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Abstract—In underlay device-to-device (D2D) communications,
a D2D pair reuses the cellular spectrum causing interference to
regular cellular users. Maximizing the performance of under-
lay D2D communications requires joint consideration for the
achieved D2D rate and the interference to cellular users. In
this work, we consider the D2D power allocation optimization
over multiple resource blocks (RBs), aiming at maximizing the
either the ergodic D2D rate or the ergodic sum rate of D2D and
cellular users, under the long-term sum-power constraint of the
D2D users and per-RB probabilistic signal-to-interference-and-
noise (SINR) requirements for all cellular users. We formulate
stochastic optimization problems for D2D power allocation over
time. The proposed optimization framework is applicable to both
uplink and downlink cellular spectrum sharing. To solve the
proposed stochastic optimization problems, we first convexify
the problems by introducing a family of convex constraints as a
replacement for the non-convex probabilistic SINR constraints.
We then present two dynamic power allocation algorithms: a
Lagrange dual based algorithm that is optimal but with a
high computational complexity, and a low-complexity heuristic
algorithm based on dynamic time averaging. Through simulation,
we show that the performance gap between the optimal and
heuristic algorithms is small, and effective long-term stochastic
D2D power optimization over the shared RBs can lead to
substantial gains in the ergodic D2D rate and ergodic sum rate.

Index Terms—Device-to-Device communications, ergodic re-
source allocation, power allocation.

I. INTRODUCTION

In D2D communications, two user equipments (UEs) di-
rectly communicate with each other without having the pay-
load traversed through the backhaul network. Due to its local
communications nature, D2D communication can be provided
with a lower cost than cellular communications. Furthermore,
D2D communications provides many benefits unavailable to
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uncoordinated communications [2]–[4]. There are many cur-
rent and prospective applications for D2D communications.
For example, D2D has been proposed for use in LTE-based
public safety networks for its security and reliability [5]. Ad-
ditionally, D2D communications is necessary for the scenarios
where cellular transmission is not accessible [4].

To facilitate D2D communication, there are different chal-
lenges which should be addressed carefully. A survey on the
challenges and proposed solutions for D2D communications
can be found in [6]. In particular, sharing cellular recourses
between D2D and regular cellular users may cause intra-cell
and inter-cell interference. One possible option is to allocate
different resources for cellular and D2D communications, i.e.
overlay D2D communications. However, to achieve the highest
possible spectral efficiency, underlay D2D communications
has attracted more attention in the literature, where D2D and
cellular users within a cell share the same spectrum resource
and hence interfere with each other. In this paper we mainly
focus on underlay D2D communications.

Underlaying requires effective interference management and
resource sharing among all users. Many methods have been
presented in the literature to address these problems. For
example, Graph-based [7], [8] and game theoretic frameworks
[9]–[14] were considered. Power back-off approaches were
investigated in [15]–[17], and an interference cancelation
method was proposed in [18]. These works do not directly
address the optimization of spectrum resource and power
allocation in D2D communications.

Closer to our interest, resource and power optimization
methods have been proposed in [19]–[26] to maximize the
D2D rate, D2D-cellular sum rate, or power-rate efficiency. An
optimal power allocation solution for D2D users underlaying
cellular users in downlink transmission was given in [19].
The solutions in [19] were achieved without imposing any
constraint on the D2D power. In [20], a solution to encom-
pass mode selection, resource allocation, and power control
within a single framework was proposed. An energy efficient
power control design for resource sharing between cellular
and D2D users was proposed in [21]. The authors of [22]
investigated a weighted sum-rate maximization with multi-
carrier modulation for asynchronous D2D communications.
Performance bounds in the maximization of power efficiency
under signal-to-noise ratio (SNR) constraints were provided in
[23]. The authors of [24] and [25] proposed sub-optimal power
allocation solutions for D2D users in uplink transmission,
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which divide the original problem into several easier sub-
problems. In [26], an optimal power allocation method based
on maximizing application-dependent weighted cell utility was
proposed.

However, the studies in [19]–[26] are incomplete and moti-
vate further study in the following two aspects of D2D commu-
nications. First, the methods proposed in [19]–[21], [23]–[26]
were designed for the simplified scenario where each D2D
node accesses only a single channel at a time. They cannot be
directly applied to the multi-channel scenario that is prevalent
in most practical systems, such as supporting multiple RBs
in an LTE network. Second, [20]–[26] considers only short-
term power constraints. Yet, D2D nodes are often powered by
batteries with limited energy storage capacity, which directly
corresponds to long-term D2D power constraints. Further-
more, long-term D2D power allocation on individual RBs can
give probabilistic guarantees on the interference from D2D
transmitters to cellular users over the shared RBs. These are
important characteristics of D2D communications that require
further investigation beyond [19]–[26]. In [27] and [28], we
solved the D2D-cellular sum-rate maximization problem over
multiple RBs. However, the solution was short-term with
regard to power and SINR constraints.

In this work, in a multi-channel communication environ-
ment, we aim to either maximize the ergodic D2D rate or the
ergodic D2D-cellular sum rate by optimizing the power alloca-
tion of the D2D users, under the long-term power constraint on
the D2D users and per-RB probabilistic SINR constraints for
all cellular users. The combination of long-term power and
SINR constraints with multi-channel communications leads
to a complicated non-convex stochastic optimization problem.
Building on our preliminary results presented in [1], the main
contributions of this paper are as follows:

• We present a study on ergodic rate maximization with
long-term power constraints and per-RB probabilistic
SINR constraints in D2D communications. To address the
non-convexity in our optimization problem, we propose
a family of convex constraints that provides upper and
lower bounds for the non-convex probabilistic SINR
constraints. In particular, using the Chernoff bound, we
further propose a method to reduce the gap between the
probabilistic constraint and its convex replacement.

• Subsequently, to further convexify the D2D-cellular sum-
rate maximization problem, we replace the objective by a
function which, depending on the values of parameters, is
either convex and decreasing, or concave and increasing.
For the convex decreasing case, we show that optimal
allocated power is zero, while for the concave decreasing
case, we obtain a convex optimization problem.

• To solve the resulting convex optimization problem, we
propose two dynamic algorithms for power allocation
over time. The first algorithm is based on the Lagrange
duality which provides the optimal power levels over
all RBs at each time slot. However, the computational
complexity of this algorithm can be prohibitive when the
channel state space is large. Therefore, we propose an
alternative heuristic algorithm based on dynamic time
averaging, which drastically reduces the computational
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Fig. 1: A cellular network with underlaying D2D users in
uplink resource sharing. Dut and Dur: transmit and receive
nodes of a D2D pair, respectively. Cu: cellular users. Solid
and dashed lines: desired and interfering signals, respectively.

complexity.
• To show the tightness of the power allocation solutions

by the proposed algorithms, we propose a method to
reformulate the original problems to derive an upper
bound of the original problems for comparison.

• Finally, we show that the proposed algorithms are easily
scalable and can be applied to more general cases with
multiple cells and additional power constraints.

The rest of the paper is organized as follows. Section II
presents the system model of the cellular network used in
this paper and the resource allocation problem is defined in
this section. The proposed methods for solving the D2D-
rate maximization problem and the sum-rate maximization
problem are presented in Section III and Section IV. In
Section V, we discuss extensions of the proposed method
to multi-cell scenarios and to accommodate additional power
constraints. Section VI presents the simulation results. Section
VII concludes the paper.

