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Abstract Modern mobile networks, such as GPRS and UMTS, support wireless data applications. One
successful example is the ever popular i-mode in Japan. Wireless data services (wireless Internet) become
more important as more and more customers of handheld devices enjoy the convenience of the ubiquitous
computing. To improve the effective wireless data access, the time-to-live (TTL) management for data
entries becomes important due to its use in effective caching design. In this paper, we study three TTL
prediction schemes and investigate the effects of the inter-update time distribution on the wireless data
access. Performance analysis is carried out via simulations as well as analytical modeling. We expect our
results will be useful for the future wireless data access systems, in which transmission power for mobile
devices is more limited.
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1 Introduction

Modern mobile networks, such as GPRS and UMTS ([8]), support wireless data applications. Examples,
such as the popular i-Mode in Japan, have received a great deal of attention due to their success in providing
some Internet services. The standard Wireless Application Protocol (WAP) ([6, 8]) is tailored for web ac-
cessing, which represents the first step towards the wireless Internet. In the wireless Internet environment,
a mobile customer may use a wireless handheld device to access data services from the application server
through the mobile network. In fact, mobile users have become the fastest growing community of web users
in the last few years. Already, many cellular phones are equipped with web browsing capabilities, and it
is predicted that the number of wireless Internet devices will outnumber desktop computers by 2003. As
another example, a user may access Web using Palm Pilot through a wireless data service such as Om-
nisky [11]. Omnisky is supported by Cellular Digital Packet Data (CDPD) [4, 8] with rates varying from
5Kbps to 13Kbps. To provide convenient services to mobile customers, web site personalization techniques
have been developed [9] to automatically adapt and personalize web sites to mobile customers.

One of the challenging design tasks in such an environment is how to make data ubiquitously available,
while minimizing the transmissions from mobile devices (to save battery power). An application running
on the wireless handheld device may repeatedly access a data entry received from the application server.
If the data entry is not sensitive to time, then the customer may access the data stored in the cache of the
wireless handheld device instead of querying the application server, and the expensive wireless transmission
overhead is reduced. Effective caching strategies should be used for such applications. If the data entry is
sensitive to time, then the current data entry should be provided from the application server. In this case, it
is better to push such a data entry to the mobile device before it is queried, because the transmission power
from mobile devices tend to be higher and thus, more expensive, than the receiving power. Therefore, it
is reasonable to handle time-sensitive wireless applications and time-insensitive applications in a different
fashion. One way to do so is to use the timers (time-stamps or time-to-live) for data entries.

Some time-sensitive wireless applications can tolerate certain degree of inaccuracy (e.g., most web page
requests and location dependent information in wireless applications). For this type of applications, we can
set an expiration period � to predict when the data entry will be updated. During the period �, the data
entry in the cache of the handheld device is used. When � expires, the next data access results in a query to
the mobile network. In this case, the application is weakly consistent, where the wireless handheld device
may occasionally access the stale data. A mechanism is required to predict when a data entry expires. In
Apache [1] and Squid [15], a time-to-live (TTL) interval � is defined for data entries stored in the wireless
handheld device. The TTL for a data entry is determined based on whether the data entry is modified due to
either a mobile query or a server update, which leads to a simple TTL prediction algorithm.

Another important application of data TTL prediction is web page hosting. In web page hosting, a page
may be replicated on many servers, so as to spread the access load and reduce congestion. It can also lead
to more reliable systems. The replica pages need to be updated according to the time-sensitivity, update
pattern, and access pattern of the original page. This is a similar problem to the update prediction problem
that we study in this paper. In this problem, the ”server” is the main location of the web page and the
”clients” are the replicated locations. The goal is to minimize the traffic of frequently updated pages and the
penalty of providing out-dated data

