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Abstract— In this paper we solve the problem of linear pre-
coding for the downlink in multiuser multiple-input multiple-
output (MIMO) systems. The transmitter and the receivers may
be equipped with multiple antennas and each user may receive
multiple data streams. Our objective is to jointly optimize the
power allocation and transmit-receive filters for all users. We
develop the optimization for two different criteria; (1) minimizing
the total transmitted power while satisfying SINR constraints and
(2) minimizing the sum mean squared error given a total power
budget. We take advantage of the duality between the uplink and
downlink to derive the solution.

I. INTRODUCTION

It is now well accepted that in wireless communications,
exploiting the spatial dimension using antenna arrays at the
transmitter and/or receiver can increase both the reliability
and data rate of a transmission. More recently, researchers
have investigated using such a multiple-input multiple-output
(MIMO) system to service multiple users. This paper inves-
tigates a multiuser MIMO system in the downlink – a single
transmitter communicating with multiple users. The system
under consideration is general with an arbitrary number of
transmit antennas and an arbitrary number of receive antennas
at each user, who may possibly receive multiple data streams.

The performance of such a multiuser system is limited by
mutual interference. Assuming knowledge of the channel state
information (CSI) at the transmitter, our objective is to find a
jointly optimal combination of power allocation and transmit-
receive filters for given criteria of optimality. We investigate
two criteria here: minimizing the total power required to meet
a Quality of Service (QoS) constraint for every data stream,
measured by the signal-to-interference plus noise ratio (SINR),
or minimizing the sum mean squared error (SMSE) between
the transmitted and received signals.

The available literature on the above optimization problem
can be classified into two different approaches. The first
approach uses block diagonalization, also known as block
channel inversion. The inter-user interference among users is
eliminated, leaving each user to deal with interference among
its own data streams. Bourdoux and Khaled [1] solve the
problem of inter-stream interference by minimizing the MSE
for each user, while Spencer et al. [2] find the optimal trans-
mit matrix to maximize the overall system throughput. The
drawback of these null-space approaches is the requirement
that the number of transmit antennas must be greater than or
equal to the total number of receive antennas.

The second approach employs iterative algorithms that re-
peatedly cycle through power control, optimizing the transmit
filter and optimizing the receive filter. This approach removes
the previously stated constraint on the number of transmit
antennas. The problem of transmitted power minimization with
SINR constraints has been comprehensively investigated in lit-
erature. Schubert and Boche [3] propose a solution to solve the
multiuser downlink problem with individual SINR constraints
in a multiple-input single-output (MISO) system, i.e., a system
where users have a single antenna. Their algorithm is based on
the duality between the uplink and the downlink, and solves
the problem iteratively in the uplink before switching to the
downlink. This solution is extended in [4] to minimizing the
SMSE. Chang et al. [5] also solve the downlink problem for
single data stream MIMO systems. However, the algorithm
diverges when some target SINR scenarios are infeasible.
In [6], Doostnejad et al. combine the proposed scheme with
dirty paper precoding and present a suboptimal solution. In our
work, we focus on linear processing methods and generalize
the scheme in [3] to MIMO systems with multiple data
stream transmission. Our proposed algorithm does not have
the drawback of diverging in some scenarios as in [5], which
allows us to examine the problem of feasibility of a set of
target SINRs.

In [7], the work by Sampath et al. on single user MIMO
systems [8] is extended to the multiuser domain using an itera-
tive joint optimization algorithm based on SMSE minimization
and a per-user power constraint. A numerical method is also
proposed that solves the problem with sum power constraint.
Serbetli and Yener [9] study the problem in the uplink with
per-user power constraint. They consider the problem of joint
transmit-receive optimization while minimizing the SMSE.
The proposed scheme allows for each user to transmit multiple
data streams. In this paper, we generalize the scheme in [4]
to MIMO systems with sum power constraint by making use
of the uplink solution in [9] and by exploiting duality.

This paper is organized as follows. Section II states the
assumptions made and describes the system model used.
Section III studies the joint optimization problem of power
minimization given a set of SINR constraints. Section IV in-
vestigates the problem of minimizing SMSE with a sum power
constraint. Simulation results are presented in Section V, and
the paper concludes with Section VI.



II. SYSTEM MODEL

Consider a single base station equipped with M antennas
transmitting to K decentralized users. User k is equipped with
Nk antennas and N =

∑K
k=1Nk. In this general setup, user

k receives Lk data streams from the base station and L =∑K
k=1 Lk. Thus we have M transmit antennas transmitting a

total of L symbols to K users, who have a total of N receive
antennas. The symbols of each user are collected in the data
vector xk = [xk1, xk2, . . . , xkLk ]T and the overall data vector
is x =

[
xT1 ,x

T
2 , . . . ,x

T
K

]T .
User k’s data streams are processed by the transmit filter

Uk ∈ CM×Lk before being transmitted over the M an-
tennas. These individual precoders together form the global
transmitter precoder matrix UM×L = [U1,U2, . . . ,UK ]. Let
the downlink transmit power vector for user k be pk =

[pk1, pk2, . . . , pkLk ]T , with p =
[
pT1 , . . . ,p

T
K

]T , and define
Pk = diag{pk} and P = diag{p}. The channel between the
transmitter and user k is assumed flat and is represented by
the Nk×M matrix HH

k . The resulting N×M channel matrix
is HH , with H = [H1, H2, . . . ,HK ] .