Notations: We use italic fonts and boldface small letters to
represent scalar variables and vectors respectively. The nota-
tion a < 0 means all entries of vector a are nonnegative. We
define

[
x
]b
a

Δ
= max{a, min{x, b}} and

[
x
]
+

Δ
= max{x, 0}.

For a random process y, y[n] indicates its outcome at time-
slot n. We use x ∼ N (m, σ2) to denote a Gaussian random
variable with mean m and variance σ2.

II. SYSTEM MODEL AND PROBLEM DEFINITION

A. System Model

We consider a cellular system consisting of multiple cellular
users and D2D users underlaying the cellular users. We
assume that an idle D2D pair arrives at the cell of interest
requesting access to spectrum for D2D communications. Due
to the localized and low-power transmission of D2D users,
we assume the resource planning (e.g., spectrum allocation
and power control) of existing cellular users in the network
is not modified. As a practical representation of cellular
communications, e.g., LTE networks, we assume multiple RBs
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TABLE I: Notation Definition

N number of active cellular users in each cell
C set of all available RBs in the cell
Cl set of allocated RBs to the lth D2D pair
Sj set of neighboring cellular users using RB j
pD
t,j D2D transmitted power over RB j

pC
r,j cellular user received power over RB j

p
(k)
r,j neighboring cellular user received power over the RB j (for k ∈ Sj )

Ij D2D received interference power over RB j
pD
t,j |h

I
j |

2 cellular user received interference power over the RB j from the new D2D pair

pD
t,j |h

I,(k)
j |2 neighboring cellular user received interference power over the RB j (for k ∈ Sj ) from the new D2D pair

hj D2D channel coefficient over RB j
I0
j cellular user received interference over RB j before entering the new D2D user

I
0,(k)
j neighboring cellular user received interference over RB j (for k ∈ Sj ) before entering the new D2D user

PD
max maximum available power for a D2D pair

ζintra
j,min cellular user minimum required SINR over RB j

ζ
(k)
j,min neighboring cellular user minimum required SINR over RB j (for k ∈ Sj )

σ2 noise power over each RB

are allocated to each user in the network. Since the D2D de-
vices use licensed cellular spectrum, we assume that resource
allocation is centrally controlled by the cellular operator. In
particular, the RBs are allocated to the cellular and D2D users
by the Evolved Node B (eNB). Furthermore, we assume that
changes to RB allocation occur at a time scale much large
than power allocation, so that when considering the power
allocation problem, the RB allocation is viewed as fixed. There
is no intra-cell interference among cellular users in a cell
because of orthogonal assignment of RBs to the cellular users.
However, due to frequency reuse at neighboring cells, these
cellular users suffer from inter-cell interference. Fig. 1 shows
the interference scenarios for a cellular network with D2D
users in uplink resource sharing. The proposed algorithms can
be similarly applied to the alternate case of downlink spectrum
sharing.

We assume that there are N active cellular users in each
cell. A D2D pair attempts to reuse the assigned RBs of active
cellular users in the cell and C is the set of all available RBs
within the cell. Let Cl indicate the set of allocated RBs to the
lth D2D pair. For j ∈ Cl, let pD

t,j denote the transmit power
of the D2D pair over the jth RB and pC

r,j denote the received
power from the unique cellular user that is assigned to the
jth RB. In addition, let Sj denote the set of all cellular users
in the neighboring cells that are using the jth RB. Let p

(k)
r,j

denote the received power from the kth user in Sj over the
jth RB.

The cellular users have both intra-cell interference from the
D2D transmission and inter-cell interference from neighboring
cells. For j ∈ Cl, let I0

j and I
0,(k)
j denote the received

interference power over the jth RB for the corresponding
cellular user in the main cell and the kth neighboring user,
respectively, excluding the interference from the D2D pair
under consideration. For the uplink sharing, let |hI

j |
2 and

|hI,(k)
j |2 denote the channel power gains over the jth RB

between the D2D transmitter and the eNB and between the
D2D transmitter and the kth neighboring cellular user’s eNB,
for k ∈ Sj , respectively (for the downlink case, the same
notation can be used, except that the eNBs are replaced by

the corresponding cellular users.). Furthermore, let Ij denote
the received interference power over the jth RB at the D2D
receiver. And finally, let hj denote the D2D channel coefficient
over the jth RB. Under the fading environment, all channel
power gains and interference power are random variables. The
notation used throughout this paper is summarized in Table I.

B. Ergodic Rate Optimization Problem

For the uplink transmission, the received SINR of the
cellular user over the jth RB at the eNB in the main cell,
at the eNB of the kth neighboring cellular user in Sj , and at
the D2D receiver are respectively given by 1

SINRC
j =

pC
r,j

σ2 + I0
j + pD

t,j |h
I
j |

2
, (1)

SINRC,(k)
j =

p
(k)
r,j

σ2 + I
0,(k)
j + pD

t,j |h
I,(k)
j |2

, k ∈ Sj , (2)

SINRD
j =

|hj |2pD
t,j

σ2 + Ij
. (3)

In order to maintain the quality of service for the cellular
users at a specific level, it is important to control the inter-
ference from the D2D transmitter to the cellular users in the
main cell and also in the neighboring cells. Therefore, the D2D
power over each RB must be confined. We first consider the
following constraints

Pr
{

SINRC
j ≤ ζ intra

j,min

}
≤ ε, j ∈ Cl (4)

Pr
{

SINRC,(k)
j ≤ ζ

(k)
j,min

}
≤ ε, j ∈ Cl, k ∈ Sj (5)

where ζ intra
j,min and ζ

(k)
j,min are minimum SINR targets for the

cellular user in the main cell and the kth neighboring cellular
user in Sj , respectively. These constraints guarantee a specific
long-term QoS for the cellular users in the main cell and

1For the downlink, SINR is defined by replacing the eNB with the cellular
user.
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neighboring cells. We define

ηj , min

{
pC
r,j/ζ intra

j,min − (σ2 + I0
j )

|hI
j |

2
,

{
p
(k)
r,j /ζ

(k)
j,min − (σ2 + I

0,(k)
j )

|hI,(k)
j |2

}

k∈Sj





. (6)

It is easy to show that (4) and (5) are equivalent to the
following constraint:

Pr
{

pD
t,j ≥ ηj

}
≤ ε. (7)

Furthermore, in order to limit power usage for the D2D user,
we additionally consider a long-term sum-power constraint for
the D2D pair as follows:

E
{∑

j∈Cl

pD
t,j

}
≤ PD

max. (8)

The statistical constraints on the D2D transmission power
in (7) and (8) are more practical than the deterministic ones
commonly assumed in the literature [19], [23]–[26]. Instead
of imposing instantaneous, strict SINR and power constraints
in each time slot, we allow their fluctuations over time.
Constraint (7) models long-term QoS requirements, while the
constraint (8) corresponds to the need to conserve energy
especially for battery-powered D2D equipment. The resultant
additional degree of freedom in dynamic adjustment of the
D2D transmission power, tailored to the time-varying channel
conditions, can lead to substantial gains in the ergodic D2D
rate and D2D-cellular sum rate. This will be numerically
demonstrated in Section III-E and IV-B, where we compare
the cases where the D2D transmission power is properly
designed over time under statistical constraints, and where it
is deterministically bounded in each time slot. Furthermore, in
Section V-B, we will discuss how the proposed solution can
be easily extended to the case where there are both statistical
and deterministic constraints on the D2D transmission power.