Note that the TTL prediction mechanism is typically exercised with cache replacement such as LRU
(least recently used) and LFU (least frequently used) [3] in a proxy cache for WWW accesses. Since the
storage of a handheld device is limited, the wireless application may determine that no cache replacement
algorithm is exercised for frequently accessed data (or they are likely to be replaced by infrequently accessed
data). That is, when a wireless handheld device runs a particular application, some data used by this ap-
plication are considered as “frequently accessed” and will always be kept in the handheld device until they
expire. This is especially true for some location dependent services provisioned by the mobile operators.
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The customer may also enable a data entry as “frequently accessed,” and the handheld device will not exer-
cise cache replacement for this data entry until the frequently accessed indication is disabled. In Squid [15],
the TTL option can be specified by users, so that users can control caching for certain applications.

In this paper, we study three TTL prediction schemes for wireless data access. We also propose ana-
lytical and simulation models for studying the performance analysis for the TTL prediction mechanisms.
Our models are flexible enough to accommodate any fudge factor values used to generate the TTL interval.
Since GPRS traffic reported by mobile operators indicates that the traditional web access patterns do not
apply to the GPRS-based wireless data access, our model consider general distributions for data update and
access. These distributions can be used to approximate data obtained from GPRS field operations or trials.
Based on our model, we show how the inter-update time distribution affects the accuracy of TTL interval
prediction.

2 TTL Prediction Schemes

In this section, we describe three schemes to determine the proper TTL interval when the handheld device
queries the server. This series of schemes require increasing record-keeping of the history of the server
inter-update intervals.

TTL Scheme #1: This scheme is based on the implementation of the Apache and the Squid systems.
When the handheld device queries the server, the server data entry either has been modified or remains the
same as the cached one. In the former case, it is assumed that the server returns the updated data entry with
a timestamp indicating when the data entry was last modified. In the latter case, the server returns a positive
acknowledgment of the cache validity. Thus, the handheld always knows the time of the last server update.
Let �� be the difference between the time of the query and the time of the last server update. Then, in this
scheme, the TTL interval is given by

����� � ���� � (1)

where �� is a system defined fudged factor.
TTL Scheme #2: In this scheme, it is assumed that the server remembers the length of the previous

inter-update interval, denoted by ��. When the handheld device queries the server, the server sends back the
value of �� as part of the reply. Then, the TTL interval for the current query is given by

����� � ���� � (2)

TTL Scheme #3: As proposed in [14], a running average of the inter-update intervals can be obtained by
a handheld device. If the server maintains this average, it can be sent to the handheld device during its query
to the server. The exact method of obtaining this average, including the designs of the windowing duration
and the weights of averaging, is outside of this paper’s scope. Let �� denote the average inter-update interval.
Then, in this scheme, the TTL interval for the current query is given by

����� � ���� � (3)

All of these schemes employ an intuitive form, of a fudged factor multiplying a time duration indicative
of how often the data entry is updated at the server. For example, in the scheme ����, if the date entry is
updated infrequently, the backward residual time of server updating, ��, is likely to be large, while if it is
updated frequently, �� is likely to be small. Therefore, we can use �� to estimate, albeit coarsely, the time of
the next server update. The rationale behind using �� and �� in ���� and ���� is similar. Furthermore,
assuming that the server updating process is stationary, �� is the clearly best real value estimate of the
inter-update time.

One main advantage of using ���� is that, on the server side, it requires no extra equipment or process-
ing overhead above what is already implemented in many of the currently deployed systems. For example,
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Figure 1: The timing diagram

the time of the last update is built into the Hypertext Transfer Protocol (HTTP). However, as shown in the
next section, this TTL prediction may not be as accurate as the other two schemes.

The schemes ���� and ����, on the other hand, require the server to remember its past updates
and share that information with the handheld device. In particular, a server supporting ���� may need to
maintain a record of its long-term updating history. However, since �� gives a more consistent estimate of
the server’s next updating time, we expect ���� to outperform ���� and ���� in terms of data access
cost.

