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TABLE II
PSNR VALUES OBTAINED BY THE ORIGINAL DVQ [4] AND THE PROPOSED

with the training set composed by five images. Each codebook was
designed using a centroid condition consistent with the respective
distortion measure used in the codebook search. The results obtained
by the DVQ system [4], that uses (10), and by the implementation
using (11) are shown in Table II. This table shows the PSNR values
in dB for various bit rates, which is defined by PSNR= 10 log10
(2552/MSE). The bit rates are calculated as log2M; whereM is
the number of codewords (no entropy coding was performed). All
the images cited in this comparison did not belong to the training
set. Table II shows that the proposed modification on the distortion
measure allows the PSNR to increase 1 dB for the Lenna image. As
commented previously, these results are only presented to validate
the proposed structure.

IV. CONCLUSION

In this correspondence, a new PVQ structure is proposed. This
PVQ scheme uses different scalar predictors in the encoding and
decoding processes. The discrepancy between the predictions made in
the encoding and in decoding is compensated by the vector quantizer
stage that uses a consistent distortion measure. The centroid condition
for the proposed distortion measure was described.

To validate the method, it was suggested a modification on an
image coding system [4] that already used different predictors in
the encoding and decoding processes. This modification led to an
improvement of 1 dB in PSNR for the Lenna image.
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Blind Image Deconvolution
Using a Robust GCD Approach

S. Unnikrishna Pillai and Ben Liang

Abstract—In this correspondence, a new viewpoint is proposed for
estimating an image from its distorted versions in presence of noise
without the a priori knowledge of the distortion functions. In z-domain,
the desired image can be regarded as the greatest common polynomial
divisor among the distorted versions. With the assumption that the
distortion filters are finite impulse response (FIR) and relatively co-
prime, in the absence of noise, this becomes a problem of taking the
greatest common divisor (GCD) of two or more two-dimensional (2-D)
polynomials. Exact GCD is not desirable because even extremely small
variations due to quantization error or additive noise can destroy the
integrity of the polynomial system and lead to a trivial solution. Our
approach to this blind deconvolution approximation problem introduces
a new robust interpolative 2-D GCD method based on a one-dimensional
(1-D) Sylvester-type GCD algorithm. Experimental results with both
synthetically blurred images and real motion-blurred pictures show that
it is computationally efficient and moderately noise robust.

Index Terms—Blind image deconvolution, equalization, image process-
ing.

I. INTRODUCTION

In many problems including communication, satellite imaging,
and synthetic aperture radar (SAR), the output observation consists
of a desired input that has been distorted by a blurring function
such as camera motion. In communication scenes, for example, the
output is the convolution of an input data stream and the channel
impulse response, both of which are unknown. Similarly, in ordinary
blurred images, the final picture can be represented as the result
of convolution between the desired picture and a blurring function
that will result from camera motion and/or slow shutter speed. In
all these situations, blind identification consists of determining the
input function and blurring or channel transfer functions from the
output observation. For example, withx(n) representing the input to
a channel with impulse responseh(n); the output can be represented
asy(n) = x(n) � h(n): Taking z-transforms on both sides, we get

Y (z) = X(z)H(z) (1)
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wherex(n) $ X(z); h(n) $ H(z); and y(n) $ Y (z) represent
the correspondingz-transform pairs. It is clear that from a knowledge
of the outputY (z) alone, it is impossible to obtainX(z) andH(z)
separately. On the other hand, usually only the output information
is available, and that makes the blind identification problem more
challenging. Clearly, in addition toY (z); some additional informa-
tion about either the input or channel characteristics is required to
successfully solve this problem. The same formulation applies in the
case of blurred images also.

To see this, letp(i; j) represent the desired image,d(i; j) the
blurring function, andn(i; j) additive noise. Lettingf(i; j) represent
the blurred image, we have

f(i; j) = p(i; j) � d(i; j) + n(i; j): (2)

Using the two-dimensional (2-D)z-transforms, (2) reduces to

F (z1; z2) = P (z1; z2)D(z1; z2) +N(z1; z2) (3)

where f(i; j) $ F (z1; z2); p(i; j) $ P (z1; z2); d(i; j) $
D(z1; z2); and n(i; j) $ N(z1; z2): Such a model is applicable
in all scenarios where the distortion can be modeled as a linear
filter acting on the original image. For example, camera motion,
intermediate medium in satellite photography, can all be modeled as
in (2) and (3). Once again it is clear from (3) that even in the absence
of noise, knowing the blurred pictureF (z1; z2) alone is not sufficient
in general to obtain either the original image or the blurring function.

