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Stochastic Geometric Analysis of User Mobility in
Heterogeneous Wireless Networks
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Abstract—Horizontal and vertical handoffs are important
ramifications of user mobility in multi-tier heterogeneous wireless
networks. They directly affect the signaling overhead and quality
of calls in the system. However, they are difficult to analyze
due to the irregularly shaped network topologies introduced by
multiple tiers of cells. In this work, a stochastic geometric analysis
framework on user mobility is proposed, to capture the spatial
randomness and various scales of cell sizes in different tiers.
We derive theoretical expressions for the rates of all handoff
types experienced by an active user with arbitrary movement
trajectory. We also derive the downlink data rate of the user
given the set of cell tiers that it is willing to use. Based on these
results, we provide guidelines for optimal tier selection under
different user velocity, taking both the handoff rates and the data
rate into consideration. Empirical study using real user mobility
trace data and extensive simulation are conducted, demonstrating
the correctness and usefulness of our analysis.

Index Terms—Heterogeneous wireless network, mobility, hand-
off, stochastic geometry, analytic geometry

I. INTRODUCTION

TRADITIONAL single-tier macro-cellular networks pro-
vide wide coverage for mobile user equipments (UEs),

but they are insufficient to satisfy the exploding demand for
high bandwidth access driven by modern mobile traffic, such
as multimedia transmissions and cloud computing tasks. One
effective means to increase network capacity is to provide
more serving stations within a geographical area, i.e., installing
a diverse set of small-cells such as femtocells [2] and WiFi
hotspots [3], overlaying the macrocells, to form a multi-tier
heterogeneous wireless network (HWN). Each small-cell is
equipped with a shorter-range and lower-cost base station
(BS) or access point (AP), to provide nearby UEs with
higher-bandwidth network access with lower power usage,
and to offload data traffic from macrocells. The commercial
deployment of small-cells has attracted increasing attention
in recent years. For example, AT&T Inc. now supplies a
femtocell product [4], and it has also deployed WiFi APs in
a number of metropolitan areas with dense population [5].

In the presence of multiple tiers of cells, however, mobile
UEs may experience internetworking issues among different
tiers. In particular, vertical handoffs (i.e., handoffs made be-
tween two BSs in different tiers) are introduced [6]. Compared
with horizontal handoffs (i.e., handoffs made between two BSs
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(a) A UE starts a call at X and terminates it at Y . It experiences
one horizontal handoff at B1 and two vertical handoffs at B2 and
B3.
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(b) Same BS locations and UE trajectory. Tier-3 BSs are not
accessed. The same UE experiences one horizontal handoff at C1

and one vertical handoff at C2.

Fig. 1. An example of a three-tier HWN and selective tier association. Tier-
1, 2, and 3 BSs are represented by squares, circles, and triangles respectively;
blue curves show intra-tier cell boundaries; green curves show inter-tier cell
boundaries.

in the same tier), vertical handoffs have a more complicated
impact on both the UEs and the overall system. Additional
risks are present during channel setup and tear down when a
vertical handoff is made, such as (1) extra traffic latency; (2)
additional network signaling; (3) more UE power consumption
due to simultaneously active network interface to multiple
tiers; and (4) higher risk in call drops or degraded quality
of service (QoS) caused by the lack of radio resource after
handoffs. Furthermore, vertical handoffs may be classified into
inter-RAT (radio access technology) handoffs (e.g., handoffs
made between LTE access and WiFi access) and intra-RAT
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handoffs, where the former could cause worse performance
degradation on UEs [7].

The handoff rate is defined as the expected number of
handoffs experienced by one UE per unit time, which directly
affects the signaling overhead in the system and QoS of
UEs. As a prerequisite to performance evaluation and system
design in HWNs, it is essential to quantify the rates of
different handoff types. However, a study on handoff rates
in HWNs will inevitably be challenged by the irregularly
shaped multi-tier network topologies introduced by the small-
cell structure. An example topology with three tiers of BSs is
shown in Fig. 1. First, BSs are spread irregularly, sometimes
in an anywhere plug-and-play manner, leading to a high level
of spatial randomness. Second, different tiers of cells are
equipped with BSs communicating at different power levels,
causing various scales of cell sizes. As a consequence, it
is difficult to characterize the cell boundaries and to track
boundary crossings made by UEs (i.e., handoffs) in the system.
Few previous works have resolved the above challenges.

Characterizing the handoff rates provides important guide-
lines for system design. One main design concern is the
tradeoff between the handoff rates and the data rate. As shown
in the example in Fig. 1(a), a UE starts a call at X and
terminates it at Y . By choosing to access all of tier-1, 2, and
3 cells, it experiences one horizontal handoff at B1 and two
vertical handoffs at B2 and B3. As shown in Fig. 1(b), by
choosing to access tier-1 and 2 cells only, it experiences one
horizontal handoff at C1 and only one vertical handoff at C2.
However, in the latter case, the UE misses the opportunity to
access a high-bandwidth tier-3 BS. Thus, a UE could choose to
access high-bandwidth small-cell BSs to improve data rate, but
this may also lead to more frequent vertical handoffs, which
potentially deteriorates the service quality. Therefore, in this
paper, we are also motivated to optimize the UE tier selection
scheme, by taking both the handoff rates and the data rate into
consideration.

In this work, we contribute to user mobility modeling
and network access optimization in HWNs by providing
new technical tools to quantify the rates of horizontal and
vertical handoffs, under random multi-tier BSs, arbitrary user
movement trajectory, and flexible user-BS association. A new
stochastic geometric analysis framework on user mobility is
proposed. In this framework, different tiers of BSs are modeled
as Poisson point processes (PPPs) to capture their spatial
randomness. To model flexible scaling of cell sizes in different
tiers, we consider the biased user association scheme [8], [9],
[10], [11], in which each tier of BSs is assigned an association
bias value, and a UE is associated with a BS that provides
the largest biased received power. Through stochastic and
analytic geometric analysis, we derive exact expressions for
the rates of all handoff types experienced by an active UE
with arbitrary movement trajectory. In addition, as a study
on the application of the above handoff rate analysis, after
calculating the downlink data rate of an active UE given the
set of BS tiers that it chooses to associate with, we further
study optimal tier selection by the UE, considering both the
handoff rates and the data rate.

We confirm our theoretical analysis through an empirical

study using the Yonsei Trace [12]. The trace provides a
large data set, accumulating fine-grained mobility data from
commercial mobile phones in an 8-month period. Numerical
studies using the empirical trace data set, together with further
simulation, demonstrate the correctness and usefulness of our
analytical conclusions.

The rest of the paper is organized as follows. In Section II,
we discuss the relation between our work and prior works.
In Section III, we describe the system model. In Section
IV, we present our contributions in handoff rates derivations.
In Section V, we discuss the optimal tier selection scheme
considering both the handoff rates and the data rate. In Section
VI, we present empirical study with the Yonsei Trace as well
as simulation. Finally, conclusions are given in Section VII.