In what follows, we will study the performance of these schemes and the effect of the server inter-update
interval distribution on the cost of wireless data access.

3 Assumptions and Output Measures

In this section, we describe the assumptions used in this paper and the performance measures used to eval-
uate the TTL-interval prediction schemes. Consider the interval between two consecutive queries from the
wireless handheld device to the server. This interval is referred to as a cycle. In Figure 1, ���� ��� is a cy-
cle. The access at the beginning of a cycle (e.g., �� in Figure 1) results in a query to the server. During
���� ���, the handheld device returns the cached copy to all local accesses by applications to the data en-
try. We assume that accesses to a data entry form a point process with general distribution. Furthermore,
the inter-update intervals are assumed to be a random variable with a general distribution. Based on these
assumptions, we consider the following primary performance measures:

� The expected number, �����, of non-stale accesses in a cycle: For a non-stale access, when the access
occurs, the data entry in the cache is the same as that in the server. Note that the non-stale accesses
include the one that results in the query to the server at the beginning of a cycle.

� The expected number, ����, of accesses in a cycle: This number includes the stale and the non-stale
accesses in the cache, plus the access resulting in a query from the handheld device to the server (for
the cycle ���� ��� in Figure 1, this query occurs at ��). Thus, � � � always holds.

� The probability 	 that when the handheld device queries the server, the data entry is valid (i.e., the
data entry has not been modified since the last query).

It is clear that the handheld device communicates with the server for every ���� access. Based on �����
and ����, we can investigate the accuracy of TTL interval prediction through the staleness ratio 
�, which
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is the probability that the handheld device returns a stale data entry for an access. That is,


� �
����������

����
(4)

Thus, we can define the cost due to data staleness as

��	�
� � �
� � (5)

where � represents the penalty of returning a stale data entry to the application.
Another performance measure considered in this paper is the server query cost or wireless transmission

cost �����. Suppose that the cost of transmitting a data entry is one unit. We further denote Æ as the cost for
the handheld device to query the server without the data entry being transmitted. It is clear that �  Æ  �.

When the handheld device queries the server and the data entry is valid, the server returns a positive
acknowledgment with the cost Æ. If the data has been modified, the server returns the updated data entry to
the handheld device and the transmission cost is one unit. Note that on average, a query to the server occurs
for every ���� accesses. That is, the transmission costs for the ����-1 accesses in the cycle are 0. Thus,
if we normalize the cost (e.g., wireless transmission delay) for a query with data transmission as one unit,
then the server query cost per access can be expressed as

����� �
Æ	 � ��� 	�

����
�

�� ��� Æ�	

����
(6)

Then, the total cost per access is

������� � ��	�
� � ����� � �
����������

����
�

�� ��� Æ�	

����
� (7)

Obviously, shorter TTL intervals lead to smaller stale data probability 
�, and hence lower ��	�
�. How-
ever, shorter TTL intervals also create more queries to the server, which may lead to higher �����. Ideally,
if one has the exact information of the future server update times, the TTL should be set to expire at the next
server update instant. However, in practice, one can only predict the actual next server update instant based
on the known statistics and then set the TTL appropriately. In the previous section, we present three TTL
prediction schemes. Next, we study the effect of TTL selection on the cost of wireless data access.

4 Performance Study

Analytical modeling of the three TTL schemes under certain simplified assumptions is possible. For exam-
ple, for the third TTL prediction scheme, we are able to completely characterize the performance measures.
For the first and the second TTL prediction schemes, we are also able to provide some approximate ana-
lytical results. All analytical results and their derivations are presented in the appendices. In what follows,
we will evaluate the performance of the three TTL prediction schemes and the effects of the inter-update
probability distribution via both, simulations, as well as the analytical results.

4.1 Simulation Setup

Simulations are carried out in Matlab to evaluate the TTL prediction schemes for wireless data access. The
following three example distributions of the server inter-update intervals are studied:

� exponential,
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Figure 2(a): Exponential updating, optimal cost per access vs. �

� Rayleigh, and

� deterministic.