Thus, in this paper, we study the following two stochastic
power allocation problems to find the optimal power in each
time slot over each RB for the new D2D pair:

I) Ergodic D2D-Rate Maximization Problem

D1 : max
pD
t <0

E
{∑

j∈Cl

log(1 + SINRD
j )
}

subject to (7) and (8);

II) Ergodic Sum-Rate Maximization Problem

S1 : max
pD
t <0

E
{∑

j∈Cl

log(1 + SINRC
j ) + log(1 + SINRD

j )
}

subject to (7) and (8),

where we define pD
t = [pD

t,1, ∙ ∙ ∙, p
D
t,|Cl|

]T . Note that, in the
above optimization problems, the transmission power pD

t is
a mapping from the random channel state vector to a power
allocation vector.

C. Feasibility Check

Consider the SINR constraints in (4)-(5). The feasible set
is non-empty only if we have

Pr
{ pC

r,j

σ2 + I0
j

≤ ζ intra
j,min

}
≤ ε, j ∈ Cl, (9)

Pr
{ p

(k)
r,j

σ2 + I
0,(k)
j

≤ ζ
(k)
j,min

}
≤ ε, j ∈ Cl, k ∈ Sj . (10)

For example, in the case that all signal and interface powers
are exponentially distributed, the constraints in (4)-(5) are
equivalent to

1 −
e−λC

p,jζintra
j,minσ2

1 +
λC

p,jζintra
j,min

λI,j

≤ ε, j ∈ Cl, (11)

1 −
e−λ

(k)
p,jζ

(k)
j,minσ2

1 +
λ

(k)
p,jζ

(k)
j,min

λ
(k)
I,j

≤ ε, j ∈ Cl, k ∈ Sj , (12)

where λC
p,j , λ

(k)
p,j , λI,j and λ

(k)
I,j are the rates of exponentially

distributed random variables pC
r,j , p

(k)
r,j , I0

j and I
0,(k)
j , respec-

tively.

III. D2D RATE MAXIMIZATION

The stochastic optimization problem D1 can be reformu-
lated as an equivalent deterministic optimization problem,
in which all expectations in the optimization problem D1
can be written as probability-weighted sums of functions of
realizations of the random channel state vector over all RBs. In
this reformulation, the decision variable is pD

t,j corresponding
to every realization of the channel state vector. However, the
complexity of directly solving such an optimization problem
would be prohibitive, due to the exponential size of the multi-
dimensional channel state space. Instead, we propose to first
convexify the optimization problem D1. We will then show
that using Lagrange multipliers, the problem of finding pD

t,j

can be solved separately over each observed realization of
channel states.

A. Convexification of Problem D1

The probabilistic individual power constraint in (7) is not
convex. We consider instead stronger convex constraints using
the following lemma.

Lemma 1. For any strictly increasing function f(∙) such that
f(0) = 1, we have

Pr
{

pD
t,j ≥ ηj

}
≤ E

{
f(pD

t,j − ηj)
}

. (13)

Proof: Since f(∙) is a strictly increasing function, we have

Pr
{

pD
t,j ≥ ηj

}
= Pr

{
pD
t,j − ηj ≥ 0

}

= Pr
{

f(pD
t,j − ηj) ≥ f(0)

}

≤ E
{

f(pD
t,j − ηj)

}
, (14)
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where the last inequality is achieved by applying Markov’s
inequality and the assumption that f(0) = 1.

Note that in Lemma 1, f(∙) does not need to be convex.
However, to obtain a convex optimization problem, we will
use only convex increasing functions. We propose substituting
the following constraint for the constraint in (7):

E
{

fj(p
D
t,j − ηj)

}
≤ ε, (15)

where fj(∙)’s are convex increasing functions for all j ∈ Cl.
By satisfying (15), the constraint in (7) will be guaranteed.
Thus, we can find a lower-bound for D1 by using (15) and
solving the new convex optimization problem:

D2 : max
pD
t,j<0

E
{∑

j∈Cl

log

(

1 +
|hj |2pD

t,j

σ2 + Ij

)
}

subject to E
{∑

j∈Cl

pD
t,j

}
≤ PD

max (16)

E
{

fj(p
D
t,j − ηj)

}
≤ ε, j ∈ Cl. (17)

B. Solution via the Lagrange Method

The Lagrange function of D2 can be written as

LD(pD
t , λ, μ)

=
∑

j∈Cl

E
{

log

(

1 +
|hj |2pD

t,j

σ2 + Ij

)

− μpD
t,j − λjfj(p

D
t,j − ηj)

}

+ μPD
max +

∑

j∈Cl

λjε (18)

where λ = [λ1, ∙ ∙ ∙, λ|Cl|]
T is a vector of Lagrange multipliers.

The corresponding Lagrange dual function is

gD(λ, μ) = max
pD
t <0

LD(pD
t , λ, μ). (19)

To find the optimal pD
t,j , for fixed values of λj and μ, we

need to solve the following optimization problem for each j
and each channel realization of the jth RB:

pD∗
t,j (λj , μ) = arg max

pD
t,j≥0

log

(

1 +
|hj |2pD

t,j

σ2 + Ij

)

− μpD
t,j − λjfj(p

D
t,j − ηj) (20)

where pD∗
t,j (λj , μ) is the optimal power allocation. Note that

the problem in (20) is convex and the optimal value can be
found efficiently.

The optimal values for λ and μ can be found through the
dual optimization problem

min
λ<0,μ≥0

gD(λ, μ) (21)

using the subgradient method [29]. To find subgradients, we
note that

gD(λ′, μ′)

= max
pD
t <0

LD(pD
t , λ′, μ′)

≥ LD(pD∗
t (λ, μ), λ′, μ′)

= gD(λ, μ) +
∑

j∈Cl

(λ′
j − λj)(ε − E{fj(p

D∗
t,j (λj , μ) − ηj)})

+ (μ′ − μ)(PD
max − E{

∑

j∈Cl

pD∗
t,j (λj , μ)}). (22)

Hence, the following are subgradients of g(λ, μ):

∂μ = PD
max −

∑

j∈Cl

E{pD∗
t,j (λj , μ)} (23)

∂λj = ε − E{fj(p
D∗
t,j (λj , μ) − ηj)} j ∈ Cl. (24)

Following the subgradient method, after a sufficient number
of iterations, we can find the value of optimal Lagrange
multipliers, i.e., μ∗ and λ∗

j for all j ∈ Cl. Then, for each
channel realization, we need to solve the following optimiza-
tion problem to find an optimal power allocation:

pD∗
t,j (H) = arg max

pD
t,j≥0

log

(

1 +
|hj |2pD

t,j

σ2 + Ij

)

(25)

− μ∗pD
t,j − λ∗

jfj(p
D
t,j − ηj(H))

where H is the vector of channel state.
Note that considering (23) and (24), the above formulation

can only be applied over a time interval where we can assume
the channel for D2D users is stationary.

