and Baochun Li, Senior Member, IEEE

Abstract—Infrastructure-as-a-Service clouds offer diverse pricing options, including on-demand and reserved instances with various
discounts to attract different cloud users. A practical problem facing cloud users is how to minimize their costs by choosing among
different pricing options based on their own demands. In this paper, we propose a new cloud brokerage service that reserves a large
pool of instances from cloud providers and serves users with price discounts. The broker optimally exploits both pricing benefits of
long-term instance reservations and multiplexing gains. We propose dynamic strategies for the broker to make instance reservations
with the objective of minimizing its service cost. These strategies leverage dynamic programming and approximation algorithms to
rapidly handle large volumes of demand. Our extensive simulations driven by large-scale Google cluster-usage traces have shown that
significant price discounts can be realized via the broker.

Index Terms—Cloud computing, cloud brokerage, cost management, instance reservation, approximation algorithm.

F

1 INTRODUCTION

Infrastructure-as-a-Service (IaaS) cloud enables IT services
to elastically scale computing instances to match their time-
varying computational demands. Thanks to the economies of
scale, an IaaS cloud is capable of offering such on-demand
computational services at a low cost [2]. Cloud users usually
pay for the usage (counted by the number of instance-hours in-
curred) in a pay-as-you-go model, and are therefore freed from
the prohibitive upfront investment on infrastructure, which is
usually over-provisioned to accommodate peak demands.

A cloud provider prefers users with predictable and steady
demands, which are more friendly to capacity planning. In
fact, most cloud providers offer an additional pricing option,
referred to as the reservation option, to harvest long-term risk-
free income. Specifically, this option allows the user to prepay
a one-time reservation fee and then to reserve a computing
instance for a long period (usually in the order of weeks,
months, or years), during which the usage is either free or
charged under a significant discount [3], [4], [5], [6], [7], [8].
If fully utilized, such a reserved instance can easily save its
user more than 50% of the expense.

However, whether and how much a user can benefit from
the reservation option critically depends on its demand pattern.
Due to the prepayment of reservation fees, the cost saving
of a reserved instance is realized only when the accumulated

• W. Wang, B. Liang and B. Li are with the Department of Electrical and
Computer Engineering, University of Toronto, Toronto, ON, Canada.
E-mail: weiwang@ece.toronto.edu, liang@comm.utoronto.ca,
bli@ece.toronto.edu
D. Niu is with the Department of Electrical and Computer Engineering,
University of Alberta, Edmonton, AB, Canada. E-mail: dniu@ualberta.ca

• Part of this paper has appeared in [1]. This new version contains
substantial revision with new algorithm designs, analysis, proofs, and
simulation results.

instance usage during the reservation period exceeds a certain
threshold (varied from 30% to 50% of the reservation period
[3], [5], [6]). Unless heavily utilized, the achieved saving is
not significant. For this reason, users with sporadic and bursty
demands only launch instances on demand.

Unfortunately, on-demand instances are economically inef-
ficient to users, not only because of the higher rates, but also
because there is a fundamental limit on how small the billing
cycle can be made. For example, Amazon Elastic Compute
Cloud (EC2) charges on-demand instances based on running
hours. In this case, an instance running for only 10 minutes is
billed as if it were running for a full hour [3], [4], [5], [6], [7],
[8]. Such billing inefficiency becomes more salient for cloud
providers adopting longer billing cycles (e.g., in VPS.NET [9],
even a single hour is charged at a daily rate), and for sporadic
demands with a substantial amount of partial usage.

In general, to what extent a cloud user can enjoy cost
savings due to reservation, while avoiding its inefficiency
due to coarse-grained billing cycles, is limited by its own
demand pattern. A natural question arises: Can we go beyond
this limitation to further lower the cost for all cloud users?
Especially, can users with any demand pattern benefit from
reservation options while reducing the costs of instance-hours
that are not fully utilized?

In this paper, we propose a cloud brokerage service to
address these challenges. Instead of trading directly with cloud
providers, a user will purchase instances on demand from
the cloud broker, who has reserved a large pool of instances
from IaaS clouds. Intuitively, the cloud broker leverages the
“wholesale” model and the pricing gap between reserved
and on-demand instances to reduce the expenses of all the
users. More importantly, the broker can optimally coordinate
different users to achieve additional cost savings. On one hand,
when the broker aggregates user demands, bursts in demand
will be smoothed out, leading to steadier aggregated demand

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2326409, IEEE Transactions on Parallel and Distributed Systems

2

that is amenable to the reservation option. On the other hand,
for multiple users, each incurring partial usage during the same
billing cycle, the broker can time-multiplex them with the bet
that one user’s wasted idle time in the billing cycle can be
recycled to serve other users. It is through these mechanisms
that the broker reduces the expenses for cloud users, while
turning a profit for itself.

However, a major challenge in operating such a broker is
the decision on how many instances the broker should reserve,
how many instances it should launch on demand, and when to
reserve, as the demands change dynamically over time. As an
initial attempt to overcome this challenge, we formulate the
problem of dynamic instance reservation given user demand
data, and derive the optimal reservation strategy via dynamic
programming. Unfortunately, such dynamic programming is
computationally prohibitive. Therefore, we propose two effi-
cient approximation algorithms that incur at most twice the
minimum cost. We also propose an effective online algorithm
that makes reservation decisions dynamically without having
access to future demand information. Theoretical analysis
shows that the proposed online algorithm is 4-competitive.

We conduct large-scale simulations driven by 180 GB of
Google cluster usage traces [10] involving 933 cloud users’
workload in a recent month. We empirically evaluate the
aggregate and individual cost savings brought forth by the
broker, under the proposed reservation strategies. Our results
suggest that the broker is the most beneficial for users with
medium demand fluctuations, reducing their total expenses by
more than 40%. As for general users, 70% of them receive
discounts more than 25%. This amounts to a total saving of
over $100K for all the users tested in one month. Such cost
savings are more significant in IaaS clouds adopting longer
reservation periods or longer billing cycles.

The remainder of this paper is organized as follows. We
propose our cloud broker in Sec. 2 and formulate the dynamic
resource reservation problem in Sec. 3. We use dynamic
programming to characterize the optimal solutions in Sec. 4
and point out the related complexity issues. In Sec. 5, we
propose efficient approximation solutions to the reservation
problem. The empirical evaluations based on real-world traces
are presented in Sec. 6. We discuss other practical issues and
future works in Sec. 7. We then survey the related work in
Sec. 8 and conclude the paper in Sec. 9.

2 A PROFITABLE CLOUD BROKER

Most IaaS clouds provide users with multiple purchasing
options, including on-demand instances, reserved instances,
and other instance types [3], [4], [5], [6], [7], [8]. On-demand
instances allow users to pay a fixed rate in every billing cycle
(e.g., an hour) with no commitment. For example, if the hourly
rate of an on-demand instance is p, an instance that has run
for n hours is charged np. As another purchasing option, a
reserved instance allows a user to pay a one-time fee to reserve
an instance for a certain amount of time, with reservation
pricing policies subtly different across cloud providers. In most
cases, the cost of a reserved instance is fixed. For example, in
[4], [5], [6], [7], [8], [9], the cost of a reserved instance is

Broker

User

User

User

IaaS Cloud

Providers

Reserved/On-demand

Instances

"On-demand"

Instances

. . .
. . .

Broker cost User cost

Fig. 1. The proposed cloud broker. Solid arrows show the
direction of instance provisioning; dashed arrows show
the direction of money flow.

User 1 User 1

User 2

Billing cycle (an instance-hour)

User 1 User 1User 2

Without broker

With broker

Instance 1

Instance 2

Fig. 2. The broker can time-multiplex partial usage from
different users in the same instance-hour. In this case,
serving two users only takes one instance-hour, instead
of two.

equal to the reservation fee. As another example, in Amazon
EC2 [3], the cost of a Heavy Utilization Reserved Instance
is a reservation fee plus a heavily discounted hourly rate
charged over the entire reservation period, irrespective of
the actual instance usage. EC2 also offers other reservation
options (e.g., Light/Medium Utilization Reserved Instances),
with cost linearly dependent on the actual usage time of
the reserved instance. Throughout the paper, we limit our
discussions to reservations with fixed costs, which represent
the most common cases in IaaS clouds.