II. RELATED WORKS

Classical mobility modeling and management techniques
are limited to homogeneous single-tier networks [13], [14],
which do not concern vertical handoffs or tier selection intro-
duced by HWNs. In the following, we present prior related
works mainly focusing on HWNs.

A. Mobility Modeling Based on Queueing Systems

One common category of previous works employ queueing
systems to model HWNs. In this case, cells are modeled as
queues, active users are modeled as units in the queues, and
handoffs correspond to unit transfers among queues. Ghosh
et al. [15] studied the single-cell scenario using an M/G/∞
queue. Kirsal et al. [16] studied one WLAN cell overlaying
one 3G cell, and a two-queue model is proposed accordingly.
For multicell scenarios, queueing network models have been
employed in [17], [18], [19], [20], [21], [22]. However, none
of these works explicitly modeled the geometric patterns of
cell shapes in heterogeneous networks.

B. Geometric Pattern Study

In order to characterize the geometric patterns of network
topologies, a second category of works model the shape
of cells, mostly in non-random regular grids. Zonoozi and
Dassanayake [23] modeled a one-tier cellular network as a
hexagonal grid. Anpalagan and Katzela [24] studied a two-
tier network by modeling small-cells as hexagons, and each
macrocell as a cluster of neighbouring small-cells. Shenoy and
Hartpence [25] studied a two-tier network by modeling WLAN
small-cells as squares, and macrocells as larger squares, each
covering 5×5 WLAN cells. Hasib and Fapojuwo [26] studied
a two-tier cellular network including one hexagonal macrocell
and a predetermined N circular microcells. Lin et al. [27]
conducted a pioneering study on the user mobility in one-
tier macro cellular network considering randomly distributed
BSs. Macrocells were modeled as a standard Poisson Voronoi.
However, in [27], the authors did not consider multi-tier BSs
with different scales of cell sizes. To the best of our knowl-
edge, ours is the first work studying user mobility in multi-tier
HWNs that captures their random geometric patterns.
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C. Real-world Trace Study

Another important category of related works employ em-
pirical traces to investigate user mobility. Kotz et al. [28],
[29] studied user mobility patterns on the Dartmouth campus.
McNett and Voelker [30] characterized the mobility and access
patterns of hand-held PDA users on the UCSD campus,
and a campus waypoint model was proposed to characterize
the trace. Halepovic and Williamson [31] studied mobility
parameters such as the number of calls initiated per user,
call inter-arrival time, and the number of cell sites visited per
user, based on data traffic traces of a regional CDMA2000
cellular network. Rhee et al. [32] concluded that human walk
patterns contain statistically similar features observed in Levy
walks, based on a large daily GPS trace set accumulated in
5 different places in US and Korea. In [33], empirical study
on spatial and temporal mobility patterns of the Yonsei Trace
[12] was conducted, in order to predict users’ future position
precisely. Ficek and Kencl [34] proposed inter-call mobility
model to locate users’ position between calls based on the trace
accumulated in a trip between San Jose and San Francisco.
Baumann et al. [35] predicted user arrival and residence times
in the system through extracting important parameters from
the trace accumulated by Nokia Research.

These works based on real-world traces study are practically
valuable for system evaluation and design. However, they are
insufficient to provide in-depth analytical modeling of handoff
and data rates. In our work, we use the Yonsei Trace [12],
[33] to demonstrate the correctness and usefulness of our
theoretical results.

D. Handoff and Association Decision Algorithms

Orthogonal to the scope of this work, there is a large body of
previous works that study handoff timing algorithms, without
considering the random geometric patterns of UEs and BSs.
One type of handoff decision algorithms employ a threshold
comparison of one or several specific metrics, (e.g., received
signal strength, network loading, bandwidth, and so on) to
derive handoff decisions [36], [37], [38], [39]. Another type
uses dynamic programming (DP) [40] or artificial intelligence
techniques (e.g., fuzzy logic [41]) to improve the effectiveness
of handoff procedures. In our work, we do not explicitly spec-
ify the handoff timing. Instead, we derive handoff rates and
tier-level association decisions through stochastic geometric
analysis.

Stochastic geometric analysis has been employed to derive
tier-association decisions in HWNs [8], [9], [10], [11]. These
works assume that the UEs are randomly placed but stationary.
They focus on average performance metrics such as the
mean data throughput or outage probability. They ignore the
movement of UEs and the effect of handoffs, which are the
main focus of our work.

III. SYSTEM MODEL

A. Multi-tier Network

We consider a HWN with spatially randomly distributed K
tiers of BSs. Let K = {1, 2, . . . ,K}. In order to characterize

the random spatial patterns of BSs, we use the conventional
assumption that each tier of BSs independently form a ho-
mogeneous Poisson point process (PPP) in two-dimensional
Euclidean space R2 [8], [9], [10], [42], [43], [44], [45]. Let
Φk denote the PPP corresponding to tier-k BSs, and let λk be
its intensity.

B. Biased User Association

Different tiers of BSs transmit at different power levels. Let
Pk be the transmission power of tier-k BSs, which is a given
parameter. If Pt(x), for Pt(x) ∈ {P1, P2, . . . , PK}, is the
transmission power from a BS at x and Pr(y) is the received
power at y, we have Pr(y) =

Pt(x)hx,y

α|x−y|γ , where α|x − y|γ
is the propagation loss function with γ > 2, and hx,y is the
fast fading term. Corresponding to common Rayleigh fading
with power normalization, hx,y is independently exponentially
distributed with unit mean.

In order to capture various scales of different cell sizes,
biased user association is considered [8], [9], [10]. Given that
a UE is located at y, it associates itself with the BS that
provides the maximum biased received power as follows:

BS(y) = arg max
x∈Φk,∀k

BkPk|x− y|−γ , (1)

where BS(y) denotes the location of the BS chosen for the
UE, Pk|x − y|−γ is the received power from a tier-k BS
located at x, and Bk is the association bias, indicating the
received power preference of UEs toward tier-k BSs. Bk may
be different in different tiers, mainly because (1) different
radio access technologies may require different received power
levels, and (2) some tiers could be assigned larger values of
Bk, in order to offload data traffic from other tiers. As a
consequence, the resultant cell splitting forms a generalized
Dirichlet tessellation, or weighted Poisson Voronoi [46], an
example of which is shown in Fig. 1(a). Let T(1) denote the
overall cell boundaries, and let T(1)

kj denote the boundaries of
tier-k cells and tier-j cells, which is also referred to as type
k-j cell boundaries in this paper. Note that T

(1)
kj and T

(1)
jk

are equivalent (i.e., type k-j cell boundaries and type j-k cell
boundaries are equivalent).

Note that for B1, B2, . . . , BK , their effects remain the same
if we multiply all of them by the same positive constant.

For presentation convenience, we define βkj =
(

PkBk

PjBj

)1/γ
.

Clearly, βkj =
1

βjk
.