These three distributions represent a gradient of increasing memory level, from memoryless, in the case of
the exponential distribution, to fully future knowledgeable, in the deterministic case.

The arrival process of accesses to a data entry is assumed to have a general distribution. Previous studies
suggest that the arrivals of the Internet dial-up access connections can be described by a Poisson model
[10]. However, published results based on the wireline Web access trace indicate that the user requests
to a document on the Web do not follow a pure Poisson process [12]. Currently there is no access trace
available for wireless data. Furthermore, wireless data access is affected by mobility and will, most probably,
not follow the access patterns observed in the wireline networks. In the following, we first consider the
Poisson access stream for mean value analysis and then summarize our simulation results with general
access patterns.

In each simulation, the mean of the inter-update intervals is set to have one time unit, the data accesses
are assumed to occur five times as frequent as the server updates, and ����� server updates are simulated.
For each inter-update distribution, the three TTL schemes are studied separately. For each scheme, the fudge
factor, �� , is allowed to vary from ���� to ���. The optimal �� is obtained through observations, and the
corresponding optimal cost per data access is recorded.

In Figures 2(a)-4(b), we plot the optimal costs over Æ and �, where Æ has the range between ��� and �,
and � has the range between � and ��. In addition, our experiments have shown that, when Æ is below ���,
since the query cost is very low when the cache is valid, the cost per data access can be trivially minimized
by querying the server at almost every data access. Furthermore, when � is below �, since the penalty
against stale data access is very low, the cost per data access can be trivially minimized by seldom querying
the server at all. Finally, when � is above ��, since the penalty against stale data access is very high, the best
scheme is, again, to query the server at almost every data access. All of these extreme cases are independent
of the TTL scheme, and therefore, are not of interest in this study.
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Figure 4(b): Deterministic updating, optimal cost per access vs. Æ

4.2 Comparison of TTL Schemes

As shown in Figures 2(a)-4(b), for all server inter-update distributions, ���� outperforms ���� by a
substantial amount if Æ is large. This is reasonable, considering ���� requires the knowledge of the average
of the inter-update intervals taken over a relatively long period.

For servers with the exponential inter-update distribution, which has the memoryless property, ����
slightly outperforms ����, especially when Æ is large and when � is small. However, for most other cases,
���� outperforms ����. In particular, for servers with the deterministic inter-update distribution, ����
is equivalent to ����. Thus, we can infer that the relative performance of ����, as used in Apache and
Squid, suffers as the memory level of the inter-update interval distribution increases.

4.3 Cost Sensitivity to Æ and �

Figures 2(a)-4(b) also suggest that, for all inter-update distributions and all the three TTL schemes, the data
access cost is very sensitive to the non-update query cost Æ. Adjusting the labeling of the plot axes reveals
that the cost is almost linearly increasing with Æ. Therefore, it is important for a system designer to ensure
that Æ is kept small for cost effective data caching.

On the other hand, the data access cost is less sensitive to the stale data penalty �. This is due to the
optimal adjustment of the fudge factor �� , such that queries are performed more frequently when � is large.
In systems where Æ is small, one can afford to query the server more often, as the average cost per query is
reduced in this case.

In fact, when Æ is sufficiently small, all the TTL schemes perform similarly, regardless of the inter-
update distribution. As shown in these figures, when Æ  ���, the access cost of the three schemes is
within �	
 of each other. This can lead to the simplified numerical evaluations of some TTL schemes.
For example, although ���� is the most often used scheme in practical applications due to its minimal
requirement on the server, it is generally hard to precisely analyze the performance of ����. However,
the performance of ���� can be accurately analyzed numerically. Therefore, given a cached data access
system that employs ����, one can first obtain an accurate cost estimate of ���� and then apply that result
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as a close approximation of the actual cost of ����.
Towards this end, Appendix I provides an analytical framework for evaluating the cost of ����. In

addition, Appendix II gives two more methods that approximately compute the cost of ���� under a set of
assumed conditions.