Blind image deconvolution is the process of identifying both the
true image and the blurring function from the degraded image, using
partial information about the imaging system. This process is critical
because in many practical situations, unlike classical linear image
restoration techniques, the blur function is often unknown. In some
applications, such as astronomy and x-ray imaging, it is often costly to
obtaina priori information about the imaged scene and the distortion,
and in others, such as real-time video conferencing, it is simply
impossible to predetermine the parameters of the blurring function.

Tempting as blind deconvolution from a single blurred image may
seem, it is oftenill-posed. A small amount of additive noise can
lead to large deviations, and a unique solution may not be found.
In existing methods dealing with such problems, reliability is often
achieved at the expense of high computational complexity.

Many techniques have been proposed in the past to identify the
blurring function and the original image [1]–[12]. Among them,a
priori blur identification methods perform blind deconvolution by
identifying the blurring function prior to restoration. The most popular
among them make use of the frequency domain nulls of the degraded
image to perform blind deconvolution by partitioning the blurred
image in (2) into smaller frames, each of which is large enough
to contain the blurring function. This method assumes that the true
image possibly contains edges or point sources, and that the blurring
function is symmetric and nonminimum phase with a possibly known
parametric form. The method of zero sheet separation proposed by
Lane and Bates [2] is the most direct way of blind deconvolution
as it tries to exploit the irreducible property present in most of
the 2-D polynomials. In the absence of noise, assuming that both
the polynomialsP (z1; z2) andD(z1; z2) in (3) are irreducible and
possess distinct zero sheets, the feasibility of this approach was
proved by Lane and Bates and demonstrated by Bones [3]. Although
computationally complex, Ghiglia has given a systematic approach
of this method [4]. This algorithm is highly sensitive to noise, and
has a computational complexity ofO(n8); for ann � n image.

Other methods to deconvolve a blurred image include autore-
gressive moving average (ARMA) modeling [5]–[7], the simulated
annealing (SA) algorithm [8], the nonnegativity and support con-

straints recursive inverse filtering (NAS-RIF) algorithm [9], as well
as nonparametric methods based on higher order statistics [10].

When multiple blurred versions of the same scene are avail-
able, inspired by the subspace channel equalization methods in
the communication scenario [13], blind deconvolution is considered
in [11] and [12]. The subspace technique presented in [11] is
similar to an extension of our one-dimensional (1-D) Sylvester-type
algorithm, as shown in the next section, which leads to extremely
high computational complexity and memory storage requirements.
A finite impulse response (FIR) multichannel equalization scheme is
proposed in [12] utilizing multiple blurred images whose 2-D blurring
functions in thez-domain have no common zeros. More than four
blurred images of the same scene are needed in this case.

Our approach to the blind deblurring problem makes use of a
fresh perspective of polynomial GCD approximation. Letd1(i; j) and
d2(i; j) represent twodistinct blurring functions withz-transforms
D1(z1; z2) and D2(z1; z2); respectively. Further, letf1(i; j) and
f2(i; j) represent the corresponding blurred outputs. Then

fk(i; j) = p(i; j) � dk(i; j); k = 1; 2: (4)

In z-domain, (4) translates to

Fk(z1; z2) = P (z1; z2)Dk(z1; z2); k = 1; 2 (5)

wherefk(i; j) $ Fk(z1; z2):
From (5), if the two distortion transfer functionsD1(z1; z2) and

D2(z1; z2) are relatively co-prime,P (z1; z2) is the greatest common
divisor (GCD) ofF1(z1; z2) andF2(z1; z2); i.e., if

GCDfD1(z1; z2);D2(z1; z2)g = 1 (6)

then

GCDfF1(z1; z2); F2(z1; z2)g = P (z1; z2): (7)

Equation (7) can be used to recover the original imagep(i; j) from
the distorted versionsf1(i; j) and f2(i; j): Note that (6) represents
the necessary and sufficient condition for the recovery of the original
image from its distinct blurred versions without the actual knowledge
of the blurring functions.