We propose a cloud broker that can save expenses for cloud
users. As illustrated in Fig. 1, the broker reserves a large pool
of instances from the cloud providers to serve a major part of
incoming user demand, while accommodating request bursts
by launching on-demand instances. The broker pays IaaS
clouds to retrieve instances while collecting revenue from users
through its own pricing policy. From the perspective of users,
their behavior resembles launching instances “on demand”
provided by the broker, yet at a lower price. The broker
can reduce the total service cost and reward the savings to
users mainly through demand aggregation, with the following
benefits:

Better exploiting reservation options: The broker aggre-
gates the demand from a large number of users for service,
smoothing out individual bursts in the aggregated demand
curve, which is more stable and suitable for service through
reservation. In contrast, individual users usually have bursty
and sporadic demands, which are not friendly to the reserva-
tion option.

Reducing wasted cost due to partial usage: Partial usage
of a billing cycle always incurs a full-cycle charge, making
users pay for more than what they use. As illustrated in Fig. 2,
without the broker, Users 1 and 2 each have to purchase one
instance-hour, and pay the hourly rate even if they only use

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2326409, IEEE Transactions on Parallel and Distributed Systems

3

the hour partially. In contrast, the broker can use a single
instance-hour to serve both users by time-multiplexing their
usage, reducing the total service cost by one half. Such benefit
can be realized at the broker by scheduling the aggregated
user demands to the pooled instances. It is worth noting that
such a benefit is conditioned on whether switching users on
an instance incurs additional cost charged by the cloud, which
we will further discuss in Sec. 7.

Enjoying volume discounts: Most IaaS clouds offer signif-
icant volume discounts to those who have purchased a large
number of instances. For example, Amazon provides 20% or
even higher volume discounts in EC2 [3]. Due to the sheer
volume of the aggregated demand, the cloud broker can easily
qualify for such discounts, which further reduces the cost of
serving all the users.

A brokerage service is profitable if it can achieve cost
savings to serve the aggregate demands: the broker can always
turn an agreed-upon portion of the savings to its own profit. We
omit the discussion on the detailed pricing implementations,
as it is irrelevant to the paper’s focus. Instead, the main
technical challenge to operate such a brokerage service is how
to serve the aggregated user demands at the minimum cost,
by dynamically and efficiently making instance reservation
decisions based on the huge demand data collected from users.
This will be the main theme of the following sections.

3 DYNAMIC INSTANCE ACQUISITION

In this section, we formulate the broker’s optimal instance
reservation problem to accommodate given demands, with an
objective of minimizing instance acquisition cost. The broker
asks cloud users to submit their demand estimates over a
certain horizon, based on which dynamic reservation decisions
are made. Note that even if a user trades directly with cloud
providers, it needs to estimate its future demand to decide
how many instances to reserve at a particular time. In the case
where users are unable to estimate demand at all, we propose
an online reservation strategy in Sec. 5.3 to make decisions
based on history only.

Suppose cloud users submit to the broker their estimates of
computing demand up to time T into the future. The broker
aggregates all the demands. Suppose it requires dt instances in
total to accommodate all the requests at time t, t = 1, 2, . . . , T .
The broker makes a decision to reserve rt instances at time t,
with rt > 0. Each reserved instance will be effective from t
to t+ τ − 1, with τ being the reservation period.

At time t, the number of reserved instances that remain
effective is

nt =

t∑
i=t−τ+1

ri ,

where ri := 0 for all i ≤ 0. Note that these nt reserved
instances may not be sufficient to accommodate the aggregate
demand dt. Let

X+ := max{0, X} .

The broker thus needs to launch (dt − nt)
+ additional on-

demand instances at time t.

1 1 1 1

2 2 2

2

3

3

3 3

4

4 4 4#
 o

f
re

s
e
rv

a
ti
o
n
s

Stage1 2 4 53 6 87 9 10

Fig. 3. State illustration. The reservation period is τ = 4.
All four reservations made at time 1, 2, 4, and 7 are high-
lighted as the shaded area. It is easy to verify that s1 =
(0, 0, 0), s2 = (1, 0, 0), s3 = (1, 1, 0), s4 = (0, 1, 1), s5 =
(1, 0, 1), etc.

Let γ denote the one-time reservation fee for each reserved
instance, and p denote the price of running an on-demand in-
stance per billing cycle. Hence, the total cost to accommodate
all the demands d1, . . . , dT is

T∑
t=1

rtγ +

T∑
t=1

(dt − nt)+p , (1)

where the first term is the total cost of reservations and the
second is the cost of all on-demand instances. The broker’s
problem is to make dynamic reservation decisions r1, . . . , rT
to minimize its total cost, i.e.,

min
rt∈Z+

T∑
t=1

rtγ +

T∑
t=1

(dt − nt)+p , (2)

Problem (2) is integer programming. In general, complex
combinatorial methods are needed to solve it.

4 DYNAMIC PROGRAMMING: OPTIMALITY
AND LIMITATIONS

In this section, we resort to dynamic programming to char-
acterize the optimal solution to problem (2). Using a set
of recursive Bellman equations, the original combinatorial
optimization problem can be decomposed into a number
of subproblems, each of which can be solved efficiently.
However, we also point out that computing such a dynamic
programming is practically infeasible, and is highly inefficient
to handle a large amount of data.

4.1 Dynamic Programming Formulation
We start by defining stages and states. The decision problem
(2) consists of T stages, each representing a billing cycle. A
state at stage t is denoted by a (τ − 1)-tuple

st := (rt−1, rt−2, . . . , rt−τ+1) , (3)

i.e., st represents the instance reservation decisions made in
the recent τ − 1 stages. Here, we use a (τ − 1)-tuple to define
a state because instances reserved earlier than stage t− τ + 1
all expire at stage t and will have no effect at this stage. For
example, in Fig. 3, four instances are reserved at time 1, 2, 4,
and 7, respectively, and the reservation period is τ = 4. We

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2326409, IEEE Transactions on Parallel and Distributed Systems

4

have r1 = r2 = r4 = r7 = 1, while rt = 0 for all other stages.
It is easy to verify that s1 = (0, 0, 0), s2 = (1, 0, 0), s3 =
(1, 1, 0), s4 = (0, 1, 1), s5 = (1, 0, 1), etc.

With the state definition (3), it is easy to characterize the
following state transition equation and the corresponding cost
function. In particular, suppose state st = (rt−1, . . . , rt−τ+1)
is reached at stage t. Also, suppose the broker decides to
reserve rt instances at the same stage. Such a reservation
decision leads state st to transit to its next state st+1 =
(rt, . . . , rt−τ+2), i.e.,

st
rt−→ st+1 : (rt−1, . . . , rt−τ+1)

rt−→ (rt, . . . , rt−τ+2) . (4)

The corresponding state transition cost is

c(st, st+1) = γrt + p(dt −
t∑

i=t−τ+1

ri)
+. (5)

The transition cost is composed of two terms, the reservation
cost γrt due to rt newly reserved instances and the (poten-
tial) on-demand cost incurred when demand dt cannot be
accommodated by

∑t
i=t−τ+1 ri reserved instances currently

available.
Now let V (st) be the minimum cost of serving demands

d1, . . . , dt up to stage t, conditioned on that state st is reached
at stage t. We have the following recursive Bellman equations:

V (st+1) = min
st

{
V (st) + c(st, st+1)

}
, t = 1, 2, . . . , (6)

where the minimization is taken over all states st that can
transit to state st+1. The Bellman equation (6) essentially
indicates that the minimum cost of reaching state st+1 is given
by the minimum cost of reaching a previous state st plus a
transition cost c(st, st+1), minimized over all possible st.

The boundary conditions of (6) are given by

V (s1) = 0 , (7)

since the initial state s1 = (r0, . . . , r2−τ) = 0 by definition.
Through the above analysis, we have converted problem (2)

into an equivalent dynamic programming problem:
Proposition 1: The dynamic programming defined by (4),

(5), (6), and (7) gives an optimal solution to problem (2).
The proposed dynamic programming can be viewed as

solving a canonical shortest path problem on a trellis graph.
As illustrated in Fig. 4, a state st is represented by a node at
stage t. If state st can transit to state st+1, i.e., they satisfy
the state transition equations (4), then node st is connected to
node st+1 by an edge with length c(st, st+1). In this sense,
V (st) is the length of a shortest path from node s1 to st.

4.2 The Curse of Dimensionality
Dynamic programming is the best algorithm that we are
aware of to solve (2). Although it gives the optimal instance
acquisition cost, it is computationally prohibitive for large
data. This is because to derive the minimum cost, one has to
compute V (st) for all nodes st at all stages t. Since each node
st is defined as a τ − 1 tuple (rt−1, . . . , rt−τ+1), there exist
O(d̄τ−1) such nodes in the trellis graph, where d̄ = maxt dt is
the peak demand. Therefore, going through all states results in

1

s1

st-1

c(s1,s2)

Stage

st

sT

2 ... t-1 t T...

s2

...