Let Ak denote the probability that a UE associates itself
with a tier-k BS. As derived in [8], we have

Ak =
λk(PkBk)

2
γ∑K

j=1 λj(PjBj)
2
γ

. (2)

C. UE Trajectory and Handoff Rate

We aim to study the rates of all handoff types of some
active UE moving in the network. Let T0 denote the trajectory
of the UE, which is of finite length. The number of handoffs
the UE experiences is equal to the number of intersections of
T0 and T(1), which is denoted by N (T0,T(1)). In this paper,
a handoff made from a tier-k cell to a tier-j cell is called a
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type k-j handoff. The number of type k-j handoffs is denoted
by Nkj(T0,T(1)

kj ).
If j ̸= k, a type k-j (vertical) handoff is not equivalent to

a type j-k handoff. When the UE crosses type k-j boundary,
either a type k-j or a type j-k handoff is made, depending on
the moving direction. Thus, the number of type k-j plus type
j-k handoffs is equal to the number of intersections of T0 and
T

(1)
kj , which is denoted by N (T0,T(1)

kj ). In other words, we
have N (T0,T(1)

kj ) = Nkj(T0,T(1)
kj ) +Njk(T0,T(1)

kj ).

If j = k, N (T0,T(1)
kk ) = Nkk(T0,T(1)

kk ) indicates the
number of type k-k (horizontal) handoffs.

In Section IV, we aim to study the rates of all handoff
types, which correspond to the expected numbers of handoffs
experienced by the active UE per unit time.

IV. HANDOFF RATE ANALYSIS IN MULTI-TIER HWNS

The proposed analysis of handoff rates consists of a pro-
gressive sequence of four components, which are described in
the following subsections.

A. Length Intensity of Cell Boundaries

Handoffs occur at the intersections of the active UE’s
trajectory with cell boundaries. In order to track the number of
intersections, we need to first study the length intensity of cell
boundaries T(1) (resp. T(1)

kj ), which is defined as the expected
length of T(1) (resp. T

(1)
kj ) in a unit square. Higher length

intensity of cell boundaries leads to greater opportunities for
boundary crossing, and thus higher handoff rates.

The cell boundaries T(1) is a fiber process [47] generated
by Φ1,Φ2, . . . ,ΦK . T(1) also corresponds to the set of points
on R2, where a same biased power level is received from two
nearby BSs, and this biased received power level is no less
than those from any other BSs. Mathematically, we have

T(1) =

{
x

∣∣∣∣∣∀k, j ∈ K,∃x1 ∈ Φk,x2 ∈ Φj ,x1 ̸= x2,

s.t. Pr =
PkBk

|x1 − x|γ
=

PjBj

|x2 − x|γ
, and

∀i ∈ K,y ∈ Φi, Pr ≥ PiBi

|y − x|γ

}
. (3)

Similarly, T(1)
kj can be expressed as

T
(1)
kj =

{
x

∣∣∣∣∣∃x1 ∈ Φk,x2 ∈ Φj ,x1 ̸= x2,

s.t. Pr =
PkBk

|x1 − x|γ
=

PjBj

|x2 − x|γ
, and

∀i ∈ K,y ∈ Φi, Pr ≥ PiBi

|y − x|γ

}
. (4)

Note that
∪K

k=1

∪K
j=k T

(1)
kj = T(1).
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Fig. 2. The blue bold curves show T(1); and the region within red dashed
curves shows T(2)(∆d).

Let µ1

(
T(1)

)
denote the length intensity of T(1), which is

the expected length of T(1) in a unit square1 [47]:

µ1

(
T(1)

)
= E

(∣∣∣T(1)
∩

[0, 1)2
∣∣∣
1

)
, (5)

where |L|1 denotes the length of L (i.e., one-dimensional
Lebesgue measure of L). Similarly, let µ1

(
T

(1)
kj

)
denote the

length intensity of T(1)
kj :

µ1

(
T

(1)
kj

)
= E

(∣∣∣T(1)
kj

∩
[0, 1)2

∣∣∣
1

)
. (6)

Note that we have µ1

(
T(1)

)
=
∑K

k=1

∑K
j=k µ1

(
T

(1)
kj

)
.

B. ∆d-Extended Cell Boundaries
It is difficult to directly quantify the one-dimensional

measures µ1

(
T(1)

)
and µ1

(
T

(1)
kj

)
on the two-dimensional

plane. Instead, we first introduce the ∆d-extended cell bound-
aries, which extends the one-dimensional measures to two-
dimensional measures.

The ∆d-extended cell boundaries of T(1), denoted by
T(2)(∆d) is defined as

T(2)(∆d) =
{
x
∣∣∣∃y ∈ T(1), s.t. |x− y| < ∆d

}
. (7)

In other words, T(2)(∆d) is the ∆d-neighbourhood of T(1).
A point is in T(2)(∆d) iff its (shortest) distance to T(1)

is less than ∆d, as shown in Fig. 2. Similarly, we define
T

(2)
kj (∆d) as the ∆d-extended cell boundaries of T

(1)
kj (i.e,

∆d-neighbourhood of T(1)
kj ):

T
(2)
kj (∆d) =

{
x
∣∣∣∃y ∈ T

(1)
kj , s.t. |x− y| < ∆d

}
. (8)

The area intensity of T(2)(∆d) is defined as the expected
area of T(2)(∆d) in a unit square:

µ2

(
T(2)(∆d)

)
= E

(∣∣∣T(2)(∆d)
∩

[0, 1)2
∣∣∣) , (9)

where |S| denotes the area of S (i.e., two-dimensional
Lebesgue measure of S). Similarly, the area intensity of
T

(2)
kj (∆d) is

µ2

(
T

(2)
kj (∆d)

)
= E

(∣∣∣T(2)
kj (∆d)

∩
[0, 1)2

∣∣∣) . (10)

1Because Φ1, . . . ,ΦK are stationary, T(1) is also stationary, and thus the
unit square could be arbitrarily picked on R2.
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Because Φ1,Φ2 . . . ,ΦK are stationary and isotropic,
T(2)(∆d) and T

(2)
kj (∆d) are also stationary and isotropic. As

a result, given a reference UE located at 0, the area intensity
of T(2)(∆d) (resp. T(2)

kj (∆d)) is equal to the probability that
the reference UE at 0 is in T(2)(∆d) (resp. T(2)

kj (∆d)).

µ2

(
T(2)(∆d)

)
= P(0 ∈ T(2)(∆d)), (11)

µ2

(
T

(2)
kj (∆d)

)
= P(0 ∈ T

(2)
kj (∆d)). (12)

We observe that the probabilities in (11) and (12) are
analytically tractable, which will be presented in the next
subsection.