Observe thatD1(z1; z2) andD2(z1; z2) need not be free of com-
mon zeros, a much more restrictive (and unnecessary) assumption.
However, if such is the case, then from Bezout’s identity, there exist
two other polynomial functionsE1(z1; z2) andE2(z1; z2) such that
[14]

D1(z1; z2)E1(z1; z2) +D2(z1; z2)E2(z1; z2) = 1 (8)

and the deblurring can be performed in the FIR domain. Apparently,
for two (or more) variable polynomials, absence of common zeros
is an exception rather than the rule.1 However, since the GCD
procedure does permit common zeros between the blurring functions,
it represents a much more general framework for deblurring.

Although the above formulation requires two distinct blurred
images, it is important to realize that often such information can
be extracted from a single frame itself. For example, referring back
to the model in (2)–(3), assume that the blurring functiond(i; j) has
a much smaller support size compared to the image. If we restrict
our attention to two nonoverlapping regionsR1 and R2 that are
large enough to contain the blurring function and sufficiently far apart
within the support off(i; j); we may write (ignoring noise)

fk(i; j) = pk(i; j) � d(i; j); pk(i; j) 2 Rk; k = 1; 2: (9)

1Even the simplest two-variable polynomialsD1(z1; z2) = z1 and
D2(z1; z2) = z2 have a common zero at (0, 0). However, they are relatively
factor co-prime.
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Clearly, their transforms can be expressed as in (5), and ifP1(z1; z2)
and P2(z1; z2) are relatively co-prime, the above GCD procedure
can be used to extract the blurring transfer functionD(z1; z2) from
a single frame itself.

Unfortunately, the existing two-variable GCD algorithms, such
as those used in the commercial programs Matlab and Maple, are
extremely sensitive to quantization noise, and a direct application of
the GCD algorithm will invariably fail. For practical considerations,
the effect of quantization needs to be addressed, as it leads to
systematic coefficient error. In addition, one may not have the luxury
of obtaining distinct distorted multiple versions of the same image.
In reality, as in a picture taken with a shaken camera, one may only
have asingle version of a distorted picture, and the problem is to
obtain the original image in this situation.

In this context, our approach to the blind image deconvolution
problem in presence of noise is outlined in the next section as the
estimation of the “best” GCD of 2-D polynomials.

II. A N EW BLIND DECONVOLUTION/DEBLURRING ALGORITHM

Let f1(m;n) and f2(m;n) represent two distorted versions of
a true imagep(m;n): From (4), with nk(m;n) $ Nk(z1; z2)
representing the noise, we have

Fk(z1; z2) = P (z1; z2)Dk(z1; z2) +Nk(z1; z2);

k = 1; 2: (10)

WhenN1(z1; z2) = N2(z1; z2) = 0; we can easily see that the
original image can be reconstructed as the GCD ofF1(z1; z2) and
F2(z1; z2); provided thatD1(z1; z2) andD2(z1; z2) are relatively
co-prime [14]. However, even under such noiseless conditions, direct
GCD implementation ofF1(z1; z2) and F2(z1; z2) using symbolic
mathematical tools such as Maple often leads to a trivial solution due
to the high sensitivity of the existing 2-D GCD methods.

When there is noise,P (z1; z2) only approximates as the common
factor that dividesF1(z1; z2) and F2(z1; z2): In this context, the
technique described below makes use of an interesting 1-D formula-
tion and then uses a least square approach to obtain the best estimate
for P (z1; z2):

To begin with, we will examine the 1-D Sylvester-type algorithm
[14] that will turn out to be useful to our present discussion. Let

A(z) = a0 + a1z + a2z
2 + � � �+ anz

n (11)

B(z) = b0 + b1z + b2z
2 + � � �+ bmz

m (12)

be two polynomials of degreesn andm; respectively, with their GCD
equal toP (z): SupposeP (z) is of degreer � 1: Then

A(z)

C(z)
=

B(z)

D(z)
= P (z) (13)

where

C(z) = c0 + c1z + c2z
2 + � � �+ cn�rz

n�r (14)

and

D(z) = d0 + d1z + d2z
2 + � � �+ dm�rz

m�r (15)

are two polynomials that are relatively co-prime. It follows that

A(z)D(z)�B(z)C(z) = 0 (16)

and by equating the coefficients of like powers ofz on both sides of
(16), it has the matrix equivalence of

Sxxx = 0 (17)

where

xxx = [dm�r; � � � ; d2; d1; d0;�c0;�c1;�c2; � � � ;�cn�r] (18)

and S is given by

S
�
=

an an�1 : : : : : : : : : : : : : : : : : : a1 a0 0 � � � 0
0 an an�1 : : : : : : : : : : : : : : : : : : : a1 a0 � � � 0
...