4.4 Non-Poisson Data Accesses

The above simulations were repeated assuming data access streams with Rayleigh and with deterministic
inter-arrival intervals. In both cases, we observed the same patterns of the cost comparison among the
different TTL prediction schemes and of the cost sensitivity to Æ and �. For brevity, the redundant simulation
results are not presented here.

5 Conclusions

In this paper, we study three prediction schemes for setting up the time-to-live (TTL) for data entries in
wireless data access. Due to the fact that the measurements of the actual wireless data access is not available
for the inter-update time, we use a general distribution model for the inter-update time and carry out the
performance analysis. The effects of the inter-update time distribution on the performance of wireless data
access under the three TTL prediction schemes are investigated via the simulations, as well as through
analytical modeling. The study shows that the TTL prediction scheme outperforms the currently used TTL
prediction scheme used in Apache and Squid when the query cost from mobile device is high, while most
schemes perform similarly when the query cost is low. We expect our results to be useful for wireless data
access systems in which mobile transmissions are more costly.

Appendix I: Numerical Analysis for TTL Scheme #3

In this section, we present an analytical framework for evaluating the performance of the TTL Scheme #3,
where the TTL interval depends on the mean duration of the previous inter-update intervals.

Assume that the data accesses create a Poisson stream with rate �. Let random variable � represent the
inter-access time, then � has an exponential density function ����, where

���� � ����� and ��� � �
�

�
� (8)

Let random variable � represent the inter-update time, which has a general cumulative distribution function
� ���, density function ����, Laplace transform ����� and mean ���� � ���. Suppose that � is a non-
lattice random variable and �����  �. Since the queries are independent of the server updates, the
residual life � of � has the cumulative distribution function ����, density function ����, and Laplace
transform �����, where from [13]

���� � �

�
�� � ���

�
(9)

����� �

�
�

�

��
�� �����

�
� (10)

Suppose that ���� has probability density function �� ��� �, the cumulative distribution function ���� �,
and the Laplace transform ��� ���. Recall from Section 2 that, in this scheme, the TTL interval is

���� �
��
�

� (11)
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where �� is the fudge factor. Then,

�� ��� � � Æ

�
��

��
�

�
� and ��� ��� � ��

��
�
�� (12)

Consider the interval �� between when the TTL interval expires and when the next data access ar-
rives. Let ������ and ��� ��� denote the probability density function and the Laplace transform of the random
variable ��, respectively. From the memoryless property of the exponential distribution, �� has the same
distribution as � , thus we have

������ � ����	� and ��� ��� �
�

� � �
� (13)

Let � � ���� � ��, and let ����� and ��� ��� denote its probability density function and its Laplace
transform. Then from (12)

����� � ��

�
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��
�

�
and ��� ��� � ��� ����

�
��
�
� � (14)

The probability 	 is derived as follows:
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where !� denotes the set of poles of ������ and ������ denotes the residue at the pole � � 
.
If � , and hence � , is exponentially distributed, we have ����� � ���� � ��. Then, we have
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Now we derive ����� as follows. Consider Figure 1. After ��, if the TTL interval expires earlier than
the next update, then all data accesses occurring in ���� �� � ����� are non-stale. On the other hand, if the
TTL interval expires after the next update, then non-stale accesses occur in period ���� �� � ��. Thus, we
conclude that during a cycle, the non-stale accesses occur in the period ���� � ��������������. Since
the accesses are a Poisson stream, from [13],

����� � � �
�������

��� �
� (16)