C. Derivations of the Area Intensities

In this subsection, we present the derivations of P(0 ∈
T(2)(∆d)) and P(0 ∈ T

(2)
kj (∆d)). First, we study the proba-

bility that the reference UE at 0 is in T
(2)
kj (∆d), given that it

is associated with a tier-k BS at a distance of r0 from it. By
employing both analytic geometric and stochastic geometric
tools, we derive the following theorem:

Theorem 1: Suppose the reference UE is located at 0, it
is associated with a tier-k BS, and their distance is R. The
conditional probability that 0 ∈ T

(2)
kj (∆d) given R = r0 is

P
(
0 ∈ T

(2)
kj (∆d)|R = r0, tier = k

)
=

1− exp
(
−2λj∆dr0F(βkj) +O(∆d2)

)
, (13)

where

F(β) , 1

β2

∫ π

0

√
(β2 + 1)− 2β cos(θ)dθ. (14)

See Appendix VIII-A for the proof.
Second, through stochastic geometric tools and decondition-

ing on R, we can derive the unconditioned probabilities that
the reference UE at 0 is in T(2)(∆d) and in T

(2)
kj (∆d):

Theorem 2: The area intensities of T(2)(∆d) and T
(2)
kj (∆d)

are:
(a)

µ2

(
T(2)(∆d)

)
=P(0 ∈ T(2)(∆d))

=
K∑

k=1

λk

(∑K
i=1 λi∆dF(βki)

)
(∑K

i=1 λiβ2
ik

) 3
2

+O(∆d2).

(15)

(b)

µ2

(
T

(2)
kj (∆d)

)
= P

(
0 ∈ T

(2)
kj (∆d)

)
=


λk(λj∆dF(βkj))

(
∑K

i=1 λiβ2
ik)

3
2

+
λj(λk∆dF(βjk))

(
∑K

i=1 λiβ2
ij)

3
2

+O(∆d2) if k ̸= j,

λ2
k∆dF(1)

(
∑K

i=1 λiβ2
ik)

3
2
+O(∆d2) if k = j.

(16)

See Appendix VIII-B for the proof.

D. From Area Intensities to Handoff Rates

In this subsection, we derive handoff rates from area in-
tensities derived in Theorem 2. This involves two steps: (1)
from area intensities µ2

(
T(2)(∆d)

)
and µ2

(
T

(2)
kj (∆d)

)
to

length intensities µ1

(
T(1)

)
and µ1

(
T

(1)
kj

)
, and (2) from length

intensities to handoff rates.
First, we derive the length intensity µ1

(
T(1)

)
(resp.

µ1

(
T

(1)
kj

)
) from the area intensity µ2

(
T(2)(∆d)

)
(resp.

µ2

(
T

(2)
kj (∆d)

)
) by taking ∆d → 0. We have

Theorem 3: The length intensities of T(1) and T
(1)
kj can be

computed as follows:
(a)

µ1

(
T(1)

)
=

K∑
k=1

λk

(∑K
i=1 λiF(βki)

)
2
(∑K

i=1 λiβ2
ik

) 3
2

. (17)

(b)

µ1

(
T

(1)
kj

)
=


λkλjF(βkj)

2(
∑K

i=1 λiβ2
ik)

3
2
+

λjλkF(βjk)

2(
∑K

i=1 λiβ2
ij)

3
2

if k ̸= j,

λ2
kF(1)

2(
∑K

i=1 λiβ2
ik)

3
2

if k = j.

(18)

See Appendix VIII-C for the proof.
Remark 1: Note that, if we consider the single-tier case

by taking K = 1, we have F(1) = 4, and µ1

(
T(1)

)
=

µ1

(
T

(1)
11

)
= 2

√
λ1. This matches the length intensity of a

standard Poisson Voronoi. See Section 10.6 of [47].
Second, we can derive the expected number of handoffs of

an active UE as follows:
Theorem 4: Let T0 denote an arbitrary UE’s trajectory on

R2 with length |T0|1. Then, the expected number of intersec-
tions of T0 and T(1) (resp. T(1)

kj ) are

E
(
N (T0,T(1))

)
=
2

π
µ1

(
T(1)

)
|T0|1, (19)

E
(
N (T0,T(1)

kj )
)
=
2

π
µ1

(
T

(1)
kj

)
|T0|1, (20)

and the expected number of type k-j handoffs are

E
(
Nkj(T0,T(1)

kj )
)
=


1
2E
(
N (T0,T(1)

kj )
)

if k ̸= j,

E
(
N (T0,T(1)

kj )
)

if k = j.
(21)

Proof: T(1) and T
(1)
kj are stationary and isotropic fibre

processes with length intensity µ1

(
T(1)

)
and µ1

(
T

(1)
kj

)
re-

spectively. The proof follows the conclusions in Section 9.3
of [47].

Note that the expected number of type k-j handoffs is the
same as the expected number of type j-k handoffs, both of
which are equal to half of E

(
N (T0,T(1)

kj )
)

.
Let v denote the instantaneous velocity of an active UE,

H(v) denote its overall handoff rate (i.e., sum handoff rate of
all types), and Hkj(v) denote its type k-j handoff rate. Then
we have the following Corollary from Theorem 4:

Corollary 1:

H(v) =
2

π
µ1

(
T(1)

)
v, (22)
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Hkj(v) =

{
1
πµ1

(
T

(1)
kj

)
v if k ̸= j,

2
πµ1

(
T

(1)
kj

)
v if k = j.

(23)

Note that the above handoff rates are instantaneous rates.
Our analysis allows time-varying velocity for the UEs, in
which case the handoff rates are also time varying.

V. UE’S DATA RATE AND TIER SELECTION

Suppose that an active UE chooses only to connect to a set
of tiers S ⊂ K. We assume that 1 ∈ S (i.e., the UE always
selects tier-1 macrocells). In this section, we first study the
average downlink data rate of the UE under tier selection S.
Then, we discuss optimal tier selection taking both the handoff
rates and the data rate into consideration.

A. UE Data Rate

1) Spectrum Allocation and Coverage Probability: We as-
sume that the active UE is allocated with a spectrum band-
width of Wk if it is associated with a tier-k BS. Different
tiers of BSs are allocated separate spectrum, but BSs in the
same tier share the same spectrum [48], [49], [50]. As a con-
sequence, we need to characterize the co-tier interference in
the system, which will influence the UE’s data rate. Following
conventional wireless modeling [8], [10], [50], we assume the
UE requires a minimum Signal-to-Interference Ratio (SIR)
T . The coverage probability of the UE is defined as the
probability that its SIR is no less than T [44]. If the UE
experiences coverage probability P′ and is allocated with a
spectrum bandwidth W ′, its data rate is W ′ log(1 + T ) if its
SIR is no less than T , and its data rate is 0 if its SIR is less
than T (i.e., outage occurs). Thus, the overall data rate of the
UE is W ′ log(1+ T )P′. Note that log is in base 2 throughout
this paper. Also, we have assumed the common scenario where
the system is interference limited, such that noise is negligible.

2) Average UE Data Rate Derivation: In this subsection,
we derive the average UE data rate. An approach similar to one
proposed in [11] is used to derive a closed-form expression for
the average UE data rate. The main difference is that here a
UE may choose an arbitrary subset of the tiers. We present an
outline of the derivation for completeness. Interested readers
are referred to [11] for more details.