...
...

0 � � � 0 an an�1 : : : : : : : : : : : : : : : a1 a0
0 0 � � � 0 bm bm�1 : : : : : : : : b1 b0
0 � � � 0 bm bm�1 : : : : : : : : : : : b1 b0 0
...

...
...

...
bm bm�1 : : : : : : : : : : : b1 b0 0 0 � � � 0

:

(19)

The matrixS hasn + m � 2r + 2 rows andn + m � r + 1
columns, and to findxxx, if r is known, we may perform singular
value decomposition onS. SinceC(z) and D(z) are two unique
polynomials of degreesn � r and m � r; respectively, it follows
thatx has a unique solution in (17), and consequentlyS must posses
n+m� 2r+ 1 linearly independent rows. As a result, the singular
vector that corresponds to the zero singular value ofS is the least
square solution of (17) forxxx, and it contains the coefficient values
of C(z) and D(z):

If r is not known, the situation is more complicated, since it is
not even possible to formS. However, in that case, (17) can be
rewritten as

xxx0S0 = 0 (20)

where

xxx0 = [dm�1; � � � ; d2; d1; d0;�c0;�c1;�c2; � � � ;�cn�1] (21)

with

dm�1 = � � � = dm�r+1 = cn�r+1 = � � � = cn�1 = 0 (22)

andS0 given by the standard Sylvester (resultant) matrix

S0 =

an an�1 : : : : : : : : : : : : : : : : : : a1 a0 0 � � � 0
0 an an�1 : : : : : : : : : : : : : : : : : : : a1 a0 � � � 0
...

...
...

0 � � � 0 an an�1 : : : : : : : : : : : : : : : a1 a0
0 0 � � � 0 bm bm�1 : : : : : : : : b1 b0
0 � � � 0 bm bm�1 : : : : : : : : : : : b1 b0 0
...

...
...

...
bm bm�1 : : : : : : : : : : : b1 b0 0 0 � � � 0

(23)

of size (n + m) � (n + m):
Interestingly, the necessary and sufficient condition for the poly-

nomialsA(z) and B(z) in (11)–(12) to have a nonconstant GCD
is that the resultant Sylvester matrixS0 in (23) be singular [14].
In particular, if the GCD is of degreer; then (20) must reduce to
(17), and because of the unique nature of the polynomialsC(z) and
D(z) and their degree restrictions, it follows that associated with the
singular value zero,S0 must have a singular vector exhibiting the
restrictions in (22) for its peripheral coefficients.
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The rank ofS0 can be inferred by noticing the structural relation-
ship betweenS and S0:

S0 =

r � 1
columns

r � 1 rows

S

r � 1 rows

:

(24)

From (24), sinceS0 is obtained by adding an additionalr�1 columns
to the column matrix containingS; to start with its rank can at most
ben+m� r: However by taking the structure in (22) into account,
it follows that S0 is of rank n + m � r; provided an 6= 0 and
bm 6= 0: The above discussion suggests that of the various singular
vectors that correspond to the singular value zero forS0, the one that
satisfies (22) for the largest value ofr represents the desired solution.

Alternatively, referring back to (23) and (24), letSk denote the
submatrix of size(n+m� 2k)� (n+m� k) obtained by striking
out the firstk and lastk rows ofS0, and the firstk columns ofS0.
Note thatSr�1 is the same asS in (19). The degree of the GCD
polynomialP (z) can be characterized in terms of these submatrices.

Lemma: Let GCDfA(z); B(z)g = P (z) with degreeP (z) = r:

ThenS0; S1; � � � ; Sr�1 are singular, andSr�1 is of rankn +m�
2r + 1:

The above lemma indicates a new procedure to obtainr; and
knowing r one may go back to (17) to obtainC(z) andD(z): P (z)
can then be found from (13) up to a constant scalar factor.

In the presence of noise,S0 in general has full rank, i.e., the
singular values ofS0 are all greater than zero. In this case, we can
approximate the rank of the noiselessS0 by setting the small singular
values to zero. This procedure works well under low to moderate
(SNR� 30 dB) noise contamination. Note that even if the size of the
blurring function is not exactly determined, knowing its approximate
range is usually enough. Due to the low complexity of the proposed
algorithm, as shown here and later for the 2-D case, we can carry
out a few blur size estimations and find the best image restoration
by visual inspection or certain parametric determination procedure
according to the known image characteristics.