C. Special Case for Function fj(∙): Chernoff Bound

Using the Chernoff bound, (15) becomes

E
{

eωj(p
D
t,j−ηj)

}
≤ ε. (26)

If we use the Chernoff bound as a substitute of the probabilistic
SINR constraint, i.e., (7), it is important to properly choose
the value of ωj to achieve the minimal gap between the two
constraint. In fact, we have:

Pr
{

pD
t,j ≥ ηj

}
≤ min

ωj

E
{

eωj(p
D
t,j−ηj)

}
≤ E

{
eωj(p

D
t,j−ηj)

}
.

(27)

To find an optimal ωj we have

∂

∂ωj
E
{

eωj(p
D
t,j−ηj)

}
= E

{
(pD

t,j − ηj)e
ωj(p

D
t,j−ηj)

}
= 0. (28)

We define the random variable xj = pD
t,j − ηj . Unfortunately,

the distribution of xj is not known before solving the optimiza-
tion problem. However, we observe that xj is a complicated
mixture of multiple random quantities, and our numerical
results indicate it has roughly bell-shape distribution. Thus,
we assume that xj ∼ N (mj , υj) and

E
{

xje
ωjxj

}

=
∫ +∞

−∞
xeωjx 1

υj

√
2π

e
−

(x−mj)2

2υ2
j dx

= e

(ωjυ2
j +mj)2−m2

j

2υ2
j

∫ +∞

−∞
y

1

υj

√
2π

e
−

(y−(ωjυ2
j +mj))2

2υ2
j dy. (29)

Note that the integral in (29) is the mean value for the random
variable yj ∼ N (ωjυ

2
j + mj , υj). Therefore, from (28) and

(29), a suitable value for ωj can be found as −mj

υ2
j

. Since
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mj and υj are not known, we use an iterative method where,
starting from an initial point for ωj , in each step we update
the value of ωj for the next step by estimating mj and υj

using the available information to compute the statistics of xj

in the current step.

D. Special Case for Function fj(∙): Polynomial Functions

It is easy to show that, for any m ∈ N, the function f(pD
t,j−

ηj) = [1 + 1
ηmax

j
(pD

t,j − ηj)]m , where ηmax
j is the maximum

possible value for ηj , is convex and increasing with f(0) = 1.
In this case, we have the following constraint:

E
{

[1 + ωj(p
D
t,j − ηj)]

m
}
≤ ε, (30)

where ωj = 1
ηmax

j
.

In the special case where (30) is linear, i.e., m = 1, we
can provide a closed-form solution to (20) as follows. Setting
the derivative of (20) equal to zero, for fj(pD

t,j − ηj) = 1 +
ωj(pD

t,j − ηj), we have

|hj |2

|hj |2pD
t,j + σ2 + Ij

− μ − λjωj = 0. (31)

Thus,

pD∗
t,j (λj , μ) =

[ 1
μ + λjωj

−
σ2 + Ij

|hj |2

]

+
. (32)

E. Time-Averaging Based Heuristic Solutions

In the optimal solutions above, the calculation of subgradi-
ents has high complexity and needs full information about
the statistics of the channels between D2D users and all
interference channels. In this section, we present a new method
to directly find the Lagrange multipliers by approximating the
primal domain problem.

Considering the fact that μ is related to constraint (16), in
each step, we can find μ[n + 1] by associating it with the
approximated constraint En+1

{∑
j∈Cl

pD
t,j

}
≤ PD

max, where

n is the time slot index and En{x} , 1
n

∑n
t=1 x[t]. It is easy

to show that we have En+1{x} = 1
n+1 (x[n + 1] + nEn{x}).

Thus, the sum power constraint in (8) can be written as
∑

j∈Cl

pD
t,j [n + 1] ≤ (n + 1)PD

max − nEn

{∑

j∈Cl

pD
t,j

}

, P
′D
max[n + 1]. (33)

Similarly, the individual power constraints in (17) can be
approximated as

pD
t,j [n + 1]

≤ ηj [n + 1] + f−1
j

(
(n + 1)ε − nEn{fj(p

D
t,j − ηj)}

)

, η′
j [n + 1], (34)

where f−1
j (∙) is the inverse function of fj(∙). Since, fj(∙) is

a strictly increasing function, f−1
j (∙) is unique.

In time slot n, we may solve the following optimization
problem

D3 : max
pD
t <0

∑

j∈Cl

log

(

1 +
|hj [n]|2pD

t,j

σ2 + Ij [n]

)

subject to (33) and (34).

After applying the KKT optimality condition to the primal
problem [29], we have two cases.
Case 1)

∑
j∈Cl

η′
j [n] ≤ P

′D
max: pD∗

t,j [n] = η′
j [n], for all j ∈ Cl.

Case 2)
∑

j∈Cl
η′

j [n] > P
′D
max[n]: for all j ∈ Cl we have

pD∗
t,j [n] =

[
1

μ[n]
−

σ2 + Ij [n]
|hj [n]|2

]η′
j [n]

0

. (35)

Note that in Case 2, μ[n] must be found such that∑
j∈Cl

pD
t,j [n] = P

′D
max[n], which can be achieved using the

bisection method.

Remark. It is worth mentioning that the sum-power constraint
in (33) is equivalent to

En

{∑

j∈Cl

pD
t,j

}
≤ PD

max, (36)

and also the individual power constraint in (34) is equivalent
to

En

{
fj(p

D
t,j − ηj)

}
≤ ε (37)

which are valid for all n. For sufficiently large n, by assuming
ergodicity for all channels in the network, satisfying the con-
straints in (33) and (34) guarantees satisfying the constraints
in stochastic optimization problem in D2. For small values of
n, since there is no information on the future channel state,
the feasible set of D3 is a subset of the feasible set of D2. By
increasing the time-window size, i.e., for larger n, the feasible
set of D3 converges to the feasible set of D2. In other words,
the per-time-slot optimization problem D3 provides a lower
bound for the stochastic optimization problem D2.

F. An Upper Bound for D1

For a performance benchmark, we propose an upper bound
for the optimization problem in D1 and consider the gap
between the lower and upper bound. In this section we try
to reach a proper upper bound.

Theorem 1. For any ωj ≥ 0, Pr
{

pD
t,j ≥ ηj

}
≥ 1 −

E
{

e−ωj(p
D
t,j−ηj)

}
.