The probability density function of ���� is

�������� � �
�

���
�������������� � ��� � �

�

���
�������� � ��� ���� � ����

�

�
�

��	�
�� ���������� �

�
�

	��	�
�� ��� ��������� �

The Laplace transform of ���� is

�������� �

�
�

�
�� ���

��
�

	
������

�
���	�� �

�
�

�
����

��
�

	
�� �����

�
���	��

�

�
�

�
�� ���

�
�

� 

� ����
����

�� �����

�
��	��

�
���	�� �

�
�

�
����

�
�

� 

� ����
����

�� ��� ���

�
��	��

�
���	��

�
�

� 

� ����
����

�� �����

�

��
�

�
�� ����

������	��

�
�� �

�

� 

� ����
����

�� ��� ���

�

��
�

�
�����������	��

�
��

�
�

� 

� ����
����

�� �����

�
��� ��� ���� �

�

� 

� ����
����

�� ��� ���

�
����� ���� � (17)

where ! is a sufficiently small positive number.
Applying the Residue Theorem, we obtain the expected value �������
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��������� � (18)

where ! is the set of poles of ������ and !� is the set of poles of ��� ���� in the strict right half complex

plane, and where we also have used the following fact that the derivative "������ of function "��� shares the
same set of poles except the multiplicities. We can express ������� in terms of the function ����� via the
equations (9)–(12), however, we omit such expressions here due to their complexity.
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Figure 5(a): ���� analysis verification, optimal cost per access vs. �

If the inter-update time � is exponential, then ����� � ����� � ������� and ��������� � ���������.
From equation (18), we obtain

������� � �
��
�


�����

���
���

�

� � �
�
��
�
�
�

����

���
���

�� ��
��
�
�

�
���������

�
��
�

���
����

�

� � �
�
��
�
� ����

���

�� �
�
��
�
�

�
�

�

��� ���

�
��
�

�
��
�
�

�����
����

� �
�

��

�
��� ��

��
�
�

�

�
�
�����
���

�
��
�

���� �
�� �� � �� ��

���

�

�
�� ����

�
� (19)

which is consistent with the direct computation.
The cost per wireless data access, in the case of TTL prediction scheme ��, is computed based on the

preceding analytical framework and compared with the simulation results. Figures 5(a) and 5(b) illustrate
this comparison in scenarios with the same parameters as those in Figures 2(a) and 2(b). These plots validate
the simulation model against the analytical approach.

Appendix II: Approximating the Cost of TTL Schemes #1 and #2

This section describes an analysis framework that provides the approximate cost of wireless data access
using TTL schemes #1 and #2. Since the analysis of these two schemes is very similar, in what follows, we
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concentrate on the analysis of TTL scheme #1. For scheme #2, we only provide brief pointers where the
analysis differs.

In this approximation, we have made the following two assumptions:

Assumption #1: The handheld queries to the server are sufficiently independent of the server updates, such
that the queries can be considered random observers of the inter-update interval;

Assumption #2: At the time of every query, the TTL interval is independent of the forward residual life of
the current server inter-update interval.

These assumptions are reasonable in systems with nearly-exponential server inter-update intervals and rela-
tively infrequent queries.

Consider the timing diagram in Figure 1. Assume that the data accesses are a Poisson stream with rate
�. Let the random variable � represent the inter-access time. Then � has an exponential density function
����, where

���� � ����� and ��� � �
�

�
� (20)

Let random variable � represent the inter-update time, which has a general cumulative distribution function
� ���, density function ����, Laplace transform �����, and mean ���� � ���. Suppose that � is a non-
lattice random variable and �����  �, then the residual life � of � has the cumulative distribution
function ����, density function ����, and Laplace transform �����, where from [13]

���� � �

�
�� � ���

�
(21)

����� �

�
�

�

��
�� �����

�
� (22)