Long division should be avoided in (13), because in doing so
numerical error would propagate and accumulate toward the lower
degree coefficients, and when the dividend is a high order polynomial,
the last terms of the quotient would be inaccurate. Instead, we first
take theN -point Fourier transform on the two vectors, whereN is
the length of the vector corresponding to the dividend, then divide
through the resulting vectors element by element, which leads to the
N -point Fourier transform of the coefficient vector of the desirable
quotient of polynomials.

Although it is possible to directly extend the technique described
above in (11)–(23) to the 2-D case in terms of constant matrices
generated from the given 2-D polynomial coefficients, this direct
procedure leads to prohibitively large size matrices. For example,
for images of sizeN �N; the matrix corresponding to (19) will be
of size2N2�2N2: Since computations involved in a matrix singular
value decomposition (SVD) are proportional to the cube of the matrix
size, this direct procedure requires operations of the order ofO(N6)
for SVD alone [15]–[17]. This is clearly an impossible task even for
moderate value ofN: In this context, we will describe how the 1-D

GCD algorithm can be used in the 2-D blind deconvolution problem
in a computationally efficient manner.

We assume that the two blurred imagesf1(m;n) andf2(m;n) of
the original imagep(m;n) are bothM �N matrices. Obviously, the
elements of these matrices are the coefficients of thez-transforms
of the respective images. Using a conventional discrete Fourier
transform least squares (CDFT-LS) approach [4], [3], we substitute
z1 = e�j(2�m=M); m = 0; 1; � � � ;M � 1; into bothF1(z1; z2) and
F2(z1; z2): For eachm; this results in two 1-D polynomials

Fk(e
�j(2�m=M)

; z2) = P (e�j(2�m=M)
; z2)Dk(e

�j(2�m=M)
; z2);

k = 1; 2: (25)

Notice that P (e�j(2�m=M); z2) is still a common factor of
F1(e

�j(2�m=M); z2) and F2(e
�j(2�m=M); z2); except that in

this case the polynomials involved are in one variable,z2;

only. Thus the 1-D GCD algorithm yields the scaled quantity
c0(e

�j(2�m=M))P (e�j(2�m=M); z2): To proceed further, for each
value of m we further substitutez2 = e�j(2�n=N); n =
0; 1; � � � ; N � 1; in this GCD and form a matrix of discrete Fourier
transform elements

A(m;n) = c(m)P(e�j(2�m=M)
; e
�j(2�n=N)) (26)

scaled in each row by a constantc(m) = c0(e
�j(2�m=M)): Although

in generalc0(e�j(2�m=M)) is also a function ofz2; as shown below,
its dependence onz2 only occurs at a finite set of points, and this
justifies the above representation independent ofz2: To reduce the
numerical error, in the following computation, we rewrite (26) as

A(m;n)a(m) = P (e�j(2�m=M)
; e
�j(2�n=N)): (27)

Carrying out similar operations by substitutingz2 = e�j(2�n=N)

in F1(z1; z2) and F2(z1; z2); taking their 1-D GCD and further
substitutingz1 = e�j(2�m=M); we obtain another matrix,B(m;n);
which is related to the discrete Fourier transform of the original image
by columnwise scaling

B(m;n)b(n) = P (e�j(2�m=M)
; e
�j(2�n=N)): (28)

From (27) and (28) we have

A(m;n)a(m)�B(m;n)b(n) = 0: (29)

This equation set has the matrix equivalence of

���yyy = 0 (30)

where

yyy
�
= [a(1); a(2); � � � ; a(M); b(1); b(2); � � � ; b(N)]T (31)

and (32), shown at the bottom of the next page. Equation (30) is
overdetermined, and multiplying by���T on both sides, we get

���
T
���yyy = 0: (33)

We may solve (33) in a least-squares sense by considering the
equation

���
T
���zzz = �zzz (34)

for the eigenvectorzzz corresponding to the smallest eigenvalue of
���T��� . Using (31) so obtained, the estimated Fourier transform of the
original image is then calculated by

P (e�j(2�m=M)
; e
�j(2�n=N)) = 1

2
[A(m;n)a(m) +B(m;n)b(n)]:

(35)

Finally, the inverse Fourier transform of (35) yields an estimate
of the original image. It is interesting to note that for images of
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(a) (b)

(c) (d)

Fig. 1. Blind deblurring from two distorted and noisy (SNR= 45 dB) images. (a) Original image. (b)–(c) Distorted Images. (d) Reconstructed Image.

sizeN � N; this algorithm only requiresO(N4) computations, a

substantial saving compared to the direct Sylvester-type procedure.
The method described above can be rigorously established by in-

corporating an important property of relatively co-prime polynomials.