...

...

...

...

...

...

...

D

Fig. 4. Dynamic programming as a shortest path problem.
The minimum cost is the output V (sT).

exponential time complexity. Also, since the computed V (st)
has to be stored for every node st at a stage, the space
complexity is exponential as well. This is known as the curse
of dimensionality suffered by all high-dimensional dynamic
programming [11].

A classical method to handle the curse of dimensionality is
to use Approximate Dynamic Programming (ADP) [11]. ADP
estimates the minimum cost at each node first and refines such
estimates in an iterative fashion. We next describe how ADP
can be applied to our problem, as well as its limitations.

Denote Ṽ (0)(st) the initial estimate of V (st) and Ṽ (k)(st)
its updated estimate at iteration k. At each iteration k, re-
ferring to the trellis in Fig. 4, ADP picks a shortest path
P k = {s(k)

T , . . . , s
(k)
1 } from stage T to 1, using the cost

estimates Ṽ (k−1)(st) from the previous iteration, and updates
the cost estimates of the visited nodes. Specifically, we start
from s

(k)
T := sT and proceed backwards. Suppose we are at

node s
(k)
t . The next node picked by the algorithm is

s
(k)
t−1 := arg minst−1

{
Ṽ (k−1)(st−1) + c(st−1, s

(k)
t)
}
.

In the meantime, we update the estimate of V (s
(k)
t) as

Ṽ (k)(s
(k)
t) := minst−1

{
Ṽ (k−1)(st−1) + c(st−1, s

(k)
t)
}
.

Then we move to the next node s
(k)
t−2 until stage 1 is reached.

For all nodes st that are not visited at iteration k, their
estimates remain unchanged, i.e.,

Ṽ (k)(st) := Ṽ (k−1)(st) .

We keep running the above iterations until no estimate has
changed at an iteration.

It is known that ADP converges to the shortest path if
the initial estimates Ṽ (0)(st) are optimistic, i.e., they do not
exceed the optimal solution V (st) [11]. However, if Ṽ (0)(st)
is too optimistic, e.g., Ṽ (0)(st) = 0, the convergence will
be extremely slow. We will propose an intelligent way to set
Ṽ (0)(st) in Sec. 5.1, leveraging the approximation algorithms
proposed there. However, through extensive simulations, we
will show in Sec. 6.2 that although intelligent initial estimates
significantly accelerate ADP, as an iterative method, its conver-
gence speed is still unsatisfactory to handle the large amount
of demand data in our problem.

5 APPROXIMATION ALGORITHMS
To overcome the prohibitive complexity of dynamic program-
ming, in this section, we develop approximation algorithms to

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2326409, IEEE Transactions on Parallel and Distributed Systems

5

Algorithm 1 Heuristic: Periodic Decisions
1. Segment T into intervals {Ii}, each with length τ .
2. for all interval Ii do
3. Reserve l instances at the beginning of this interval,

such that
uil ≥ γ/p > uil+1 ,

where uil :=
∑
t∈Ii d

l
t is the utilization of level l in

interval i.
4. end for

solve (2). These algorithms are highly efficient and are proved
to have worst-case performance guarantees. Furthermore, we
also propose an online reservation strategy which can be
applied when future demand data is unavailable.

5.1 A 2-Approximation Heuristic
We first present a simple heuristic that in the worst case, incurs
twice the minimum cost. This heuristic serves as a basis to
analyze algorithms proposed later in Sec. 5.2 and 5.3. We
start off by dividing the demands into d̄ levels, where d̄ is the
peak demand, i.e.,

d̄ := max
t
dt . (8)

For example, in Fig. 5, the total demands are divided into
d̄ = 5 levels, with level 1 being the bottom (labeled as “L1”
in Fig. 5) and level 5 being the top. Define dlt as the demand
at time t in level l, such that dlt = 1 if dt ≥ l, and dlt = 0
otherwise. For example, in Fig. 5, level 4 has demands only
at time 1 and 4 (i.e., d3

1 = d3
4 = 1).

We now consider a special case, when all given demands
are within a single reservation period, i.e., T ≤ τ . In this
case, it is sufficient to make all the reservations at time 1,
since a reservation made anytime will remain effective for the
entire horizon T . The question becomes how many instances
to reserve at time 1.

Initially, we consider the first reserved instance that will
be used to serve demands in level 1. Define utilization u1 as
the number of billing cycles where this reserved instance will
be used. It is easy to check u1 =

∑T
t=1 d

1
t . The use of this

reserved instance would be well justified if the reservation fee
satisfies γ ≤ pu1; otherwise, launching it on demand would
be more cost efficient.

Next, suppose l − 1 instances are already reserved in the
bottom l−1 levels. We check if an instance should be reserved
in level l. Define utilization ul as the number of billing cycles
where the lth reserved instance will be used, i.e.,

ul :=

T∑
t=1

dlt, l > 0 . (9)

For convenience, we let u0 := +∞ (for reasons to be clear).
Again, the broker will adopt the lth reserved instance only if
γ ≤ pul. Noting that ul is non-increasing in l, we obtain a
very simple optimal algorithm: reserve l instances at time 1,
such that ul ≥ γ/p > ul+1.

Fig. 5 shows an example with γ = 2.5, p = 1, and τ = 6. To
run the algorithm, we first plot the demand curve dt. We find

D
e

m
a

n
d

Time (hour)1 2 4 53 6 7

4

3

1

0

2

L1

L2

L3

L4

L5

Fig. 5. The Periodic Decisions algorithm, with γ = 2.5,
p = 1, τ = 6, and T = 6.

ul is the intersection area of a horizontal stripe in level l with
the area below dt, e.g., u4 = 2, as shown by the shaded area.
In this case, the optimal strategy is to reserve two instances
in the bottom three levels, as u3 = 3 > 2.5 = γ/p while
u4 = 2 < γ/p.

When demands last for more than one reservation period,
i.e., T > τ , a natural idea is to extend the above algorithm
by letting the broker make periodic decisions. We segment
the time axis into intervals, each with the same length τ
as the reservation period. The broker makes decisions for
each interval separately, only at the beginning of that interval,
by running the above algorithm. This leads to the Periodic
Decisions described by Algorithm 1. It is easy to check that
Algorithm 1 only requires O(d̄T) time and O(T) space.

The following proposition shows that Algorithm 1 is more
than a simple heuristic.

Proposition 2: Algorithm 1 is 2-approximation, incurring
no more than twice the minimum cost.

The proof is deferred to the appendix1. Below we briefly
explain its main idea. We say a reserved instance is interval-
aligned if it is reserved at the beginning of an interval,
i.e., its reservation period overlaps exactly one interval. Now
given an arbitrary instance reservation algorithm, the following
construction will lead to an outcome with all reserved in-
stances interval-aligned. Whenever an instance is reserved yet
is not interval-aligned, its reservation period must overlap two
consecutive intervals. We replace this reserved instance with
two reservations aligned with these two intervals, respectively.
We can show that such an interval-aligned construction incurs
at most twice the cost of the original algorithm. Also note that
Algorithm 1 is optimal among all algorithms making interval-
aligned reservations. It hence incurs less cost than the interval-
aligned construction of any algorithm, which implies that
Algorithm 1 incurs at most twice the cost of any algorithm.

We now show by the following example that the 2-
approximation analysis is tight for Algorithm 1. Consider
a pricing setup with p = 1 and γ = τ/2 + ε, where
the reservation period τ is even. Let the demand curve be
d1 = dτ/2+2 = · · · = d3τ/2 = 1, while dt = 0 for all
other t. It is easy to verify that Algorithm 1 will launch all
instances on demand, incurring cost τ . On the other hand, the
optimal strategy reserves one instance at time τ/2 + 2, with
the total cost τ/2 + 1 + ε. By taking τ � 1 and ε → 0, the

1. The appendix is given in a supplementary document as per the TPDS
submission guidelines.

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2326409, IEEE Transactions on Parallel and Distributed Systems

6

approximation ratio could be arbitrarily close to 2.
With the above performance guarantee, it is worth men-

tioning that Algorithm 1 can be used to compute the initial
estimates for the aforementioned ADP algorithm and speed up
its convergence. Specifically, let CostA1(t) be the cost incurred
by Algorithm 1 for demands d1, . . . , dt up to time t. For each
state st = (rt−1, . . . , rt−τ+1), we set its initial estimate to be

Ṽ (0)(st) := max

{
CostA1(t− 1)

2
,

t−1∑
i=t−τ+1

γri

}
. (10)

We have
Proposition 3: The initial estimate (10) is optimistic for all

state st, i.e.,
Ṽ (0)(st) ≤ V (st), ∀st. (11)

Proof: Because Algorithm 1 incurs no more than twice
the minimum cost, we have

CostA1(t− 1) ≤ 2V (st) . (12)

On the other hand, by definition, at state st, at least∑t−1
i=t−τ+1 ri instances have been reserved, which implies

t−1∑
i=t−τ+1

γri ≤ V (st) . (13)

Combining (12) and (13), we see the statement holds.
Since the initial estimate is optimisitc, the ADP will con-

verge to the optimality. We will show experimentally in
Sec. 6.2 that the initial estimate (10) significantly accelerates
ADP convergence.