Let the random variable � be the interval between the previous update and when the handheld device queries
the server. In Figure 1, � � � � �� � ��. Since the queries to the server are random observer of the inter-
update interval � , � is the reverse residual life of � . From the reversibility property of residual life [13],
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� has the same distribution as � (the residual life of �). In Apache [1], the TTL interval is computed as
���� � ��� , where �� is the fudge factor. In Figure 1, the TTL interval is �� � �� �. Suppose that ���� has
probability density function �� ��� �, the cumulative distribution function ���� �, and the Laplace transform

��� ���. As previously discussed, � has the density function ���� � and Laplace transform �����, and1

�� ��� � �

�
�

��

�
�

�
��
��

�
and ��� ��� � ������� � (23)

Consider the interval �� between when the TTL interval expires and when the next data access arrives. Let
������ and ��� ��� denote the probability density function and the Laplace transform of the random variable
��, respectively. From the memoryless property of the exponential distribution, �� has the same distribution
as � , and thus we have

������ � ����	� and ��� ��� �
�

� � �
� (24)

Let � � ���� � �� (in Figure 1, ���� � �� � �� �), and let ����� and ��� ��� denote the probability density
function and its Laplace transform. Then from (23) and (24)

����� �

� �
	���

�� ��� ����� � ����� and ��� ��� � ��� ����
�

� ��� � (25)

The probability 	 is derived as follows:
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1For TTL scheme #2, we have

�� ���� � ���� � and �
�

� ��� � �
���� �

The rest follows exactly as the analysis of TTL scheme #1, with the above replacing (23).
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where !� denotes the set of poles of ������ and ������ denotes the residue at the pole � � 
. If � is
exponentially distributed, then we have ����� � ���� � ��, hence we have
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Now we derive ����� as follows. Consider Figure 1. After ��, if the TTL interval expires earlier than
the next update, then all data accesses occurring in ���� �� � �� �� are non-stale. On the other hand, if the
TTL interval expires after the next update, then non-stale accesses occur in period ���� �� � ��. Thus, we
conclude that during a cycle, the non-stale accesses occur in the period ���� � ��������������. Since
the accesses are a Poisson stream, from [13],

����� � � �
�������

��� �
� (27)

The probability density function of ���� is
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The Laplace transform of ���� is
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where ! is a sufficiently small positive number. Applying the Residue Theorem, we obtain the expected
value �������
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where ! is the set of poles of ������ and !� is the set of poles of ��� ���� in the strict right half complex

plane, and where we also have used the following facts that the derivative "������ of function "��� shares the
same set of poles except the multiplicities and that ��� ���� has poles in the following form: 
��� for 
 � !.

We can express ������� in terms of the function ����� via the equations (21)–(23), however, we omit such
expressions here due to their complexity. We also notice that ������, ������, and their derivatives share
the same set of poles in the strict right half complex plane except the multiplicities, and so we can express
������� as follows:
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�
��������� � (30)

If the inter-update time � is exponential, then ����� � ����� � ���� � �� and ��� ��� � ������ � �� �

����� � �� �, where �� � ���� . From equation (30), we obtain
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� (31)

which is consistent with the direct computation.
Next, we present another approach to compute the probability 	 and the expectation ������� for the

scheme #1. It is well-known that ([7]) the phase-type distributions (PH) are dense in the set of all distribu-
tions in �����, i.e., any distribution of a nonnegative random variable can be approximated by Phase-type
distributions. The exponential distribution, the Erlang distributions, the hyper-exponential distribution, and
the hyper-Erlang distribution are all special cases of PH distributions. The advantage of PH distributions
is that most computations are reduced to matrix manipulations. A PH distribution is the distribution of the
time till absorption into the absorbing state � in a finite state Markov chain with states ��� �� � � � � � #� and
with initial probability vector �$�� $� and infinitesimal generator

% �

�
� �

� �

�
�

where $ is row vector of size # and � is an #	 # matrix. It can be shown ([7]) that this distribution can be
uniquely determined by the �$� � �, so we say a random variable � is &'�$� � � if � is PH distributed with
parameter �$� � �. In fact, a random variable with &'�$� � � has the following probability density function

���� � �$ ���������� � � � � �

where �� is the column vector of all �’s with the same dimension as the matrix � (i.e., if � is an # 	 #
matrix, �� will be #�dimensional vector). We need the following result (
 indicates the Kronecker product
and � denotes the Kronecker sum):
Lemma ([7],[2])
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(1) Assume that � ��� is the cumulative distribution function of a random variable with &'�$� � � with
expectation ���, then the distribution ��� � � ���� is also PH distributed with &'��� � � where � �

�$����� �
��$���.