To see this, letD1(z1; z2) andD2(z1; z2) be two relatively co-prime

polynomials. In that case, from standard theory, there exist two other
polynomialsA1(z1; z2) andA2(z1; z2) such that [14]

D1(z1; z2)A1(z1; z2) +D2(z1; z2)A2(z1; z2) =  1(z1) 6� 0

(36)

���
�
=

A(1; 1) 0 � � � 0 �B(1; 1) 0 � � � 0
A(1; 2) 0 � � � 0 0 �B(1; 2) � � � 0
A(1; 3) 0 � � � 0 0 0 � � � 0
� � � � � � � � � � � � � � � � � � � � � � � �

A(1; N) 0 � � � 0 0 0 � � � �B(1;N)
0 A(2; 1) � � � 0 �B(2; 1) 0 � � � 0
0 A(2; 2) � � � 0 0 �B(2; 2) � � � 0
0 A(2; 3) � � � 0 0 0 � � � 0
� � � � � � � � � � � � � � � � � � � � � � � �

0 A(2; N) � � � 0 0 0 � � � �B(2;N)
...

...
...

...
...

...
0 0 � � � A(M; 1) �B(M; 1) 0 � � � 0
0 0 � � � A(M; 2) 0 �B(M; 2) � � � 0
0 0 � � � A(M; 3) 0 0 � � � 0
� � � � � � � � � � � � � � � � � � � � � � � �

0 0 � � � A(M;N) 0 0 � � � �B(M;N)

(32)



300 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 8, NO. 2, FEBRUARY 1999

Fig. 2. Blind deblurring of linear motion blurred image. (a) Blurred image of moving truck on the Brooklyn-Queens Expressway. (b) Image magnitude
after GCD processing. (c) Enhanced image.

and, similarly two other polynomialsB1(z1; z2) andB2(z1; z2) such
that

D1(z1; z2)B1(z1; z2) +D2(z1; z2)B2(z1; z2) =  2(z2) 6� 0:

(37)

In particular, for anyz1 = �; from (37) we also have

D1(�; z2)B1(�; z2) +D2(�; z2)B2(�; z2) =  2(z2) (38)

and hence, if we let

GCDfD1(�; z2);D2(�; z2)g
�
= C(z2) (39)

then the polynomialC(z2) must be a factor of 2(z2) for every
choice ofz1 = �: Moreover, from (36)

D1(�; z2)A1(�; z2) +D2(�; z2)A2(�; z2) =  1(�): (40)

Since the left side of (40) vanishes at every root of the GCD
polynomial C(z2) given by (39), the right side of (40) must also
vanish, implying that everyz1 = � for which C(z2) exists as a
nontrivial polynomial in (39), has to be a zero of 1(z1):

However, 1(z1) only has a finite number of zeros, hence it follows
that the GCDC(z2) in (39) can exist as a function ofz2 only for
a finite number of values ofz1: In general, these finite number of

special points will be arbitrarily located in the 2-D plane, hence it
is reasonable to assume that the distinguished unit circles(jz1j =
1; jz2j = 1) are free of such points. Thus, for� = e�j(2�m=M); we
will assume the GCD in (39) to be independent ofz2; justifying the
approach in (26)–(28).

III. EXPERIMENTAL RESULTS

Using simulated distorted images, the 2-D GCD approach is found
to be efficient and reliable when SNR� 40 dB. Fig. 1(b) and (c) are
two blurred versions of a “lady with hat,” obtained by convolving
each of the R, G, and B channels of the original 146� 128 image
in Fig. 1(a) with two relatively co-prime 8� 8 distortion filters and
then adding uniform white noise so that SNR= 45 dB. Note that
SNR is defined as the ratio of the signal variance to the noise variance
[18]. The estimation using the above interpolative 2-D GCD approach
is shown in Fig. 1(d). CPU time required to reconstruct each RGB
channel in this case is approximately 4 min on a 143 MHz Sun Ultra
running Matlab. The percentage MSE of the reconstruction is 0.32%
in this case.