Following (2), the probability that the active UE associates
itself with a tier-k (k ∈ S) BS is

Ak,S =
λk(PkBk)

2
γ∑

j∈S λj(PjBj)
2
γ

. (24)

Given that the UE is associated with a tier-k BS and
their distance is d, the overall interference to it is the sum
interference from all tier-k BSs other than the BS associated
by the UE:

Ik,S(d) =
∑
x∈Φ′

k

Pkhx,0

α|x|γ
, (25)

where Φ′
k is the reduced Palm point process [8] corresponding

to all tier-k BSs other than the BS associated by the UE. It
can be shown that Φ′

k is a PPP with intensity 0 in B(0, d) and

intensity λk in R2\B(0, d), where B(x, r) denotes the disk
region centered at x with radius r [44].

The distribution of Ik,S(d) is derived through its Laplace
transform as follows:

LIk,S (d, s) = E

exp
−

∑
x∈Φ′

k

sPkhx,0

α|x|γ


=exp

(
−2πλk

∫ ∞

d

sPkr
α

sPk

α + rγ
dr

)
. (26)

Let Pcov,k,S(d) denote the conditional coverage probability
of the active UE (given k and d). Then,

Pcov,k,S(d) =P

(
PkhxB ,0

αdγ
≥ TIk,S(d)

)
=LIk,S (d, s)|s=Tαdγ

Pk

, (27)

where xB is the coordinate of the BS associated by the
UE, and |xB| = d. (27) is because hxB ,0 is exponentially
distributed. Substituting (26) into (27), we have

Pcov,k,S(d) = exp

(
−2πλk

∫ ∞

d

Tdγr

Tdγ + rγ
dr

)
t= r2

T2/γd2= exp

(
−πλkT

2
γ d2

∫ ∞

( 1
T )

2
γ

1

1 + t
γ
2

dt

)
. (28)

Note that by doing so, we are able to capture the fact that the
UE’s data rate is higher if it is closer to its serving BS.

Next, the probability density function (pdf) of the distance
between the UE and the BS associated by the UE is

fk,S(d) =
2πλk

Ak,S
d exp

−πd2
∑
j∈S

λj

(
PjBj

PkBk

) 2
γ

 (29)

=
2πλk

Ak,S
d exp

(
−πd2

λk

Ak,S

)
, (30)

where (29) is derived in [8], and (30) is by substituting (24)
into (29).

Thus, the coverage probability Pcov,k,S of the UE (given
that it is associated with a tier-k BS) can be computed as

Pcov,k,S =

∫ ∞

0

fk,S(d)Pcov,k,S(d)dd

=
1

1 +Ak,SC
, (31)

where C , (T )
2
γ
∫∞
( 1

T )
2
γ

1
1+tγ/2 dt.

Because the active UE is allocated with a spectrum band-
width of Wk if it is associated with a tier-k BS, its expected
data rate can be computed as

RS =
∑
k∈S

Ak,SWk log(1 + T )Pcov,k,S

=
∑
k∈S

Ak,SRk

1 +Ak,SC
, (32)

where Rk , Wk log(1 + T ).2

2In reality, UE’s data rate may also be influenced by its velocity. To capture
this effect, we can combine (32) with some empirical formulas (e.g., [51], [52],
[53]). The remaining part the optimal tier selection does not change after the
modification of (32).
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B. Optimal Tier Selection

Following the derivations in Section IV and V-A, we see
that different tier selections lead to different data rates and
handoff rates. Let Ckj be the cost for one type k-j handoff,
and UR be the utility value for one bit data transmission. We
assume the UE also pays service charge Pk per second when
it is associated with a type-k BS. Note that Ckj , UR, and Pk

could be assigned arbitrarily, and Ckj and Cjk may be different
if k ̸= j [6]. If the UE favors higher data rate, it could assign
a larger value for UR; if it favors lower handoff rates, it could
assign larger values for Ckj .

If the active UE’s tier selection is S, its overall average
utility on data transmission per second is URRS , overall
average service charge per second is P(S) =

∑
k∈S Ak,SPk,

and overall average expense on handoffs per second is

C(S, v) = 2

π
v
∑
k∈S

λk

(∑
i∈S

(Cki+Cik)
2 λiF(βki)

)
2
(∑

i∈S λiβ2
ik

) 3
2

, (33)

where (33) follows the conclusions of Theorem 3 and Corol-
lary 1. Consequently, the overall average utility per second of
tier selection S is

G(S, v) = URRS − C(S, v)− P(S). (34)

Finally, the optimal tier selection is

Sopt = argmax
S∈S

(
URRS − C(S, v)− P(S)

)
, (35)

where S is the set of all possible tier selections. Because the
number of tiers K is usually not high in reality (i.e., K ≤ 5),
the cardinality of S, 2K−1, is not large. Therefore, Sopt can
be derived through comparing all possible tier selections.

VI. EXPERIMENTAL STUDY

In this section, our analysis is validated via experimenting
with real-world traces and simulations.

A. Yonsei Trace Data

We use the real-world Yonsei Trace [12] to validate our ana-
lytical results. The trace was accumulated from 12 commercial
mobile phones during an 8-month period in 2011 in the city
of Seoul. An application named SmartDC had been running
on the commercial mobile phones equipped with GPS, GSM,
and WiFi. For every 2 to 5 minutes, the application collected
UE’s location information (latitude and longitude), the MAC
addresses of surrounding WiFi APs, and the cell IDs of nearby
cellular BSs they could detect. Each AP has a unique MAC
address and each BS has a unique cell ID. By analyzing the
data set, we are able to determine which APs and BSs a UE
could detect at the recorded coordinates and time instants. In
the following, we regard cellular BSs as tier-1 BSs and APs
as tier-2 BSs.
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Fig. 3. Cumulative distribution function (cdf) of the latitude and longitude.

B. Data Processing

1) Location Approximations of APs and BSs: As the data
set does not explicitly provide the latitudes and longitudes of
APs and BSs, we apply the following approach to approximate
their locations: for each AP (resp. BS), we list all the coor-
dinates recorded by UEs when they are able to detect the AP
(resp. BS). Then, we approximate the location of the AP (resp.
BS), by taking the average of these recorded coordinates.

2) Reference Region: In order to avoid the edge effect, we
define a reference region, in which most recorded coordinates
are located. The UEs’ trajectories are only accounted inside
the reference region. By plotting the cumulative distribution
function (cdf) of the latitude (resp. longitude) of all recorded
coordinates (shown in Fig. 3), we observe a sharp step
upward between 37.48◦N and 37.58◦N (resp.126.9◦E and
127.1◦E). As a consequence, we employ the rectangle defined
by 37.48◦N , and 37.58◦N , 126.9◦E, and 127.1◦E as the
reference region.

3) UE Trajectory: In the trace data, the coordinates of a UE
are recorded only once every few minutes. To recover its full
trajectory, we regard it as moving in a straight line at a constant
velocity between two consecutive recorded coordinates. Thus,
interpolations can be made to determine the coordinate of
the UE at any time. Note that only the trajectories inside the
reference region are used.

4) Handoff Rates: Through the locations of BSs and APs,
as well as the UE trajectories, we are able to derive the
empirical rates of all handoff types following the biased user
association scheme discussed in Section III-B. If we ignore
all the APs, we can also derive the empirical handoff rates for
the one-tier case.