5.2 An Improved Greedy Algorithm

Algorithm 1 divides problem (2) into reservation subproblems,
each solved in a separate level. However, in each level, the
reservations are made only at the beginnings of intervals. In
this subsection, we consider an improvement of Algorithm 1
that optimally reserves instances in each level.

In particular, the algorithm starts to make optimal reser-
vations in the top level d̄. Note that there might exist some
instance reserved in level d̄ but unused at some time due to the
lack of demand. For better utilization, these reservation slots
are passed over to the lower level d̄ − 1, with the hope that
they could be used by demands there, if any. The algorithm
then steps down to the second top level d̄ − 1, where it
makes optimal reservations, with the potential use of “leftover”
reservation slots carried over from the upper level. Unused
reservation slots are then passed over to the lower level d̄−2.
The algorithm proceeds top-down and stops when reaching
level 0.

For each level, the optimal reservation can be efficiently
computed via dynamic programming. Suppose before process-
ing level l, at time t, there are ml

t unused reservation slots
carried over from upper levels. Let Vl(t) be the minimum cost
of serving demands dl1, . . . , d

l
t in level l up to time t. Vl(t) can

be recursively computed by the following Bellman equation:

Vl(t) = min{Vl(t− τ) + γ, Vl(t− 1) + cl(t)} , (14)

Algorithm 2 Greedy Reservation Strategy

1. Initialization: md̄
t ← 0 for all t = 1, . . . , T .

2. for l = d̄ down to 1 do
3. Make optimal reservations in level l via dynamic pro-

gramming defined by (14), (15), and (16).
4. Update ml−1

t for all t.
5. end for

where

cl(t) =

{
p, if dlt = 1 and ml

t = 0 ,
0, otherwise, (15)

To see the rationale behind (14), we note that there are
two alternatives to serve demand dlt. The first is to use a
reserved instance made in the current level l. Because Vl(·)
is increasing, the best strategy is to optimally serve demands
up to time t − τ and reserve an instance at the next time
slot t − τ + 1, incurring the total cost Vl(t − τ) + γ. The
second alternative is to serve demand dlt using an on-demand
instance, if there is no unused reservation slot from upper
levels at time t, i.e., ml

t = 0. Otherwise, serve demand dlt free
with unused reservation slot. The costs incurred under these
two conditions are exactly given by (15). We finally give the
boundary conditions as follows:

Vl(t) = 0, t ≤ 0 . (16)

After the optimal reservations have been computed in level
l, we update ml−1

t , the number of unused reservation slots at
time t in level l − 1, as follows:
• ml−1

t := ml
t + 1, if an instance is reserved in level l but

is not used at time t;
• ml−1

t := ml
t−1, if demand dlt is served using an unused

reservation slot carried over from upper levels;
• ml−1

t = ml
t, otherwise.

Algorithm 2 summarizes the aforementioned greedy reser-
vation strategy. The time and space complexity is O(d̄T) and
O(T), respectively, as solving the dynamic programming in
each level requires O(T) time and O(T) space. Algorithm 2
is a “level-by-level” improvement of Algorithm 1, which leads
to the following proposition:

Proposition 4: Algorithm 2 is 2-approximation.
While it remains open to see if the 2-approximation is a

tight analysis for Algorithm 2, we can show by the following
example that the competitive ratio is at least 1.5. Consider a
pricing setup with p = 1, γ = 1 + ε, and τ = 3. Let the
demand curve be d1 = d2 = d4 = 1, d3 = 2, while dt = 0
for all other t. It is easy to check that Algorithm 2 reserves
only one instance at time 1, with the total cost 3 + ε. On the
other hand, the optimal strategy reserves two instances at time
1 and time 3, respectively, with the total cost 2 + 2ε. Taking
ε→ 0 leads to the factor 3/2 approximation.

5.3 An Online Reservation Strategy
Previous algorithms apply to the case where users submit
their future demand predictions. In the case when no future
information is available, we propose a simple online strategy

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2326409, IEEE Transactions on Parallel and Distributed Systems

7

that makes reservation decisions based only on history. We
first introduce the Bahncard algorithm [12] and then use it as
a building block to make reservation decisions in each demand
level.

The Bahncard problem models online ticket purchasing on
German Federal Railway. A customer can buy a ticket every
time she travels, or she can purchase a Bahncard and will
be free of charge for all trips in the following year. Without
knowing the future travel plans, the customer needs an online
strategy to choose between these two pricing options to save
her travel cost. The Bahncard problem is exactly the instance
reservation problem limited to one demand level, where a
Bahncard corresponds to a reserved instance and a ticket
corresponds to an on-demand instance. We can hence use the
Bahncard algorithm [12] to make reservation decisions in one
level as follows. At time t, in level l, we keep track of the
overall cost incurred by the use of on-demand instances in the
past reservation period, i.e., from time t − τ + 1 to t. If this
on-demand cost turns out to be no less than the reservation
fee γ, then reserve an instance at time t. Otherwise, use an
on-demand instance to serve the current demand dlt. At every
time t, we apply this Bahncard algorithm separately in each
level. Algorithm 3 formalizes the detailed process.

Since Algorithm 3 makes reservation decisions only based
on history, it is an online strategy, without any future in-
formation. Even so, the following proposition shows that
Algorithm 3 offers worst-case cost guarantee.

Proposition 5: Algorithm 3 is 4-competitive, incurring at
most 4 times the minimum cost.

The proof is deferred to the appendix. The main idea is to
use the fact that the Bahncard algorithm incurs at most twice
the minimum cost in each demand level [12]. This is because
the most inefficient reservation is to reserve an instance at
time t but will never use it in the following time slot due to
the lack of demand. This reservation is made because the on-
demand cost incurred in the past reservation period reaches
γ. It hence costs 2γ to serve demands from time t − τ + 1
to t. On the other hand, the optimal strategy reserves one
instance to serve the same demands, with cost γ. Also, we
can show that optimally reserving instances separately in each
level incurs at most twice the minimum cost. Combined with
the 2-competitiveness achieved by the Bahncard algorithm in
each level, we see that Algorithm 3 is 4-competitive.

It is worth mentioning that the 4-competitiveness is a loose
analysis. A tight competitive ratio remains open for Algo-
rithm 3. We shall show by simulations in the next section that
the performance of the online strategy is comparable with the
two approximation algorithms when demand predictions are
available. We have proposed a conceptually more complicated
online strategy for instance reservation that yields the optimal
competitive ratio in [13], which we shall also compare with
in the next section.

6 PERFORMANCE EVALUATION
In this section, we conduct simulations driven by a large
volume of real-world traces to evaluate the performance of the
proposed brokerage service and reservation strategies, under
an extensive range of scenarios.

Algorithm 3 Online reservation strategy at time t, upon the
arrival of demand dt

1. Initialization: rt = 0
2. for l = 1 to dt do
3. Let al be the accumulated cost incurred by the use of

on-demand instances in the past reservation period, i.e.,
from time t− τ + 1 to time t.

4. if al ≥ γ then
5. Reserve an instance in level l at the current time t,

i.e., rt ← rt + 1.
6. else
7. Use an on-demand instance to serve the current

demand in level l.
8. end if
9. end for

6.1 Dataset Description and Preprocessing

Workload traces in public clouds are often confidential: no
IaaS cloud has released its usage data so far. For this
reason, we use Google cluster-usage traces [10], [14] that
were recently released in our evaluation. Although Google
cluster is not a public IaaS cloud, its usage traces reflect the
computing demands of Google engineers and services, which
can represent demands of public cloud users to some degree.
The dataset contains 180 GB of resource usage information of
933 users over 29 days in May 2011, on a cluster of 12,583
physical machines. In the traces, a user submits work in the
form of jobs. A job consists of several tasks, each of which
has a set of resource requirements on CPU, disk, memory, etc.