For the case when only one blurred image is available, when the
support of the blurring function is small compared to the blurred
image, the blurred image can be partitioned such that each part
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completely contains the blurring function. In this case, the blurring
function D(z1; z2) becomes the GCD among these partitioned im-
ages, and the different parts of the original scene now serve as the
co-prime multiplicative factors. A special case is linear motion blur,
where the blurring function is 1-D. In this case, each line along the
motion contains the same blurring function. Fig. 2(a) shows a blurred
picture of letters taken from one frame of a video sequence of a
fast moving truck. A Cannon Hi8 camcorder was used to provide
a reasonably clear image sequence. The selected frame was then
digitized, and the predominant red channel was used as a gray-level
image. There are two blurred parts of letters on the image. The larger
string on top is used to find the blurring function by averaging the
GCD of two distant blurred lines. Then we restored the entire image
area using the deduced blurring function. Fig. 2(b) shows the result of
the above algorithm. Here, the large letters are clearly recognizable,
and the smaller blurred string is also revealed to contain letters.
Fig. 2(c) shows the reconstructed image after median filtering and
enhancement. Notice that even the smaller string of letters at the
bottom is now recognizable as “KING OF BEERS.”

The approach described in this section is targeted toward fast 2-D
GCD algorithms that are also robust. The robustness results from the
fact that the rank conditions presented in the lemma in Section II,
for example, can be formulated as a hypothesis testing problem for
a given performance accuracy. Once the rank of its Sylvester matrix
is determined by identifying a certain set of its smallest singular
values as zeros, that gives the degree of the GCD and the desired
polynomial approximations.

IV. CONCLUSIONS

This paper addresses the important, and often ill-posed, problem
of blind image deconvolution by finding the “approximate” common
factor (GCD) in presence of noise. With the assumption that the
distortion filters are FIR and relatively co-prime, in the absence of
noise, this becomes a problem of taking the greatest common divisor
(GCD) of two or more 2-D polynomials. Exact GCD is not desirable
because even extremely small variations due to quantization error or
additive noise can destroy the integrity of the polynomial system and
lead to a trivial solution. Our approach to this blind deconvolution
approximation problem introduces a robust interpolative 2-D GCD
method based on a 1-D Sylvester-type GCD algorithm.

The approach described here can be extended to the case when both
the image and/or the blurring functions have infinite support. In that
case, if the corresponding transfer functions are rational, then under
relatively co-prime conditions for the numerator and denominator set
of polynomials, the GCD approach can be separately applied to the
numerator as well as the denominator pairs of the blurred images to
recover the original image.

The problem ofsimultaneouslyobtaining the GCD of three or more
polynomial functions is an interesting related problem, and a robust
version of that algorithm is of practical importance as it corresponds
to recovery from multiple blurred frames. To respect the simultaneous
involvement of all polynomials, letA(z); B(z); andC(z) represent
three polynomials such that

GCDfA(z); B(z); C(z)g = P (z): (41)

In this case, to obtain the necessary and sufficient conditions that
incorporate the coefficients ofA(z); B(z); andC(z) simultaneously,
the classical approach considers the doublet [14]

�A(z) + �B(z) and C(z) (42)

where� and � are free variables. Clearly, the GCD of the triplet
A(z); B(z); andC(z); as well as the two polynomials in (42), are
identical toP (z) for every choice of the free variables� and �:
Notice that the situation in (42) is algebraically the same as that
in (13), hence it can be rewritten as in (16) and (17). However,
the Sylvester matrixS(�; �) in this case is a function of� and�;
and its singularity forevery choice of� and � leads to vanishing
coefficients of the two variable polynomialdetS(�; �): This results in
complicated nonlinear conditions in terms of the original polynomial
coefficients. It will be interesting to see whether such conditions can
be organized in a more useful Sylvester-style matrix form.

On the other extreme, if only a single distorted imagef(n;m)
is available, for the proposed procedure to work, it is important to
generate at least two distinct blurred images from the given data.
One-dimensional partitioning of images with linear motion blur is
shown to be effective in our experiments [19], [20]. Real blurred
pictures have been restored using such an approach, suggesting the
practical value of the GCD blind image deconvolution algorithm.
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