5) BS and AP Intensities: The AP (resp. BS) density is
computed as the number of APs (resp. BSs) over the area
of the reference region, which is 455.1 unit/km2 (resp. 52.6
unit/km2). This indicates an urban area with high population
and BS densities.

C. Empirical Results

We compare the handoff rates derived from our analysis and
those from our empirical study based on the Yonsei Trace. The
empirical handoff rates are derived from the steps in Sections
VI-B1 - VI-B4. For the analytical results, we use the BS and
AP intensities shown in Section VI-B5 as input parameters.
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Fig. 4. Two-tier case: comparison of analytical and empirical handoff rates.
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Fig. 5. One-tier case: comparison of analytical and empirical handoff rates.

For the two-tier case, the comparison of analytical and
empirical handoff rates is shown in Fig. 4. For the one-tier
case (by eliminating all the APs), the comparison is shown
in Fig. 5. Both figures illustrate the accuracy of our analysis.
When the UE’s velocity is low, empirical handoff rates are
slightly greater than analytical handoff rates. This is because
the locations of APs and BSs are not strictly homogeneous
distributed (e.g., some APs and BSs are crowded along some
streets, or at the center of the urban region). We also observe
that UEs with lower velocity are more likely to be sampled in
the region with higher AP and BS densities. As a consequence,
the empirical handoff rates are higher than those expected by
our analytical results.

Fig. 4 and Fig. 5 also show that type 1-1 horizontal handoff
rates are almost the same in the one-tier and two-tier cases, but
extra type 1-2 and type 2-1 vertical handoffs are introduced in
the two-tier case. This agrees with our expectation that adding
a second tier of APs brings more vertical handoffs. In addition,
as a validation of (21), type 1-2 and type 2-1 handoff rates
are almost the same in empirical results.

D. Simulation Study

In this subsection, we present simulation results to further
demonstrate our analysis in more complex HWNs.

1) Simulation Setup: The simulation procedure is as fol-
lows: in each round of simulation, two or three tiers of BSs
are generated on a 10 km × 10 km square. Then, we randomly
generate 5 waypoints X1, . . . , X5 in the central 5 km × 5
km square (uniformly distributed). The five line segments
X1X2, X2X3, . . . , X4X5 construct the trajectory of an active
UE. In this way, we derive the simulated handoff rates in this
round of simulation. The above procedure is repeated 200
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Fig. 6. Two-tier case: handoff rates under different λ1.
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Fig. 7. Three-tier case: handoff rates under different λ2.

rounds to derive one simulated data point. Note that in this
subsection, in order to avoid overlapping in figures, we only
show the sum rate of type j-k and type k-j (k ̸= j) handoffs
for easier inspection; the individual handoff rates are half of
the sum handoff rate.

2) Handoff Rates under Different BS Intensities: We study
handoff rates under different BS intensities. Fig. 6 shows a
two-tier case, with parameters as follows: (P1, P2) = (30, 20)
dBm, (B1, B2) = (1, 1), and λ2 = 1 unit/km2. Fig. 7 shows
a three-tier case, with parameters as follows: (P1, P2, P3) =
(30, 20, 10) dBm, (B1, B2, B3) = (1, 1, 1), and (λ1, λ3) =
(1, 1) unit/km2. The parameter values γ = 3 and v = 60 km/h
are used for both Fig. 6 and Fig. 7.

Fig. 6 illustrates that increasing λ1 leads to higher type
1 − 1 handoff rate but lower type 2 − 2 handoff rate. Fig. 7
illustrates that increasing λ2 leads to higher type 2−2 handoff
rate but lower type 1 − 1 and 1 − 3 & 3 − 1 handoff rates.
Both observations suggest that increasing the BS intensity of
one tier causes higher horizontal handoff rate within this tier,
but lower handoff rates outside this tier.

3) Handoff Rates under Different Association Bias Values:
Next, we study handoff rates under different association bias
values. Fig. 8 shows a two-tier case, with parameters as fol-
lows: (P1, P2) = (30, 20) dBm, B2 = 1, and (λ1, λ2) = (1, 1)
unit/km2. Fig. 9 shows a three-tier case, with parameters as
follows: (P1, P2, P3) = (30, 20, 10) dBm, (B1, B3) = (1, 1),
and (λ1, λ2, λ3) = (1, 1, 1) unit/km2. The parameter values
γ = 3 and v = 60 km/h are used for both Fig. 8 and
Fig. 9. These figures suggest that, increasing the association
bias value of one tier has a similar effect as increasing the BS
intensity of this tier, leading to higher horizontal handoff rate
within this tier, but lower handoff rates outside this tier.
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4) UE’s Utility under Different Tier Selections: Fig. 10
shows simulated utility of an active UE under differen-
t velocity values in a two-tier case. The parameters are
as follows: (P1, P2) = (40, 20) dBm, (B1, B2) = (1, 1),
(λ1, λ2) = (1, 5) units/km2, γ = 3, (R1, R2) = (2, 5) Mbps,
(C11, C12, C21, C22) = (10, 45, 35, 20), UR = 1, T = 0.5, and
(P1,P2) = (0.1, 0.1)3. The vertical line shows the analytical
tier selection threshold on the UE velocity, which is 34.47
km/h. This figure demonstrates that the simulation results
agree with the analytical results in tier selection as discussed in
Section V. Tier selection {1, 2} is optimal if the UE’s velocity
is low, but its overall utility decreases faster due to higher
handoff expense. Tier selection {1} is optimal if the UE’s
velocity is greater than 34.47 km/h.

Fig. 11 shows simulated utility of an active UE
under different velocity values in a three-tier case. The
parameters are as follows: (P1, P2, P3) = (40, 20, 10)
dBm, (B1, B2, B3) = (1, 1, 1), (λ1, λ2, λ3) = (1, 5, 20)
units/km2, γ = 3, (R1, R2, R3) = (2, 5, 10)
Mbps, (C11, C12, C21, C22, C13, C31, C23, C32, C33) =
(10, 35, 25, 20, 45, 35, 55, 45, 30), UR = 1, T = 0.5,
and (P1,P2,P2) = (0.1, 0.1, 0.1). Two vertical lines show
the analytical tier selection thresholds, which are 32.24 km/h
and 50.70 km/h respectively. This figure again shows that
the simulation results agree with the analytical results in
tier selection. When the velocity is in the range [0, 32.24)
km/h, tier selection {1, 2, 3} is optimal; when the velocity
is in the range [32.24, 50.70) km/h, tier selection {1, 2} is
optimal; when the velocity is in the range [50.70,∞) km/h,

3Ckj is in unit utility/handoff, UR is in unit utility/Mbit, and Pk is in unit
utility/s in this section.
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Fig. 10. Two-tier case: overall utility comparison of different tier selections.
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tier selection {1} is optimal.
5) Velocity Threshold: Fig. 12 and Fig. 13 show the

computed velocity thresholds for tier selections, under
different BS densities. Fig. 12 shows a two-tier case.
The parameters are as follows: (P1, P2) = (40, 20) dBm,
λ1 = 1 units/km2, γ = 3, (R1, R2) = (2, 5) Mbps,
(C11, C12, C21, C22) = (10, 45, 35, 20), T = 0.5, and
(P1,P2) = (0.1, 0.1). Fig. 13 shows a three-tier case. The
parameters are as follows: (P1, P2, P3) = (40, 20, 10)
dBm, (B1, B2, B3) = (1, 1, 1), (λ1, λ2) = (1, 5)
units/km2, γ = 3, (R1, R2, R3) = (2, 5, 10)
Mbps, (C11, C12, C21, C22, C13, C31, C23, C32, C33) =
(10, 35, 25, 20, 45, 35, 55, 45, 30), T = 0.5, and
(P1,P2,P2) = (0.1, 0.1, 0.1).