Instance Scheduling: We take such a dataset as input, and
ask the question: How many computing instances would each
user require if she were to run the same workload in a public
IaaS cloud? It is worth noting that in Google cluster, tasks
of different users may be scheduled onto the same machine,
whereas in IaaS clouds each user will run tasks only on her
own computing instances.

Therefore, we reschedule the tasks of each user onto in-
stances that are exclusively used by this user. We set the
instances to have the same computing capacity as Google
cluster machines2, which enables us to accurately estimate the
task run time by learning from the original traces.

For each user, we use a simple algorithm to schedule her
tasks onto available instances that have sufficient resources to
accommodate their resource requirements. Tasks that cannot
share the same machine (e.g., tasks of MapReduce) are sched-
uled onto different instances. (For simplicity, we ignore other
complicated task placement constraints such as on OS versions
and machine types.) A new instance will be launched if none
of the available instances can accommodate a submitted task.
Note that tasks of one user cannot be scheduled onto another
user’s instances. In the end, we obtain a demand curve for
each user, indicating how many instances the user requires in
each hour. Fig. 6 illustrates the demand curves of three typical
users in the first 200 hours. For the broker, it simply adds up

2. Most Google cluster machines are of the same computing capability,
with 93% having the same CPU cycles.

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2326409, IEEE Transactions on Parallel and Distributed Systems

8

0 50 100 150 200
0

500

1000

1500

Time (hour)

#
 I
n
s
ta

n
c
e
s

User 401

0 50 100 150 200
0

400

800

1200

Time (hour)

#
 I
n
s
ta

n
c
e
s

User 552

0 50 100 150 200
0

200

400

600

Time (hour)

#
 I
n
s
ta

n
c
e
s

User 866

Fig. 6. The demand curves of three typical users.

0 50 100 150 200 250 300
0

50

100

150

200

250

Demand Mean

D
e

m
a

n
d

 S
td

y = 5x
y = xHigh

Medium

Low

Fig. 7. Demand statistics and the division of users into 3
groups according to demand fluctuation level.

all users’ demands for instances as the aggregate demand. This
preserves the instance isolations among users as no user shares
instances with one another.

Pricing: Unless explicitly mentioned, we set the on-demand
hourly rate to $0.044, the same as Amazon EC2 small in-
stances3. Since the Google traces only spans one month, we
assume each reservation is effective for one week, with a full-
usage discount of 50%: the reservation fee is equal to running
an on-demand instance for half a reservation period, which is
a general pricing policy in most IaaS clouds [3], [5], [6], [9].

Group Division: To further understand the demand statis-
tics of users, we compute the demand mean and standard
deviation for each user and illustrate the results in Fig. 7. As
has been mentioned, to what extent a user can benefit from
reservations critically depends on its demand pattern: the more
fluctuating the demand is, the less is the benefit from using

3. The price is for Standard On-Demand Instances, Linux, US East, as of
April 10, 2014.

reserved instances. We hence classify all 933 users into the
following three groups based on the demand fluctuation level
measured as the ratio between the demand standard deviation
and mean:

Group 1 (High Fluctuation): Users in this group have a
demand fluctuation level no smaller than 5. A typical user’s
demand is shown in the top graph of Fig. 6. There are 271
users in this group, represented by “o” in Fig. 7. These users
have small demands, with a mean less than 30 instances.

Group 2 (Medium Fluctuation): Users in this group have
a demand fluctuation level between 1 and 5. A typical user’s
demand is shown in the middle graph of Fig. 6. There are 286
users in this group, represented by “x” in Fig. 7. These users
require a medium amount of instances, with a mean less than
100.

Group 3 (Low Fluctuation): Users in this group have a
demand fluctuation level less than 1, represented by “+” in
Fig. 7. A typical user’s demand is shown in the bottom graph
of Fig. 6. Almost all high-demand users with the demand mean
greater than 100 belong to this group.

Our evaluations are carried out for each group. We start to
quantify to what extent the aggregation smooths out demand
bursts of individual users. Fig. 8 presents the results, with “o”
being the statistics of individual users and the line representing
the fluctuation level of the aggregated demand. We see from
Fig. 8a and 8b that aggregating bursty users (i.e., users in
Group 1 and 2) results in a steadier demand curve, with a
fluctuation level much smaller than that of any individual user.
For users that already have steady demands, aggregation does
not reduce fluctuation too much (see Fig. 8c). In addition,
Fig. 8d shows the result of aggregating all the users. In all
cases, the aggregated demand is stabler and more suitable for
service via reserved instances.

Another benefit of demand aggregation is to reduce the
wasted instance-hours incurred by partial usage. To see this,
for each user, we count the wasted instance-hours billed but
not used to run any workload, when this user purchases
directly from the cloud. In each group, we do the same
count for the aggregate demand and compare it with the
sum of the wasted instance-hours of all users in that group.
Fig. 9 shows the results. As expected, we observe a reduction
of wasted instance-hours in all four cases. Interestingly, the
waste reduction is the most significant for users with medium
fluctuation, instead of highly fluctuating users. This is due to
the relatively small number of users in Group 1 — we do not
have a large amount of high-fluctuating demands to aggregate.

6.2 The Ineffectiveness of Conventional ADP

Before evaluating cost savings of the broker under different
reservation strategies, we first show the ineffectiveness of
conventional ADP algorithms. We use two methods to speed
up the convergence of ADP. First, following (10), we use the
Heuristic strategy (Algorithm 1) as a good initial estimate.
Second, we adopt coarse-grained reservations. That is, every
time any reservation is made, we only reserve a number of
instances that is a multiple of a certain integer G, defined as
the reservation granularity. Although such a coarse-grained

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2326409, IEEE Transactions on Parallel and Distributed Systems

9

0 5 10 15 20 25 30
0

30

60

90

120

150

Demand Mean

D
e

m
a

n
d

 S
td

y = 1.774x

(a) High fluctuation.

0 20 40 60 80 100
0

50

100

150

200

Demand Mean

D
e

m
a

n
d

 S
td

y = 0.363x

(b) Medium fluctuation.

0 200 400 600 800 1000
0

50

100

150

200

250

300

Demand Mean

D
e

m
a

n
d

 S
td

y = 0.058x

(c) Low fluctuation.

0 200 400 600 800 1000
0

50

100

150

200

250

300

Demand Mean

D
e

m
a

n
d

 S
td

y = 0.061x

(d) All users.

Fig. 8. Aggregation suppresses the demand fluctuation of individual users. Each circle represents a user. The line
indicates the demand fluctuation level (the ratio between the demand standard deviation and mean) in the aggregate
demand curve.

High Medium Low All
0

200

400

600

800

1000

Demand Fluctuation

W
a

s
te

d
 i
n

s
ta

n
c
e

−
h

o
u

rs
 (

k
)

−16.5%

−30.5%

−5.6%

−23.4%

Before aggregation

After aggregation

Fig. 9. Aggregation reduces the wasted instance-hours
due to partial usage.

0 5 10 15 20
350

400

450

500

550

600

of Iterations (10
4
)

A
g

g
re

g
a

te
 C

o
s
t

(k
 $

)

G=5000 (init=heur)
G=5000 (init=0)
G=1000 (init=heur)
G=1000 (init=0)

Fig. 10. The convergence speed of ADP accelerated by
initial estimate and coarse-grained reservations.

reservation strategy leads to a sub-optimal solution when
G > 1, it can accelerate the convergence, as the strategy space
is exponentially reduced. The choice of granularity strikes a
tradeoff between optimality and convergence speed.

However, even with the above acceleration, the convergence
remains intolerably slow. As shown in Fig. 10, although a
good initial estimate reduces the convergence iterations by
an order compared with naively setting the initial estimate
to 0, it still takes over 90K iterations to converge even for
an extremely coarse-grained reservation with G = 5000. As
shown in Table 1, for more fine-grained reservations (G=1000,
2000, or 3000), ADP shows no sign of convergence even after
200K iterations, where the achieved aggregate cost remains
higher than a more coarse-grained strategy with G = 5000.
In fact, we find that G = 5000 is around the sweet spot

TABLE 1
Comparisons in terms of cost and convergence.