Based on this model, user k receives a length Nk vector

yk = HH
k U
√

Px + nk, (1)

where nk represents the additive white Gaussian noise
(AWGN) at the user’s receive antennas with power σ2; that
is, E[nkn

H
k ] = σ2INk , where E[·] represents the expectation

operator. To estimate its Lk symbols xk, user k processes yk
with its Lk ×Nk decoder matrix VH

k resulting in

x̂DLk = VH
k HH

k U
√

Px + VH
k nk. (2)

The global receive filter VH is a block diagonal decoder
matrix of dimension L×N , V = diag [V1, V2, · · · ,VK ].

We now construct a virtual uplink system that will prove
very useful when exploiting the duality between the downlink
and the uplink. Let the uplink transmit power vector for user
k be qk = [qk1, qk2, . . . , qkLk ]T , with q = [qT1 , . . . ,q

T
K ]T ,

and define Qk = diag{qk} and Q = diag{q}. The transmit
and receive filters for user k become Vk and UH

k respectively.
Fig. 1 illustrates the linear processing involved in the downlink
and the virtual uplink for user k. The received vector at the
base station and the estimated symbol vector for user k are

y =
K∑

i=1

HiVi

√
Qixi + n, (3)

x̂ULk =

K∑

i=1

UH
k HiVi

√
Qixi + UH

k n. (4)

Assume that the transmitted symbols are independent with
unit power, i.e., E[xxH ] = IL. The noise, n, is modelled as
AWGN with E[nnH ] = σ2IM . To ensure resolvability, in the
uplink and downlink, L ≤M and Lk ≤ Nk, ∀k.

Fig. 1. Processing for user k in downlink and virtual uplink.

III. POWER MINIMIZATION WITH SINR CONSTRAINTS

Let γkj be the target SINR for the jth substream of user k
and the total transmitted power be Pmax = ‖p‖1. The power
minimization problem can then formulated as

min
p,U,V

Pmax =
K∑

k=1

Lk∑

j=1

pkj (5)

subject to : SINRkj ≥ γkj .
Let ukj(M × 1) and vkj(Nk × 1) be the transmit and

receive beamforming vectors for substream j of user k
respectively, i.e., Uk = [uk1,uk2, . . . ,ukLk ] and Vk =
[vk1,vk2, . . . ,vkLk ]. Using (2), the SINR of each stream in
the downlink is

SINRDLkj = pkj
vHkjS

DL
kj vkj

vHkjT
DL
kj vkj

, (6)

where

SDLkj = HH
k ukju

H
kjHk, (7)

TDL
kj =

Lk∑

l=1,l 6=j
pklH

H
k uklu

H
klHk

︸ ︷︷ ︸
intra-user interference

+
K∑

i=1,i6=k

Li∑

m=1

pimHH
k uimuHimHk

︸ ︷︷ ︸
inter-user interference

+σ2I. (8)

In the virtual uplink, using (4), the SINR expression is

SINRULkj = qkj
uHkjS

UL
kj ukj

uHkjT
UL
kj ukj

, (9)

where

SULkj = Hkvkjv
H
kjH

H
k , (10)

TUL
kj =

Lk∑

l=1,l 6=j
qklHkvklv

H
klH

H
k

+

K∑

i=1,i6=k

Li∑

m=1

qimHivimvHimHH
i + σ2I. (11)



A. Power Allocation for Fixed Transmit-Receive Filters

In this section, we extend the results obtained in [3] from
single data stream MISO systems to multiple data stream
MIMO systems. The authors define the problem

CDL = max min
1≤k≤K,1≤j≤Lk

SINRDLkj
γkj

s.t. ‖p‖1 ≤ Pmax. (12)

If CDL ≥ 1, then the set of SINR targets is feasible.
Otherwise, we have infeasible targets and other methods
like dropping some users or lowering the SINR targets are
necessary. In [3], it is shown that for a fixed transmit filter U,
and due to CDL being monotonically increasing in Pmax, the
global optimum p achieves active SINR constraints, i.e.,

CDL =
SINRDLkj

γkj
∀ k and j. (13)

It can be easily proven that (13) still holds for the MIMO
case, when U and V are fixed. Similar to the scheme in [3],
by collecting the L equations from (13) we can construct an
eigensystem in the downlink and the virtual uplink:

Υpext =
1

CDL
pext and Λqext =

1

CUL
qext, (14)

where

Υ =

[
DΨ Dσ

1
Pmax

1TDΨ 1
Pmax

1TDσ

]
(15)

Λ =

[
DΨT Dσ

1
Pmax

1TDΨT 1
Pmax

1TDσ

]
(16)

and D = diag

{
γ11

|vH11HH
1 u11|2 , . . . ,

γKLK
|vHKLKHH

KuKLK |2

}
, pext =

(
pT 1

)T , qext =
(
qT 1

)T , σ = σ21 (where 1 is the all
ones vector of appropriate dimension), and Ψ is the coupling
matrix. Refer to Appendix A for the structure of Ψ.