Proof: We have Pr
{

pD
t,j ≥ ηj

}
= Pr

{
−ωj(pD

t,j −ηj) ≤

0
}

= Pr
{

e−ωj(p
D
t,j−ηj) ≤ 1

}
. From the Markov inequality

we have

Pr
{

e−ω(pD
t,j−ηj) ≤ 1

}
≥= 1 − E

{
e−ωj(p

D
t,j−ηj)

}
. (38)

The optimization problem for finding the upper bound can
be written as follows

D4 : max
pD
t <0

E
{∑

j∈Cl

log

(
aj + bjp

D
t,j

aj + cjpD
t,j

)
}

(39)
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subject to E
{∑

j∈Cl

pD
t,j

}
≤ PD

max (40)

E
{

1 − e−ωj(p
D
t,j−ηj)

}
≤ ε, j ∈ Cl. (41)

Unfortunately, because the constraint in (41) is concave,
D4 is not a convex optimization problem. However, the dual
problem is always convex and provides an upper bound for
the primal problem. Therefore, we can use the dual problem
to find an upper bound for D1. The Lagrange function of (39)
can be written as

L1(p
D
t , λ, μ)

,
∑

j∈Cl

E
{

log

(

1 +
|hj |2pD

t,j

σ2 + Ij

)
}

+ μ(PD
max −

∑

j∈Cl

E
{

pD
t,j

}
)

+
∑

j∈Cl

λj(ε − 1 + E
{

e−ωj(p
D
t,j−ηj)

}
)

=
∑

j∈Cl

E
{

log

(
aj + bjp

D
t,j

aj + cjpD
t,j

)

− μpD
t,j + λje

−ωj(p
D
t,j−ηj)

}

+ μPD
max +

∑

j∈Cl

λj(ε − 1). (42)

The corresponding Lagrange dual function can be defined is

g1(λ, μ) = max
pD
t <0

L1(p
D
t , λ, μ). (43)

To find an optimal pD
t,j , for fixed values of λj and μ and for

j ∈ Cl, in (43) we need to solve the following optimization
problem for each j

pD∗
t,j (λj , μ) = arg max

pD
t,j≥0

log

(

1 +
|hj |2pD

t,j

σ2 + Ij

)

− μpD
t,j + λje

−ωj(p
D
t,j−ηj). (44)

Note that (44) is not a convex optimization problem. Thus
we need to apply an extremum-search method to find the
global optimum point. Then, to solve (43), the subgradient
method can be used.

Improving the value of ωj: Similarly to Section III-C, to
improve ωj for the upper bound, we have

∂

∂ωj
(1 − E

{
e−ωj(p

D
t,j−ηj)

}
) = E

{
(pD

t,j − ηj)e
−ωj(p

D
t,j−ηj)

}

= 0. (45)

Assuming that xj = pD
t,j − ηj ∼ N (mj , υj), we have

E
{

xje
ωjxj

}

=
∫ +∞

−∞
xe−ωjx 1

υj

√
2π

e
−

(x−mj)2

2υ2
j dx

= e

(mj−ωjυ2
j )2−m2

j

2υ2
j

∫ +∞

−∞
y

1

υj

√
2π

e
−

(y−(mj−ωjυ2
j ))2

2υ2
j dy = 0.

From the above equation, a suitable value for ωj can be found
as mj

υ2
j

. Hence, we can update the value of ωj using an iterative
method as discussed in Section III-C.

IV. ERGODIC SUM-RATE MAXIMIZATION

Similarly to the previous section, we first convexify the non-
convex optimization problem in S1 and then use the Lagrange
duality to find the D2D power allocation pD

t,j separately over
each observed outcome (or “realization”) of the channel state
vector. However, the more complex non-convex form of the
D2D-cellular sum-rate objective presents further challenges.
In this section, we detail the additional procedures to solve
S1. We use the same definition and special cases of fj(∙) as
in the previous section.

Note that the sum-rate of cellular users over RBs in Cl, prior
to the D2D pair entering the system, is given by

∑
j∈Cl

log(1+
pC
r,j

σ2+IC
j

). It is independent of D2D transmitter power allocation.
Thus, the sum-rate maximization problem S1 is equivalent to
the problem of maximizing the ergodic sum-rate improvement
due to the addition of the new D2D pair, given by

S1′ : max
pD
t <0

E
{∑

j∈Cl

log(1 + SINRC
j ) + log(1 + SINRD

j )

− log

(

1 +
pC
r,j

I0
j + σ2

j

)
}

subject to (7) and (8).

A. Convexification of S1

Typically, only those RBs over which the cellular users
have a sufficiently high SINR condition are allocated to the
D2D user. After D2D reuse, the SINR of the cellular user
over such an RB is still relatively high. Therefore, we assume
the minimum SINR requirement ζ intra

j,min � 1, for all j ∈ Cl.
With this assumption, we can use following approximation to
approximate the objective of S1′ as

∑

j∈Cl

log(1 + SINRC
j ) − log

(

1 +
pC
r,j

I0
j + σ2

j

)

+ log(1 + SINRD
j )

≈
∑

j∈Cl

[

log

(
pC
r,j

pD
t,j |h

I
j |

2 + I0
j + σ2

)

− log

(
pC
r,j

I0
j + σ2

)

+ log

(

1 +
|hj |2pD

t,j

Ij + σ2

)]

=
∑

j∈Cl

log

(
aj + bjp

D
t,j

aj + cjpD
t,j

)

, (46)

where aj , (σ2 + I0
j )(σ2 + Ij), bj , (σ2 + I0

j )|hj |2, and
cj , (σ2 + Ij)|hI

j |
2. Thus, we can approximate S1 as

S2 : max
pD
t <0

E
{∑

j∈Cl

log(
aj + bjp

D
t,j

aj + cjpD
t,j

)
}

subject to (7) and (8).

As discussed in section III, for the D2D-rate maximization
problem, (7) is not a convex constraint, so we substitute it
with (16). Therefore, we propose the following optimization
problem:

S3 : max
pD
t <0

E
{∑

j∈Cl

log(
aj + bjp

D
t,j

aj + cjpD
t,j

)
}
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subject to (16) and (17).

Furthermore, the objective function of S3, for pD
t < 0, can be

upper bounded as follows:

E
{∑

j∈Cl

log(
aj + bjp

D
t,j

aj + cjpD
t,j

)
}

=
∑

j∈Cl

Pr{bj ≥ cj}E
{

log(
aj + bjp

D
t,j

aj + cjpD
t,j

∣
∣
∣bj ≥ cj)

+ Pr{bj < cj}E
{

log(
aj + bjp

D
t,j

aj + cjpD
t,j

)
∣
∣
∣bj < cj

}

≤
∑

j∈Cl

Pr{bj ≥ cj}E
{

log(
aj + bjp

D
t,j

aj + cjpD
t,j

)
∣
∣
∣bj ≥ cj

}
. (47)

The last inequality comes from the fact that the function

log(
aj+bjpD

t,j

aj+cjpD
t,j

), for bj < cj and pD
t,j ≥ 0, is a decreasing (and

convex) function. The upper bound is achievable if and only
if for bj < cj we have pD

t,j = 0. In other words, pD
t,j = 0 is

an optimal solution when we have bj < cj if and only if all
the constraint in S3 are satisfied.

The sum-power constraint is satisfied if we have

E
{∑

j∈Cl

pD
t,j

}
=
∑

j∈Cl

(Pr{bj ≥ cj}E
{

pD
t,j

∣
∣
∣bj ≥ cj

}

+ Pr{bj < cj}E
{

pD
t,j

∣
∣
∣bj < cj

}
)

=
∑

j∈Cl

Pr{bj ≥ cj}E
{

pD
t,j

∣
∣
∣bj ≥ cj

}
(48)

≤ PD
max.