Algorithm Cost ($) Converged Run Time4 (s)
ADP (G = 8000) 396,147 Yes 47
ADP (G = 5000) 390,344 Yes 65
ADP (G = 3000) 395,166 No 388
ADP (G = 2000) 399,019 No 1645
ADP (G = 1000) 422,680 No 2732
Heuristic (G = 1) 386,268 N/A 1
Greedy (G = 1) 385,552 N/A 6

High Medium Low All
0

10

20

30

40

50

Demand Fluctuation

S
a
v
in

g
 P

e
rc

e
n
ta

g
e
 (

%
)

Heuristic
Greedy
Online
Opt−Online

Fig. 11. Aggregate cost savings in different user groups
due to the brokerage service.

that balances both the optimality and the convergence speed:
setting a larger G, though converging faster, incurs higher
cost due to the coarser reservation granularity. Table 1 fur-
ther compares ADP with the proposed Heuristic and Greedy
strategies. We see that the conventional ADP is inefficient in
terms of both cost savings and run time for the scale of our
problem. Therefore, we will focus on evaluating the proposed
approximation algorithms.

6.3 Aggregate Cost Savings
We now evaluate the aggregate cost savings offered by the bro-
ker under different reservation strategies. In particular, when
demand predictions are reliable, both Heuristic (Algorithm 1)
and Greedy (Algorithm 2) strategies can be applied. In this
case, we simply set the demand information available to both

4. All the algorithms are run on a machine with 1.7GHz Intel Core i5 and
4GB RAM.

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2326409, IEEE Transactions on Parallel and Distributed Systems

10

5

10

15

20

Algorithms

C
o
s
t
(k

 $
)

Heuristic
Greedy

Online

Opt−Online

W/O broker
W/ broker

(a) High fluctuation.

20

40

60

80

100

120

Algorithms

C
o
s
t
(k

 $
)

Heuristic
Greedy

Online

Opt−Online

W/O broker
W/ broker

(b) Medium fluctuation.

200

300

400

500

600

Algorithms

C
o
s
t
(k

 $
)

Heuristic
Greedy

Online

Opt−Online

W/O broker
W/ broker

(c) Low fluctuation.

200

400

600

800

Algorithms

C
o
s
t
(k

 $
)

Heuristic
Greedy

Online

Opt−Online

W/O broker
W/ broker

(d) All users.

Fig. 12. Aggregate service costs with and without broker in different user groups.

algorithms. We take this simple approach because we have
observed only a slight difference on the cost savings offered
by the broker even when there are some prediction errors (up
to 10%). When predictions are unavailable, we evaluate two
online strategies, i.e., Algorithm 3 (Online) and a conceptually
more complicated strategy we proposed in [13]. We refer to
the latter algorithm as “Opt-Online” as it gives the optimal
competitive ratio [13]. In either case, assuming a specific
strategy is used, we compare the total service cost if users are
using the broker with the sum of costs if each user individually
makes reservations without using the broker. Fig. 12 shows
such comparisons in each user group, while Fig. 11 shows the
percentage of cost savings due to the use of a broker.

From Fig. 11, we see that the broker can bring a cost saving
of close to 15% when it aggregates all the user demands.
In terms of absolute values, the saving is nearly $100K, as
shown in Fig. 12d. However, the broker’s benefit is different
in different user groups: cost saving is the highest for users
with medium demand fluctuation (40%), and the lowest for
users with low demand fluctuation (5%). This is because when
user demands are steady, they are heavily relying on reserved
instances, regardless of whether they use the brokerage service
or not. The broker thus brings little benefit, as shown in
Fig. 12c. In contrast, for fluctuating demands, as shown
in Fig. 12b, the broker can smooth out the demand curve
through aggregation, better exploiting discounts of reserved
instances. However, when users are highly fluctuating with
bursty demands, as shown in Fig. 12a, even the aggregate
demand curve is not smooth enough: these users can only
leverage a limited amount of reserved instances, leading to
less reservation benefit than for users with medium fluctuation.
However, there is still 15% ∼ 20% cost saving, partly due to
aggregation and the reduction of partial usage.

We now compare the cost performance of different reser-
vation strategies. We see from Fig. 12 that both Heuristic and
Greedy algorithms outperform the two online strategies, due
to the availability of demand prediction. On the other hand,
despite the lack of future knowledge, the costs incurred by the
two online algorithms are very close to those of Heuristic and
Greedy when demands are fluctuating, as shown in Figs. 12a
and 12b. However, for users with stable demand curves, the
cost difference between the online algorithms and Heuristic
and Greedy is more prominent. Fortunately, when users have
stable demands, it would be easy to accurately predict their
future demands, so that the online strategies will not be needed
anyway. We hence view the online algorithms and Heuristic

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Saving Percentage (%)

Heuristic
Greedy
Online

(a) Medium fluctuation.

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Saving Percentage (%)

Heuristic
Greedy
Online

(b) All users.

Fig. 13. CDF of price discounts for individual users due to
the brokerage service, under different algorithms.

(Greedy) as complementary approaches applied in different
scenarios. Also, Fig. 12 shows that the cost performance of the
simple Online strategy can be further improved by Opt-Online,
yet at a cost of more complicated design, implementation and
analysis [13]. In terms of the relative cost savings offered by
the broker, both online algorithms achieve similar performance
gains, as shown in Fig. 11, although Opt-Online is a little
better. However, due to its conceptual simplicity and ease of
understanding, the Online strategy has its own merit that may
appeal to fast adoption by brokerage service operators who
prefer a lightweight implementation in reality. Therefore, we
focus only on the Online strategy in the following evaluations.

6.4 Individual Cost Savings
We next evaluate the price discount each individual user can
enjoy from the brokerage service. We consider a straight-
forward usage-based pricing scheme adopted by the broker.
That is, for each user, the broker calculates the area under its
demand curve to find out the instance-hours it has used. The
broker then lets users share the aggregate cost in proportion

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2326409, IEEE Transactions on Parallel and Distributed Systems

11

0 2 4 6
0

2

4

6

Cost w/o Broker (k $)

C
o

s
t

w
/

B
ro

k
e

r
(k

 $
)

y = x→

(a) Medium fluctuation.

0 2 4 6
0

2

4

6

Cost w/o Broker (k $)

C
o

s
t

w
/

B
ro

k
e

r
(k

 $
)

y = x→

(b) All users.

Fig. 14. Cost without the broker vs. with the broker for
individual users, using Greedy strategy. Each circle is a
user.

to their instance-hours. In Fig. 13, we plot the CDF of price
discounts of individual users due to using the broker. In
Fig. 14, we plot the costs with and without the broker for
each individual user (represented by a circle), under Greedy
strategy, where such costs are the same if the circle is on
the straight line y = x. We do not plot for Group 3 (low
fluctuation) because the benefit of broker is less significant.
In this sense, users in Group 3 has less motivation to use the
broker. Furthermore, we do not plot for Group 1 (high fluctu-
ation) because all their cost saving percentages are observed
to be the same as the aggregate saving percentage. The reason
is that with highly bursty demands, users in Group 1 will
mainly use on-demand instances without the broker, leading
to bills proportional to their usage. If these users choose to
use the broker, their costs are also proportional to their usage.
Therefore, the individual saving percentages are essentially the
same as the aggregate saving percentage.

From Fig. 13a, we see that over 70% of users in Group 2
save more than 30%, while in Fig. 13b, we see that the broker
can bring more than 25% price discounts to 70% of users if
all users are aggregated. Several interesting observations are
noted from Fig. 13 and Fig. 14. To begin with, there is an
upper limit on the price discount a user can get under Greedy,
which is about 50%. Moreover, with Online, a majority
(around 40−50%) of users receive a discount of around 30%.
Furthermore, when the broker charges users based on usage,
only very few users (less than 5%) do not receive discounts
(with price discount below 0 or circles above the straight
line in Fig. 14). Since these users only contribute to a very
small portion of the entire demand (around 3%), the broker
can easily guarantee to charge them at most the same price

as charged by cloud providers, by compensating them with a
portion of the profit gained from service cost savings.

It is worth noting that the above usage-based billing is only
one of many possible pricing policies that the broker can
use. We adopt it here because it is easy to implement and
understand. Although it may cause the problem of compen-
sating overcharged users as mentioned above, it is not typically
an issue in our simulations. We note that more complicated
pricing polices, such as charging based on users’ Shapley value
[15], can resolve this problem with guaranteed discounts for
every user. The discussion of these policies is orthogonal to
this paper: As long as the cost saving is achieved by the broker,
there are rich methods to effectively share the benefits among
all participants (see Ch. 15 in [16]).