In the two-tier case, increasing λ2 or B2 improves the
average UE data rate (as the UE has higher probability to
associate with tier-2 BSs), but it could also cause higher
handoff rates. Through our theoretical analysis, we could
observe that the latter factor has a stronger effect and the
velocity threshold value is lowered if λ2 increases; while
the former factor dominates and the velocity threshold value
increases if B2 becomes greater. In addition, increasing UR

leads to a higher weight in data rate, so the threshold values
increase.

In the three-tier case, increasing λ3 could cause a more
complicated impact on optimal tier-selection. We observe that
the tier selection {1, 2} is broken into two separate regions.
When λ3 is small, the velocity range of tier selection {1, 2}
is below the velocity range of tier selection {1, 3}, while the
former range is above the latter one when λ3 becomes larger.
Still, increasing UR leads to a higher weight in data rate, thus
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Fig. 12. Two-tier case: tier selection velocity threshold.
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Fig. 13. Three-tier case: tier selection velocity threshold.

the threshold values are increased (i.e., the dashed curves are
shifted upward compared with the solid curves).

VII. CONCLUSIONS

In this work, we provide a theoretical framework to study
user mobility in multi-tier HWNs. Through establishing a
stochastic geometric framework, we capture the irregularly
shaped network topologies introduced by the small-cell struc-
ture. Theoretical expressions for the rates of all handoff types
experienced by an active UE with arbitrary movement trajec-
tory are derived. In addition, we investigate downlink data
rate of the UE under different tier selections. Based on these
results, optimal tier selection considering both the handoff
rates and the data rate is studied. Empirical study on the Yonsei
Trace and extensive simulation are conducted, validating the
accuracy and usefulness of our analytical conclusions.

VIII. APPENDIX

A. Proof of Theorem 1

Proof: In this proof, the tier-k BS with which the ref-
erence UE is associated is referred to as the reference BS.
Without loss of generality, we assume the reference BS is
located at r0 = (r0, 0). Note that because the reference UE
receives the highest biased power level from the reference BS,
∀j ∈ K, there are no tier-j BSs located within B(0, r0

βkj
),

where B(x, r) denotes the disk region centered at x with radius
r, and B(x, r) denotes R2\B(x, r).

Let x0 = (x0, y0) denote the position of some tier-j BS
(other than the reference BS if j = k). Let T (r0,x0, βkj)
denote the trace satisfying the following condition:

T (r0,x0, βkj) =

{
(x, y)

∣∣∣∣∣ PkBk

((x− r0)2 + y2)γ/2
=

PjBj

((x− x0)2 + (y − y0)2)
γ/2

}
. (36)

Note that 0 ∈ T
(2)
kj (∆d) is equivalent to that the distance

from 0 to the trace T (r0,x0, βkj) is less than ∆d.
In the following, we discuss three cases respectively: βkj >

1, βkj = 1, and βkj < 1.
Case 1: βkj > 1.
In this case, we have

T (r0,x0, βkj) =

{
(x, y)

∣∣∣∣∣
[
x−

(
β2
kjx0 − r0

β2
kj − 1

)]2
+[

y −
β2
kjy0

β2
kj − 1

]2
=

β2
kj(r

2
0 + x2

0 + y2
0 − 2x0r0)

(β2
kj − 1)2

}
, (37)

which is a circle centered at
(

β2
kjx0−r0

β2
kj−1

,
β2
kjy0

β2
kj−1

)
with radius

βkj

√
(r20+x2

0+y2
0−2x0r0)

(β2
kj−1)

. Thus, the distance from 0 to the trace
T (r0,x0, βkj) is

d(r0,x0, βkj) (38)

=

∣∣∣∣∣∣
√

(β2
kjx0 − r0)2 + (β2

kjy0)
2 −

√
β2
kj(r

2
0 + x2

0 + y2
0 − 2x0r0)

(β2
kj − 1)

∣∣∣∣∣∣ .
Thus, 0 ∈ T

(2)
kj (∆d) iff d(r0,x0, βkj) < ∆d, or equivalent-

ly, x0 ∈ S̃kj(∆d), where

S̃kj(∆d) =
{
x0

∣∣∣d(r0,x0, βkj) < ∆d
}
. (39)

Mathematical manipulations of (39) lead to

S̃kj(∆d) =

{
(x0, y0)

∣∣∣∣∣
∣∣∣∣(x2

0 + y2
0)−

r20
β2
kj

∣∣∣∣ < ∆d

β2
kj

· (40)√
2
(
β4
kj + β2

kj

)
(x2

0 + y2
0)− 8β2

kjx0r0 + 2(β2
kj + 1)r20 +O(∆d2)

}
.

By converting (x0, y0) into polar coordinates (r, θ), (40)
becomes

S̃kj(∆d) =

{
(r, θ)

∣∣∣∣∣
∣∣∣∣r2 − r20

β2
kj

∣∣∣∣ < ∆d

β2
kj

· (41)√
2
(
β4
kj + β2

kj

)
r2 − 8β2

kjr0r cos(θ) + 2(β2
kj + 1)r20 +O(∆d2)

}
.

Note that there are no tier-j BSs located inside B(0, r0
βkj

).

Let Skj(∆d) = S̃kj(∆d)
∩
B(0, r0/βkj). As a result, 0 ∈

T
(2)
kj (∆d) iff x0 ∈ Skj(∆d), where

Skj(∆d) =

{
(r, θ)

∣∣∣∣∣r ≥ r0
βkj

and
∣∣∣∣r2 − r20

β2
kj

∣∣∣∣ < ∆d

β2
kj

· (42)√
2
(
β4
kj + β2

kj

)
r2 − 8β2

kjr0r cos(θ) + 2(β2
kj + 1)r20 +O(∆d2)

}
.
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According to (42), Skj(∆d) corresponds to a “ring” region
(shaded area) shown in Fig. 14. We can observe that ∀(r, θ) ∈
Skj(∆d), r = r0

βkj
+O(∆d). Substituting it into (42) gives,

Skj(∆d) =

{
(r, θ)

∣∣∣∣∣r ≥ r0
βkj

and (43)∣∣∣∣r2 − r20
β2
kj

∣∣∣∣ < ∆d

β2
kj

·
[
2
(
β4
kj + β2

kj

)( r0
βkj

+O(∆d)

)2

−

8β2
kjr0

(
r0
βkj

+O(∆d)

)
cos(θ) + 2(β2

kj + 1)r20 +O(∆d2)

]1/2}
,

which leads to,

Skj(∆d) =

{
(r, θ)

∣∣∣∣∣r ≥ r0
βkj

and
∣∣∣∣r2 − r20

β2
kj

∣∣∣∣ < (44)

2∆dr0
β2
kj

√(
β2
kj + 1

)
− 2βkj cos(θ) +O(∆d2)

}
.