(2) Assume that the random variables � and � are independent with &'�$� � � and &'�(� )�, respec-
tively, then the random variable ������� � is also PH distributed with &'�����, where

� � $
 (� � � � � ) �

(3) Assume that the random variables � and � are independent with &'�$� � � and &'�(� )�, respec-
tively, then the random variable � � � is also PH distributed with &'�����, where

� � �$� $�(�� � �

�
� �(
� )

�
�

where $� � �� $�� , � � ���� .

(4) Assume that random variables � and � are independent with &'�$� � � and &'�(� )�, respectively,
then

���� � � � � �( 
 $���) � � ������ 
 ����� ���

Now we assume that the inter-update time is &'�$� � �, then from Lemma (1), the residual life � is
&'��� � � where � � �$����� �

��$���, thus we have

���� � �� ����������

and

�� ��� �
�

��
�

�
�

��

�
� �� ��������� �������� ��� �

which is &'��� ���� �.
We first compute 	. Since ���� is &'��� ���� � and �� is exponentially distributed with &'������,

from Lemma, we conclude that ���� � �� is PH distributed with &'��� � ��� where

�� � �$� � � $�� �� �� �

�
���� ������ ���
� ��

�
�

Applying Lemma (4), we obtain
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� (32)

If the inter-update time � is exponentially distributed, we have $ � �, � � ��, � � �, �� � ��� ��,

�� �

�
����� ����

� ��

�
. Applying (32), we obtain (*� denotes the identity matrix with the same dimension

as a matrix +)
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which is the same result as what was previously obtained.
Next, we compute �������. Again since ���� is &'��� ���� � and � is &'��� � �, where � �

�$����� �
��$���. From Lemma, we conclude that ���� is also PH distributed with &'���� ���, where

�� � � 
 �� �� � � � ����� � � � 
 *� � *� 
 ����� � � (33)

Therefore, from the property of PH distribution, we obtain the expectation for ���� as follows:

������� � ����������� � ��� 
 ���� � ����� ��
��
��� � (34)

If the inter-update time � is Erlang distributed with parameter �,���, then we know it has the following
representation &'�$� � �, where

$ � ��� �� � � � � ��� � � �,�

�
������

� �� � � � � �
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...

...
. . .

...
...
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�
������ � �,��� � (35)

Then, ���� will be &'��� � � with

� � �$����� �
��$��� �

�

,
� � � � � � � � �

Thus, we have (+� denotes the matrix transpose of +)
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where � is a column vector of all �’s with appropriate dimension for the matrix multiplication. When , � �,
i.e., � is exponentially distributed, we have �� � �, hence

������� �
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��
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�

�
�

which is the same result as we obtained earlier.
Now assume that � is hyper-Erlang distribution with the following probability density function ([5]):
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From a result in [7], we know that the hyper-Erlang distribution ���� has the following representation
&'�$!�� �!��, where

$!� � � 
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From (34) we obtain
������� � ���!� 
 �!����!� � ��!���� ��

��
� � (38)

where
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��
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 $ ��� 

�
�

and � is a column vector of all �’s with appropriate dimension for matrix multiplication (the dimension is�� 
��� ,�

��
).

As a final remark, we notice that the approach using the Residue Theorem may overcome the dimension
explosion inherited in the matrix-geometric approach, however, the former does not give explicit formula,
while the latter does.
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