6.5 Reservation Period, Discount, and Billing Cycle
We now quantify the impact of other factors on the perfor-
mance of the broker. The first factor we consider is the length
of the reservation period. In practice, different reservation
periods are adopted in different IaaS clouds, ranging from a
month to years. To see how this affects the cost saving benefits,
we fix the hourly on-demand rate, and try different reservation
periods with 50% full-usage discount (i.e., the reservation
fee is equal to running on-demand instances for half of the
reservation period). The results are given in Fig. 15a. We
observe that, in general, the longer the reservation period, the
more significant the cost saving achieved by the broker. It is
worth noticing that the broker offers very limited cost savings
when there is no reserved instance offered in the IaaS cloud.
In this case, the cost saving is only due to the reduction of
partial usage.

Besides reservation period, another important parameter
is the reservation discount offered by a reserved instance.
Usually, the longer the reservation period, the heavier the
reservation discount. To quantify how both parameters may
affect the cost benefit of the brokerage service, we combine
different reservation periods, varied from 1 to 4 weeks, with
different reservation discounts, varied from 20%, 50%, to 80%.
Fig. 15b presents the cost savings offered by the brokerage
service under all 12 combinations, using the Greedy strategy.
We observe a general trend that the heavier the reservation
discount, the more cost savings could be achieved. This is
because reserved instances can be more efficiently utilized via
the brokerage service, leading to more cost benefits under a
heavier discount.

The third factor that we take into account is how the length
of billing cycle affects the cost saving. To see this, we change
the billing cycle from an hour to a day, which is the case in
VPS.NET [9]. We set the daily on-demand rate to 24 times
the original hourly rate (i.e., 24×$0.044 = $1.056). The full-
usage reservation discount remains 50% (VPS.NET offers 41%
full-usage reservation discount, though). Fig. 16a and Fig. 16b
present the simulation results using the Greedy strategy. As
compared to the case of hourly billing cycle (Fig. 11 and
13b), we observe a significant cost saving improvement here.
Intuitively, adopting a larger billing cycle results in more
wasted partial usage, leading to more salient advantages of
using the broker.

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2326409, IEEE Transactions on Parallel and Distributed Systems

12

None 1 Week 2 Weeks 3 Weeks 1 Month
0

10

20

30

40

50

60

Reservation Period

S
a

v
in

g
 P

e
rc

e
n

ta
g

e
 (

%
)

High Medium Low All

(a) Cost savings in different user groups with different
reservation periods (50% reservation discount).

1 Week 2 Weeks 3 Weeks 1 Month
0

5

10

15

20

25

30

Reservation Period

S
a

v
in

g
 P

e
rc

e
n

ta
g

e
 (

%
)

20% Off
50% Off
80% Off

(b) Cost savings with different reservation discounts
and reservation periods.

Fig. 15. Cost savings achieved by the Greedy strategy
with different reservation periods and discounts.

7 DISCUSSION AND FUTURE WORK

Let us further discuss several practical issues. First, the savings
from partial usage reduction are conditioned on the pricing
details of a specific cloud. It is worth noting that time-
multiplexing users on an on-demand instance in EC2 will not
save cost. This is because in EC2, stopping a user on an on-
demand instance terminates a billing cycle, while loading a
new user onto it opens a new one [3]. As a result, in Fig. 2,
time-multiplexing (lower figure) will be billed for 3 instance-
hours due to 2 user switches. However, this is generally not
an issue for other cloud providers such as ElasticHosts [5]
or reserved instances with a fixed cost (e.g., EC2 Heavy
Utilization Reserved Instances). Furthermore, since the saving
from partial usage reduction does not contribute much to the
overall saving, as can be verified from Fig. 15a (where non-
reservation shows the saving from time-multiplexing alone),
the total cost gain will only be degraded slightly (less than
10% in most cases) even without time-multiplexing.

Second, by taking advantage of volume discounts, the cost
of instance reservations would further be reduced significantly.
As mentioned in Sec. 2, in practice, most IaaS clouds offer
heavy volume discounts to large users. Some clouds even
provide bargaining options for large users to enjoy further dis-
counts. For example, in Amazon EC2, such volume discounts
offer an additional 20% off on instance reservations [3]. Due
to the sheer volume of the aggregated demand, the broker can

High Med Low All
0

200

400

600

800

1000

Demand Fluctuation

C
o

s
t

(k
 $

)

−64.7%

−73.2%

−10.7%

−42.3%
W/O broker
W/ broker

(a) Aggregate cost savings.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

Saving Percentage (%)

(b) Histogram of individual cost savings.

Fig. 16. Cost savings with a daily billing cycle under the
Greedy strategy.

easily qualify for these discounts.
Third, in reality a user may only have rough knowledge of

its future computing demands, so the broker’s demand estimate
may not be accurate. However, the users face exactly the same
situation when purchasing directly from the cloud [13]. In this
case, they can still benefit from a broker that uses the Online
strategy, which does not rely on future information.

Furthermore, in our simulation, we consider the case that
the broker rewards all cost savings to users as price discounts.
In reality, the broker can turn a profit by taking a portion of
the savings as profit or through a commission. In that case,
our algorithms still apply, and the experimental observations
will be similar.

Finally, in addition to savings on the expenses of running
instances, the broker can also help lower the costs of other
cloud resources such as storage, data transfer, and bandwidth.
Since their prices are generally sub-additive [3], the cost of
provisioning aggregated resources is much cheaper than the
total cost of purchasing them individually from the cloud.

There are several interesting problems worth further in-
vestigation in the future. To begin with, in some occasions,
especially when demand is high, a cloud provider (e.g., EC2)
may reject requests of creating on-demand instances due to a
lack of resources. Our current formulation does not take into
account the risk of unavailable on-demand instances. However,
we note that such a risk is not introduced by the broker
and is intrinsic to all cloud users. Even purchasing directly
from the cloud, as long as the aggregate demand exceeds
some supply threshold, a user’s on-demand request may be
declined anyway. The only difference when using the broker
is that the risk must be shared by all users. Note that reserving

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2326409, IEEE Transactions on Parallel and Distributed Systems

13

additional instances when on-demand instances are unavailable
eliminates this risk, yet at a higher price. A risk-sharing
mechanism is therefore needed to allow each user to share
a fair portion of the incurred penalty. We believe discussions
based on the rich literature on cost-sharing mechanisms (e.g.,
Ch. 15 in [16]) will lead to an interesting future direction.
Also, it has been shown in many cases that the use of Spot
Instances [3] can further reduce the instance acquisition costs,
which we have not considered in the current formulation. This
serves as another interesting direction for further investigation.

8 RELATED WORK

Three types of pricing options are currently adopted in IaaS
clouds. Besides the on-demand and reserved instances intro-
duced in Sec. 2, we note that some cloud providers charge
dynamic prices that fluctuate over time, e.g., the Spot Instances
in Amazon EC2 [3]. Some existing works discuss how to
leverage these pricing options to reduce instance running
costs for an individual user. For example, Chohan et al. [17]
investigate the use of Spot Instances as accelerators of the
MapReduce process to speed up the overall MapReduce time
while significantly reducing monetary costs. Zhao et al. [18]
propose resource rental planning with EC2 spot price predic-
tions to reduce the operational cost of cloud applications. Hong
et al. [19] design an instance purchasing strategy to reduce
the “margin cost” of over-provisioning. [19] also presents
a strategy to combine the use of on-demand and reserved
instances, which is essentially a special case of our Heuristic
strategy when all demands are given in one reservation period.
Chaisiri et al. [20] investigate a similar problem and propose
an algorithm by solving a stochastic integer programming
problem. Their algorithm limits the reservation decisions to be
made at some specific time phases. The recent work of [13]
proposes optimal online strategies to reserve instances without
any a priori knowledge of future demands. Vermeersch [21]
implements a prototype software that dynamically retrieves
instances from Amazon EC2 based on the user workload.
All these works offer a consulting service, e.g., [22], [23],
[24], that helps an individual user make instance purchasing
decisions.

IaaS cloud brokers have recently emerged as intermediators
connecting buyers and sellers of computing resources. For
example, SpotCloud [25] offers a “clearinghouse” in which
companies can buy and sell unused cloud computing capacity.
Buyya et al. [26] discuss the engineering aspects of using
brokerage to interconnect clouds into a global cloud market.
Song et al. [27], on the other hand, propose a broker that
predicts EC2 spot price, bids for spot instances, and uses
them to serve cloud users. Unlike existing brokerage services
that accommodate individual user requests separately, our
broker serves the aggregated demands by leveraging instance
multiplexing gains and instance reservation, and is a general
framework not limited to a specific cloud.