The individual power constraints are satisfied if we have

E
{

fj(p
D
t,j − ηj)

}
= Pr{bj ≥ cj}E

{
fj(p

D
t,j − ηj)

∣
∣
∣bj ≥ cj

}

+ Pr{bj < cj}E
{

fj(p
D
t,j − ηj)

∣
∣
∣bj < cj

}

= Pr{bj ≥ cj}E
{

fj(p
D
t,j − ηj)

∣
∣
∣bj ≥ cj

}

+ Pr{bj < cj}E
{

fj(−ηj)
∣
∣
∣bj < cj

}

≤ ε. (49)

Therefore, S3 is equivalent to the following optimization
problem

S4 : max
pD
t <0

∑

j∈Cl

PjE
{

log(
aj + bjp

D
t,j

aj + cjpD
t,j

)
∣
∣
∣bj ≥ cj

}

subject to
∑

j∈Cl

PjE
{

pD
t,j

∣
∣
∣bj ≥ cj

}
≤ PD

max (50)

PjE
{

fj(p
D
t,j − ηj)

∣
∣
∣bj ≥ cj

}
≤ ε′j j ∈ Cl, (51)

where we define Pj
Δ
= Pr{bj ≥ cj} for all j ∈ Cl and ε′j

Δ
=

ε−(1−Pj)E{fj(−ηj)
∣
∣
∣bj < cj}. We will later show that there

is no need to calculate ε′j .
It is easy to show that any solution for S4, by applying

pD
t,j = 0 when we have bj < cj , is feasible for the problem

S3. Also, again by applying pD
t,j = 0 when we have bj < cj ,

the objective function of the two problem are the same. Thus,
the two problems S3 and S4 are equivalent.

Note that the function log(
aj+bjpD

t,j

aj+cjpD
t,j

), for bj ≥ cj and pD
t,j ≥

0, is a concave (and increasing) function, thus we can use the
method of Lagrange multipliers to solve S4. The Lagrange
function of S4 can be written as

LS(pD
t ,λ, μ)

,
∑

j∈Cl

PjE
{

log(
aj + bjp

D
t,j

aj + cjpD
t,j

)
∣
∣
∣bj ≥ cj

}

+ μ(PD
max −

∑

j∈Cl

PjE
{

pD
t,j

∣
∣
∣bj ≥ cj

}
)

+
∑

j∈Cl

λj(ε
′ − PjE

{
fj(p

D
t,j − ηj)

∣
∣
∣bj ≥ cj

}
)

=
∑

j∈Cl

PjE
{

log(
aj + bjp

D
t,j

aj + cjpD
t,j

) − μpD
t,j − λjfj(p

D
t,j − ηj)

∣
∣
∣bj ≥ cj

}

+ μPD
max +

∑

j∈Cl

λjε
′
j . (52)

By applying the fact that for bj < cj we have pD
t,j = 0, the

Lagrange function also can be written as follows:

LS(pD
t , λ, μ)

=
∑

j∈Cl

E
{

log(
aj + bjp

D
t,j

aj + cjpD
t,j

) − μpD
t,j − λjfj(p

D
t,j − ηj)

}

+ μPD
max +

∑

j∈Cl

λjε. (53)

The Lagrange dual function is

gS(λ, μ) = max
pD
t <0

LS(pD
t , λ, μ). (54)

To find optimal pD
t,j , for fixed values of λj and μ and for j ∈

Cl, in (54) we need to solve following optimization problem
for each j

pD∗
t,j (λj , μ) = arg max

pD
t,j≥0

log

(
aj + bjp

D
t,j

aj + cjpD
t,j

)

− μpD
t,j − λjfj(p

D
t,j − ηj). (55)

Note that (55) is only valid for bj ≥ cj , and for bj < cj

we have pD∗
t,j (λj , μ) = 0. Hence, it is a convex optimization

problem thus the optimal value can be found efficiently.
We next consider the following convex optimization prob-

lem to find the optimal λ and μ:

min
λ<0,μ≥0

gS(λ, μ). (56)

To solve (56), the subgradient method can be exploited. It is
easy to show that the subgradients are

∂λj = ε′j − PjE{fj(p
D∗
t,j (λj , μ) − ηj)

∣
∣
∣bj ≥ cj}, j ∈ Cl,

∂μ = PD
max −

∑

j∈Cl

PjE{p
D∗
t,j (λj , μ)

∣
∣
∣bj ≥ cj}.

Using (48) and (49), the subgradients can be re-written as

∂λj = ε − E{fj(p
D∗
t,j (λj , μ) − ηj)}, j ∈ Cl, (57)
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∂μ = PD
max −

∑

j∈Cl

E{pD∗
t,j (λj , μ)}. (58)

We note that, (57) and (58) are exactly the same as (23) and
(24). After a sufficient number of iterations in the subgradient
method, the value of optimal lagrange multipliers, i.e., λ∗

j ,
for all j ∈ Cl∗ , and μ∗, are found. Then, for each channel
state, we solve the following optimization problem to find the
optimal power allocation:

pD∗
t,j (H) = arg max

pD
t,j≥0

log

(
aj(H) + bj(H)pD

t,j

aj(H) + cj(H)pD
t,j

)

− μ∗pD
t,j − λ∗

je
ωj(p

D
t,j−ηj(H)). (59)

Note that considering (57) and (58), the above formulation can
only be applied over a time-interval where we can assume the
channel for D2D users is stationary.

Remark. It is worth mentioning that since we have the same
constraints for both optimization problem S1 and D1, the same
approach, as discussed in Section III-C, can be applied to sum-
rate maximization to improve the Chernoff bound.

Remark. Using the family of linear constraints in (30), we can
provide a closed-form solution for (55). Setting the derivative
of (55) equal to zero, for fj(pD

t,j − ηj) = ωj(pD
t,j − ηj) + 1,

we have
ajbj − ajcj

(aj + bjpD
t,j)(aj + cjpD

t,j)
− μ − λjωj = 0, (60)

i.e., we have (ωjλj + μ)bjcj(pD
t,j)

2 + (ωjλj + μ)aj(bj +
cj)pD

t,j + ((ωjλj + μ)a2
j − ajbj + ajcj) = 0 or equivalently

κj(pD
t,j)

2 +βjp
D
t,j +(1− γj

(ωjλj+μ) ) = 0 where κj ,
bjcj

a2
j

> 0,

βj ,
bj+cj

aj
> 0 and γj ,

bj−cj

aj
> 0. Summation of the

roots of this equation is −βj

κj
, which is negative, so we have

at least one negative root. Hence, only the greater root can be
accepted or otherwise the solution for (55) is zero. Therefore,
we have

pD∗
t,j (λj , μ) =

[
−βj +

√
β2

j − 4κj(1 − γj

(μ+ωjλj)
)

2κj

]

+

. (61)

B. Time-Averaging Based Heuristic Solutions

Using the same idea of time-averaging instead of statistical
means, as we explained previously for D2, we propose the
following a heuristic solution for S3. In time slot n, we solve
the following optimization problem:

S5 : max
pD
t <0

∑

j∈Cl

log

(
aj [n] + bj [n]pD

t,j

aj [n] + cj [n]pD
t,j

)

subject to (33) and (34).