The area of Skj(∆d) is

|Skj(∆d)| (45)

=2

∫ π

0

∫ √
r20
β2
kj

+
2∆dr0
β2
kj

√(
β2
kj

+1
)
−2βkj cos(θ)+O(∆d2)

r0
βkj

rdrdθ

=
2∆dr0
β2
kj

∫ π

0

√(
β2
kj + 1

)
− 2βkj cos(θ)dθ +O(∆d2).

Given the reference UE and BS, it can be shown that Φj
4

is a PPP with intensity 0 in B
(
0, r0

βkj

)
and intensity λj in

B (0, r0/βkj) [44]. Because P
(
0 ∈ T

(2)
kj (∆d)|R = r0, tier =

k
)

is equal to the probability that there is at least one point
of Φj in Skj(∆d) (i.e., some x0 in Skj(∆d)), we have

P
(
0 ∈ T

(2)
kj (∆d)|R = r0, tier = k

)
(46)

=1− exp (−λj |Skj(∆d)|)
=1− exp

(
−2λj∆dr0F(βkj) +O(∆d2)

)
,

which completes the proof for Case 1.
Case 2: βkj < 1. The proof is similar to that of Case 1.
Case 3: βkj = 1.
In this case, we have

T (r0,x0, 1) =
{
(x, y)

∣∣∣y0 (y − y0
2

)
= −(x0 − r0)

(
x− x0 + r0

2

)}
,

(47)

which is a line. Thus, the distance from 0 to T (r0,x0, 1) is

d(x0, r0, 1) =

∣∣∣ y2
0
2

− (r0−x0)(r0+x0)
2

∣∣∣√
(r0 − x0)2 + y2

0

. (48)

Consequently, similar to (39), 0 ∈ T
(2)
kj (∆d) if-

f d(x0, r0, 1) < ∆d, or equivalently, x0 ∈ S̃kj(∆d), where

S̃kj(∆d) =

(x0, y0)

∣∣∣∣∣∣
∣∣∣ y2

0
2

− (r0−x0)(r0+x0)
2

∣∣∣√
(r0 − x0)2 + y2

0

< ∆d

 . (49)

4If k = j, it is the reduced Palm point process [8] corresponding to all
tier-k BSs other than reference BS.
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kj r0r cos(θ) + 2(β2

kj + 1)r2
0

+O(∆d2)
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√
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kj )r2 − 8β2r0r cos(θ) + 2(β2

kj + 1)r2
0

+O(∆d2)

Fig. 14. The region (shaded part) of Skj(∆d).

After converting (x0, y0) into polar coordinate (r, θ),

S̃kj(∆d) =

{
(r, θ)

∣∣∣∣∣∣r2 − r20
∣∣ < 2∆d

√
r20 + r2 − 2r0r cos θ

}
,

(50)

which is a special case of (41) with βkj = 1. Thus, following
the same steps as (42)-(46), we can still derive (13), which
completes the proof of Case 3.

B. Proof of Theorem 2
Proof: (a) Let Ei denote the event that there is at least

one tier-i BS located in Ski(∆d). Then

P
(
0 ∈ T(2)(∆d)|R = r0, tier = k

)
=1− P

(
E1

∩
E2

∩
. . .
∩

EK

∣∣R = r0, tier = k
)

=1− exp

(
−

K∑
i=1

|Ski(∆d)|λi

)

=1− exp

(
−

K∑
i=1

2λi∆dr0F(βki) +O(∆d2)

)

=

K∑
i=1

2λi∆dr0F(βki) +O(∆d2). (51)

Furthermore, according to the results in [8], the probability
density function (pdf) of the distance between the reference
UE and the reference BS is

fk(r0|tier = k) =
2πλk

Ak
r0 exp

(
−πr20

K∑
i=1

λiβ
2
ik

)
. (52)

Also, we have P(tier = k) = Ak, thus

P
(
0 ∈ T(2)(∆d)

)
=

K∑
k=1

∫ ∞

0

P(0 ∈ T(2)(∆d)|R = r0, tier = k)
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· fk(r0|tier = k)P(tier = k)dr0

=

K∑
k=1

∫ ∞

0

2πλkr0 exp

(
−πr20

K∑
i=1

λiβ
2
ik

)

·

(
K∑
i=1

2λi∆dr0F(βki) +O(∆d2)

)
dr0

=

K∑
k=1

λk

(∑K
i=1 λi∆dF(βki) +O(∆d2)

)
(∑K

i=1 λiβ2
ik

) 3
2

, (53)

which completes the proof of (a).
(b)
Similar to (53), if k ̸= j we have

P
(
0 ∈ T

(2)
kj (∆d)

)
=

∫ ∞

0

P(0 ∈ T
(2)
kj (∆d)|R = r0, tier = k)fk(r0|tier = k)

· P(tier = k)dr0

+

∫ ∞

0

P(0 ∈ T
(2)
kj (∆d)|R = r0, tier = j)fj(r0|tier = j)

· P(tier = j)dr0

=
λk

(
λj∆dF(βkj) +O(∆d2)

)(∑K
i=1 λiβ2

ik

) 3
2

+
λj

(
λk∆dF(βjk) +O(∆d2)

)(∑K
i=1 λiβ2

ij

) 3
2

.

(54)

Otherwise, if k = j we have

P
(
0 ∈ T

(2)
kk (∆d)

)
=

λk

(
λk∆dF(1) +O(∆d2)

)(∑K
i=1 λiβ2

ik

) 3
2

, (55)

which completes the proof of (b).

C. Proof of Theorem 3
Proof: We have

µ1

(
T(1)) = lim

∆d→0

µ2

(
T(2)(∆d)

)
2∆d

(56)

=

K∑
k=1

λk

(∑K
i=1 λiF(βki)

)
2
(∑K

i=1 λiβ2
ik

) 3
2

, (57)

where (56) follows [54] and Section 3.2 in [55]. Similarly,

µ1

(
T

(1)
kj

)
= lim

∆d→0

µ2

(
T

(2)
kj (∆d)

)
2∆d

(58)

=


λkλjF(βkj)

2(
∑K

i=1 λiβ
2
ik)

3
2
+

λjλkF(βjk)

2(
∑K

i=1 λiβ
2
ij)

3
2

if k ̸= j,

λ2
kF(1)

2(
∑K

i=1 λiβ
2
ik)

3
2

if k = j.
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