We note that the idea of resource multiplexing has also
been extensively studied, though none of them relates to
computing instance provisioning. For example, [28] makes
use of bandwidth burstable billing and proposes a cooperative

framework in which multiple ISPs jointly purchase IP transit
in bulk to reduce individual costs. In [29], the anti-correlation
between the demands of different cloud tenants is exploited to
save bandwidth reservation cost in the cloud. [30] empirically
evaluates the idea of statistical multiplexing and resource over-
booking in a shared hosting platform. Compared with these
applications, exploiting multiplexing gains in cloud instance
provisioning poses new challenges, mainly due to the newly
emerged complex cloud pricing options. It remains nontrivial
to design instance purchasing strategies that can optimally
combine different pricing options to reduce cloud usage cost.

9 CONCLUDING REMARKS

In this paper, we propose a smart cloud brokerage service that
serves cloud user demands with a large pool of computing
instances that are either dynamically reserved or launched on
demand from IaaS clouds. By taking advantage of instance
multiplexing gains as well as the price gap between on-demand
and reserved instances, the broker benefits cloud users with
heavy discounts while gaining profits from the achieved cost
savings. To optimally exploit the price benefits of reserved
instances, we propose a set of dynamic strategies to decide
when and how many instances to reserve, with provable per-
formance guarantees. Large-scale simulations driven by real-
world cloud usage traces quantitively suggest that significant
cost savings can be expected from using the proposed cloud
brokerage service.

REFERENCES

[1] W. Wang, D. Niu, B. Li, and B. Liang, “Dynamic cloud resource
reservation via cloud brokerage,” in Proc. IEEE ICDCS, 2013.

[2] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Communications of the ACM, 2010.

[3] Amazon EC2 Pricing, http://aws.amazon.com/ec2/pricing/.
[4] BitRefinery, http://bitrefinery.com.
[5] ElasticHosts, http://www.elastichosts.com/.
[6] GoGrid Cloud Hosting, http://www.gogrid.com.
[7] Ninefold, http://www.ninefold.com.
[8] OpSource, http://www.opsource.net.
[9] VPS.NET, http://vps.net.
[10] “Google Cluster-Usage Traces,” http://code.google.com/p/

googleclusterdata/wiki/TraceVersion2.
[11] W. Powell, Approximate Dynamic Programming: Solving the curses of

dimensionality. John Wiley and Sons, 2011.
[12] R. Fleischer, “On the bahncard problem,” Theoretical Computer Science,

vol. 268, no. 1, pp. 161–174, 2001.
[13] W. Wang, B. Li, and B. Liang, “To reserve or not to reserve: Optimal

online multi-instance acquisition in iaas clouds,” in Proc. USENIX Intl.
Conf. Autonomic Computing (ICAC), 2013.

[14] C. Reiss, A. Tumanov, G. Ganger, R. Katz, and M. Kozuch, “Hetero-
geneity and dynamicity of clouds at scale: Google trace analysis,” in
Proc. ACM SoCC, 2012.

[15] A. E. Roth, Ed., The Shapley Value, Essays in Honor of Lloyd S. Shapley.
Cambridge University Press, 1988.

[16] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic
Game Theory. Cambridge University Press, 2007.

[17] N. Chohan, C. Castillo, M. Spreitzer, M. Steinder, A. Tantawi, and
C. Krintz, “See spot run: Using spot instances for mapreduce work-
flows,” in Proc. USENIX HotCloud, 2010.

[18] H. Zhao, M. Pan, X. Liu, X. Li, and Y. Fang, “Optimal resource rental
planning for elastic applications in cloud market,” in Proc. IEEE IPDPS,
2012.

[19] Y. Hong, M. Thottethodi, and J. Xue, “Dynamic server provisioning to
minimize cost in an IaaS cloud,” in Proc. ACM SIGMETRICS, 2011.

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2326409, IEEE Transactions on Parallel and Distributed Systems

14

[20] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimization of resource provi-
sioning cost in cloud computing,” IEEE Trans. Services Comput., vol. 5,
no. 2, pp. 164–177, 2012.

[21] K. Vermeersch, “A broker for cost-efficient qos aware resource allocation
in EC2,” Master’s thesis, University of Antwerp, 2011.

[22] “Cloudability,” http://cloudability.com.
[23] “Cloudyn,” http://www.cloudyn.com.
[24] “Cloud Express,” https://www.cloudexpress.com.
[25] SpotCloud, http://spotcloud.com/.
[26] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud

computing and emerging it platforms: Vision, hype, and reality for
delivering computing as the 5th utility,” Future Gener. Comput. Syst.,
vol. 25, no. 6, pp. 599–619, 2009.

[27] Y. Song, M. Zafer, and K.-W. Lee, “Optimal bidding in spot instance
market,” in Proc. IEEE INFOCOM, 2012.

[28] R. Stanojevic, I. Castro, and S. Gorinsky, “CIPT: Using tuangou to
reduce IP transit costs,” in Proc. ACM CoNEXT, 2011.

[29] D. Niu, H. Xu, and B. Li, “Quality-assured cloud bandwidth auto-scaling
for video-on-demand applications,” in Proc. IEEE INFOCOM, 2012.

[30] B. Urgaonkar, P. Shenoy, and T. Roscoe, “Resource overbooking and
application profiling in shared hosting platforms,” in Proc. USENIX
OSDI, 2002.

PLACE
PHOTO
HERE

Wei Wang received the B.Engr. and M.A.Sc
degrees from the Department of Electrical Engi-
neering, Shanghai Jiao Tong University, in 2007
and 2010. He is currently a Ph.D. candidate
in the Department of Electrical and Computer
Engineering at the University of Toronto. His
general research interests cover the broad area
of computer networking, with special empha-
sis on resource management and scheduling in
cloud computing systems. He is also interested
in problems at the intersection of computer net-

working and economics.

PLACE
PHOTO
HERE

Di Niu received the B.Engr. degree from the
Department of Electronics and Communications
Engineering, Sun Yat-sen University, China, in
2005 and the M.A.Sc. and Ph.D. degrees from
the Department of Electrical and Computer
Engineering, University of Toronto, Toronto,
Canada, in 2009 and 2013. Since September,
2012, he has been with the Department of Elec-
trical and Computer Engineering at the Univer-
sity of Alberta, where he is currently an Assistant
Professor.

He was a recipient of the NSERC Postgraduate Scholarship 2010-
2012 and a recipient of the NSERC Alexander Graham Bell Canada
Graduate Scholarship 2006-2008. His research interests span the areas
of multimedia delivery systems, cloud computing and storage, data min-
ing and statistical machine learning for social and economic computing,
distributed and parallel computing, and network coding.

PLACE
PHOTO
HERE

Ben Liang received honors-simultaneous B.Sc.
(valedictorian) and M.Sc. degrees in Electri-
cal Engineering from Polytechnic University in
Brooklyn, New York, in 1997 and the Ph.D.
degree in Electrical Engineering with Computer
Science minor from Cornell University in Ithaca,
New York, in 2001. In the 2001 - 2002 academic
year, he was a visiting lecturer and post-doctoral
research associate at Cornell University. He
joined the Department of Electrical and Com-
puter Engineering at the University of Toronto in

2002, where he is now a Professor. His current research interests are in
mobile communications and networked systems. He is an editor for the
IEEE Transactions on Wireless Communications and an associate editor
for the Wiley Security and Communication Networks journal, in addition
to regularly serving on the organizational or technical committee of a
number of conferences. He is a senior member of IEEE and a member
of ACM and Tau Beta Pi.

PLACE
PHOTO
HERE

Baochun Li received the B.Engr. degree from
the Department of Computer Science and Tech-
nology, Tsinghua University, China, in 1995 and
the M.S. and Ph.D. degrees from the Depart-
ment of Computer Science, University of Illinois
at Urbana-Champaign, Urbana, in 1997 and
2000. Since 2000, he has been with the Depart-
ment of Electrical and Computer Engineering at
the University of Toronto, where he is currently a
Professor. He holds the Nortel Networks Junior
Chair in Network Architecture and Services from

October 2003 to June 2005, and the Bell Canada Endowed Chair
in Computer Engineering since August 2005. His research interests
include large-scale multimedia systems, cloud computing, peer-to-peer
networks, applications of network coding, and wireless networks. Dr.
Li was the recipient of the IEEE Communications Society Leonard G.
Abraham Award in the Field of Communications Systems in 2000. In
2009, he was a recipient of the Multimedia Communications Best Paper
Award from the IEEE Communications Society, and a recipient of the
University of Toronto McLean Award. He is a member of ACM and a
senior member of IEEE.