After applying the KKT optimality condition to the primal
problem [29], we have two cases:
Case 1)

∑
j∈Cl

η′
j [n] ≤ P

′D
max: pD∗

t,j [n] = η′
j [n], for all j ∈ Cl.

Case 2)
∑

j∈Cl
η′

j [n] > P
′D
max[n]: for all j ∈ Cl we have

pD∗
t,j [n] =

[
−βj [n] +

√
βj [n]2 − 4κj [n](1 − γj [n]

μ[n] )

2κj [n]

]η′
j [n]

0

. (62)

In each time slot, μ[n] should be found such that∑
j∈Cl

pD
t,j [n] ≤ P

′D
max[n]. This can be achieved using the

bisection method.
Since we have the same constraints for the optimization

problems D3 and S5, all other discussions in Section III-E on
solving D3 are valid for S5.

C. An Upper Bound for S1

Similarly to Section III-F, the optimization problem for
finding the upper bound can be written as follows

S6 : max
pD
t <0

E
{∑

j∈Cl

log(
aj + bjp

D
t,j

aj + cjpD
t,j

)
}

subject to (40) and (41).

As discussed before, S6 is not a convex problem and an
upper bound cannot be achieved using straight-forward convex
optimization methods. We instead use the dual problem to find
an upper bound. The Lagrange function of S6 can be written
as

L2(p
D
t , λ, μ)

,
∑

j∈Cl

E
{

log(
aj + bjp

D
t,j

aj + cjpD
t,j

)
}

+ μ(PD
max −

∑

j∈Cl

E
{

pD
t,j

}
)

+
∑

j∈Cl

λj(ε − 1 + E
{

e−ωj(p
D
t,j−ηj)

}
)

=
∑

j∈Cl

E
{

log(
aj + bjp

D
t,j

aj + cjpD
t,j

) − μpD
t,j + λje

−ωj(p
D
t,j−ηj)

}

+ μPD
max +

∑

j∈Cl

λj(ε − 1). (63)

The corresponding Lagrange dual function can be defined is

g2(λ, μ) = max
pD
t <0

L2(p
D
t , λ, μ). (64)

To find an optimal pD
t,j , for fixed values of λj and μ and for

j ∈ Cl, in (64) we need to solve the following optimization
problem for each j:

pD∗
t,j (λj , μ) = arg max

pD
t,j≥0

log

(
aj + bjp

D
t,j

aj + cjpD
t,j

)

− μpD
t,j + λje

−ωj(p
D
t,j−ηj). (65)

Noting that (65) is not a convex optimization problem, we
apply an extremum-search method to find the global optimum
point. After finding the global maximum point, we can use the
subgradient method to find the optimal Lagrange multipliers.

V. DISCUSSION ON GENERALIZATIONS

A. Multi-D2D Multi-cell Scenario

The proposed sum-rate and D2D rate maximization frame-
work can be applied to a realistic multi-cell network with
multiple D2D pairs and cellular users in each cell. In general,
each D2D user has its own arrival time and duration of stay
in the network. Upon the arrival of any D2D user, a scheduler
within each cell (which can reside within the eNB) can decide
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the resources to be allocated to the D2D user. To avoid large
overhead and to decrease the computational complexity, the
resource allocation decision for each D2D user can be made
separately by the scheduler, which is in harmony with the
fact that the nodes in a cellular system have different arrival
time and duration of stay in the network. Furthermore, by
implementing the same algorithms (i.e. sum-rate maximiza-
tion or D2D rate maximization) in all neighboring cells, we
guarantee all the constraints in (7) and (8), i.e., sum-power
constraint for all D2D users and a pre-defined SINR level
for all cellular users in the network, while optimizing the
throughput performance separately for each cell.

However, in the multi-cell scenario, applying the subgra-
dient method for sum-rate and D2D rate maximization may
cause some difficulties. As we notice before, the subgradient
method can be applied only under the assumption that the
signal and interference channels to the D2D user under con-
sideration is stationary. In the multi-cell scenario, the entry
of a new D2D user into the network changes the interference
distribution for all other D2D users in the neighboring cells
which use the same RBs as allocated to the new user. In that
case, the stationarity assumption is not valid anymore. Only
in a very crowded network, or in a large cell with D2D users
that are not very close to the edges of the cell, can we assume
that the interference to D2D users is approximately stationary.

Note that for the proposed time-averaging heuristic solution
does not require such a stationarity assumption. Therefore,
it can be applied to any multi-cell network efficiently while
guaranteeing all the constraints in (7) and (8) for all users in
the network.

B. More Generalized Optimization Problem

So far, we have considered the optimization problems in D1
and S1 with long-term sum-power constraint (8) on the D2D
users. The constraint in (8) addresses the battery usage of the
D2D users. In reality, the instantaneous power may also be
confined due to physical design of the mobile device such as
power amplifier and antenna power limitations. We can add a
short-term power constraint as follows:

∑

j∈Cl

pD
t,j ≤ PD

max,s. (66)

The same procedure as described in this paper can be used
to solve the new optimization problems with this additional
constraint. In particular, for the D2D-rate optimization prob-
lem, to find the optimal power allocation we need to solve the
maximization problem in (20) subject to (66). To solve the
sum-rate optimization problem, the maximization problem in
(55) must be solved subject to constraint in (66). Since (66) is
a linear constraint, solving (20) and (55) under this constraint
still admits efficient convex optimization methods.

VI. SIMULATION EVALUATION

We consider a cellular network with 10 cellular users in
each cell and N = 10 distinct RBs are assigned to each
cellular user. Cellular and D2D users are uniformly randomly

TABLE II: Default values for simulation parameters

N = 10
Number of RBs per cellular user = 10
RB bandwidth = 12x15 KHz
Cell radius (Rc) = 100 m
D2D distance (d) = 20 m
Number of D2D pairs in each cell (Nd) = 7
Ave. cellular SNR = 30 dB
Free space path-loss factor = 3.5
Standard deviation for shadowing = 6 dB

distributed over each cell. We apply a power control mecha-
nism which compensates for the free-space path loss effects
for all cellular users. For the link between any two nodes, we
use a simple path loss model K0D

−α, where we set the path
loss constant Ko = 0.01, and the pass loss exponent α = 3.5.
We assume Rayleigh fading for all interference, cellular and
D2D links. The default values of different system parameters
are presented in Table II.

In each cell, when there are multiple active D2D pairs
requesting to share RBs, they are queued based on a first-
come-first-serve rule. We solve the proposed optimization
problems for the D2D pairs one by one based on their order in
the queue 2. To allocate RBs to each D2D pair, first we need
to find all available RBs that provide a non-empty feasible set
for each optimization problem. Let us assume that C∗

l is the
set of all available RBs such that we have (11)-(12) satisfied.
We need to find Cl ⊆ C∗

l such that |Cl| ≤ Nl. To find the
optimal Cl we would need to solve

(
N∗

l
Nl

)
optimization problems

where N∗
l = |C∗

l | (assuming N∗
l ≥ Nl). Instead, we use the

following heuristic method for a more practical solution. Using
the Markov’s inequality instead of the probabilistic constraints
in (7) yields

E
{

pD
t,j − ηj + 1

}
≤ ε. (67)

Equivalently, we have

E
{

pD
t,j

}
≤ E

{
ηj

}
+ ε − 1. (68)

This means that the larger E{ηj} value, the larger the feasible
set for the optimization problems S1 and D1. Therefore, by
sorting the values of E

{
ηj

}
for all j ∈ C∗

l , the lth D2D user
be opportunistically assigned the RBs with the highest E{ηj}
such that (11)-(12) are satisfied. It is worth mentioning that
other methods with higher complexity can be adapted for RB
allocation., e.g. the readers may consider [31]- [32].

For each data point, we average the results over a large
number of random positions of cellular and D2D users and
also random channel realizations. To avoid redundancy, we
only present the results for the uplink case, in Figs. 2-5.

A. Efficacy of Convexification

In this section we analyze the efficacy of applying the
convexification approach we proposed in Section III-A and
IV-A to solve the ergodic sum-rate and D2D rate optimization
problems. To focus on convexification and remove the effects

2For alternative approaches the readers may consider [30]
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Fig. 2: The effect of convexification on throughput in a single cell scenario.

of inter-cell dynamics, in this subsection, we only consider
the single-cell scenario. We compare the performance of the
proposed solution methods with the upper-bounds developed
in Sections III-F and IV-C, and also with a naive non-ergodic
huristic method. For the non-ergodic approach, similar to [27]
and [28], instead of long-term constraints in (7) and (8), we
use short-term constraints, i.e., we set ε = 0 and we use the
constraint

∑
j∈Cl

pD
t,j ≤ PD

max as the sum-power constraint.
We set ζ intra

j,min = 3dB, for all j. Also, for ergodic methods we
set ε = 0.05.

Fig. 2 investigates the effects of changing PD
max on the D2D

and cell throughput. Fig. 2(a) shows the average D2D rate per
RB for the cell under the D2D-rate maximization objective,
and Fig. 2(b) shows the average D2D-cellular sum rate per
RB for the cell under the sum-rate maximization objective.
It can be seen that through applying the convexification
method, we reach a small gap between the upper-bound and
the Chernoff-bound and linear-constraint approximations. It is
worth mentioning that by increasing PD

max, the percentage of
this gap, for specially D2D rate, is decreasing.

The Chernoff-bound method provides slightly higher
throughput than the linear-constraint method. This is because
we can improve the Chernoff-bound through the iterative
method proposed in Section III-C. On the other hand, the
linear-constraint method offers lower computational complex-
ity, due to its semi-closed-form solution. For the heuristic time-
averaging method, the Chernoff-bound constraints and the lin-
ear constraints lead to solutions with the same computational
complexity and negligible performance gap, so only one curve
is shown. We observe that the performance gap between the
time-averaging heuristic and the subgradient methods is less
than 17%, with drastically reduced computational complexity.
Finally, Fig. 2 shows that for D2D power more than −10dBm,
which is almost always true in practice, the performance
gap between ergodic and non-ergodic power allocation is
considerable, indicating the need for the proposed stochastic
optimization solutions.

Besides the performance under perfect CSI, in Fig. 2, we
also consider the performance of the convexification method

TABLE III: MATLAB Run-Time for Different Algorithms

Non-Ergodic 5.91 s
Time-Ave. Heuristic 5.92 s
Linear Cons. Subgradient 1302.89 s
Chernoff-Bound Subgradient 1772.59 s

with the Chernoff bound using imperfect CSI where channel
estimation errors present. We model the channel estimation
error as a complex Gaussian noise with zero mean and variance
being 5% of the corresponding true channel variance. As can
be seen from Figs. 2(a) and (b), the rate loss by using imperfect
CSI for power allocation is less than 10%.

In Table III, we compare the computational complexity of
the methods discussed in this paper based on the MATLAB
run time of simulating 900 LTE frames (equivalent to 4.5
seconds) under all algorithms. It can be seen from Table III
that the proposed time-averaging heuristic is nearly identical
to the naive non-ergodic method in run time and it is around
300 times faster than the standard subgradient methods with
Chernoff-bound or linear constraints.

Note that all these methods have the same communication
complexity. In general, beside a common overhead in LTE
that is necessary to estimate CSI and the interference level,
to calculate ηj , channel and interference feedback is required
over each time slot. To avoid a large amount of information
exchange, we can interpret power constraint (7) as per-RB
power constraints set by the eNB in the main cell. In other
words, ηj , for all j ∈ Cl, is set by the eNB such that we
have SINR constraints (4)-(5) satisfied. In this case, each D2D
transmitter directly receives the value of ηj , for j ∈ Cl, from
the eNB of its own cell. Furthermore, after the initial setting of
ηj by the eNB, any change in the value of ηj can be reported
using limited feedback, e.g., using differential coding.

B. Multi-cell Performance Comparison

Under the multi-cell scenario, we compare the proposed
heuristic solution with the non-ergodic approach. As default
values, we set PD

max = −8.5dBm, ζ intra
j,min = ζ

(k)
j,min = −3dB,
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Fig. 3: The achieved throughput vs. PD
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for all j and for all k ∈ Sj , unless otherwise specified. For
ergodic methods we set ε = 0.1.

1) Maximum Power for D2D Users: Fig. 3 shows the
effects of changing PD

max on the D2D and cell throughput. It
can be seen that, by increasing PD

max, at first the D2D-rate and
sum-rate increase, but after some point they start to degrade.
This happens because all neighboring cells use the same power
allocation algorithm, and by increasing the D2D power, we
increase the interference to and from the neighboring cells.

2) Minimum SINR Requirement for Cellular Users: Fig. 4
shows the effect of changing the the minimum required SINR
on the D2D and cell throughput. It can be seen that, by
increasing the minimum required SINR for the cellular users,
there is less room for controlling the power of D2D users
and this decreases the D2D throughput and the total cell
throughput.

3) Cell Size: Fig. 5 shows the effect of changing the cell
radius on the D2D and cell throughput. It can be seen from
that, by increasing the cell radius, we see an increase and
then a decrease in the throughput. In fact by increasing the
cell radius, we have two different effects. The cellular and
D2D users are spread over a larger area and thus the distance
between interfering users is decreased, but on the other hand
because of the uplink power control method for cellular users,
their power increases, leading to more interference to D2D
users.

VII. CONCLUSION

In this paper, we have considered optimal power allocation
by the D2D users in a cellular network for underlay D2D
communications in order to maximize the D2D rate and the
sum rate between D2D and cellular users. The proposed
optimization problems accommodates a long-term sum-power
constraint and probabilistic individual power constraints over
each accessible RB. This enables consideration for battery
energy limits at D2D transmitters and the interference created
by D2D communications. To solve the optimization problem,
several approximate convex constraints are introduced, as
replacement for the non-convex probabilistic individual power
constraints. After such convexification, optimal solutions to the
approximate D2D-rate and sum-rate maximization problems
are developed, which are shown to give throughput perfor-
mance that is close to an upper bound. We then propose a
heuristic method by using time-averaging to approximate for
long-term measures. The time-averaging heuristic method has
low computational complexity, and it can be easily applied to
the multi-cell scenario. Through simulation we observe that
the performance gap between the standard subgradient solution
and the proposed time-averaging heuristic method is less than
17%, with drastically reduced computational complexity for
the heuristic method.
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