The optimal power allocation (downlink and uplink) that
maximizes the SINRs satisfies (14). In other words, the best
strategy to find p (or q) is to obtain the dominant eigenvector
of Υ (or Λ). As shown in [3] and its references, this solution to
(14) yields the only positive pair (CDL,pext) or (CUL,qext).
If CDL ≥ 1, then the set of SINR targets is feasible. To
minimize the total transmit power while meeting the required
SINR targets, the power allocation policy sets SINRkj = γkj
for all L streams. The resulting power vectors are

p = σ2(D−1 −Ψ)−11 and q = σ2(D−1 −ΨT )−11. (17)

Several studies have identified an interesting duality be-
tween the uplink and the downlink. This duality states that
given a fixed transmit filter and a sum power constraint, the
same balanced SINR level is achieved in both directions, i.e.,
CDL = CUL. In [6], the authors extend the duality proof from
MISO to MIMO systems with dirty paper precoding. We use
a similar approach to state the following theorem:

Theorem 1: With linear processing matrices U at the base
station and V over all users, and ‖p‖1 = ‖q‖1, CDL = CUL.

Proof: See Appendix A.
Consequently, for a fixed U, V and Pmax, there exist

downlink/uplink power allocations p and q such that ‖p‖1 =
‖q‖1 = Pmax, and SINRDLkj = SINRULkj for all L streams.
This remarkable result is very useful to our problem since
it allows us to solve the optimization problem in either the
downlink or the virtual uplink.

B. Transmit-Receive Filters for Fixed Power Allocation
We now investigate the reverse problem; assuming a fixed

power allocation p and q, we are interested in finding the
optimal transmit-receive filters U and V. Examining (6), we
observe that in the downlink, and for a fixed U, SINRDLkj is a
function of vkj and is independent of all other receive beam-
formers. Hence, the receive beamformers can be optimized
independently such that voptkj = arg maxvkj SINR

DL
kj =

êmax(SDLkj ,T
DL
kj ), where êmax(A,B) is the dominant gen-

eralized eigenvector of the matrix pair (A,B). Equivalently
in the uplink, for a fixed V, uoptkj = êmax(SULkj ,T

UL
kj ). Note

that this solution is equivalent to the MMSE filter due to the
fact that SULkj and SDLkj are rank-1 matrices.

The proposed algorithm, summarized in Table I, optimizes
each variable by fixing the other variables, and iterating be-
tween the uplink and the downlink. Unlike the algorithm in [5],
this algorithm does not diverge even if the set of target SINRs
is infeasible, such as in the case when M < K. Convergence
is ensured by using an initial power control policy in (14) that
accounts for infeasibility, i.e., when CDL = CUL < 1.

TABLE I
POWER MINIMIZATION ALGORITHM

Initialization: C = 0,U = [1, . . . ,1] and p = (Pmax/L) [1, . . . , 1]T

Iteration:
1- Downlink Receive Beamforming (for k = 1 : K, j = 1 : Lk)

vkj = êmax(SDLkj ,T
DL
kj )

vkj = vkj/‖vkj‖
2- Virtual Uplink Power Allocation

If C < 1
solve Λqext = 1

λmax
qext, let C = 1/λmax

else
q = σ2(D−1 −ΨT )−11

3- Virtual Uplink Receive Beamforming (for k = 1 : K, j = 1 : Lk)
ukj = êmax(SULkj ,T

UL
kj )

ukj = ukj/‖ukj‖
4- Downlink Power Allocation

If C < 1
solve Υpext = 1

λmax
pext, let C = 1/λmax

else
p = σ2(D−1 −Ψ)−11
Pmin = ‖p‖1

5- Repeat steps 1-4 until convergence

IV. SMSE MINIMIZATION WITH POWER CONSTRAINT

We now address the popular problem of minimizing the sum
mean squared error. This problem is solved in a computation-
ally intensive manner using sequential quadratic programming
(SQP) in [7]. Let EDL

k be the Lk×Lk error covariance matrix
of user k in the downlink, where

EDL
k = E

[
(x̂k − xk)(x̂k − xk)H

]
. (18)



The diagonal entries of EDL
k are the MSEs of the Lk

substreams of user k and thus SMSEDLk =tr[EDL
k ], where tr[·]

is the trace operator. The SMSE minimization problem is

min
p,U,V

K∑

k=1

tr[EDL
k ] (19)

subject to : ‖p‖1 ≤ Pmax.
The authors of [4] solve the same problem for MISO

systems. They prove that under a total power constraint,
for a given U, the uplink and the downlink have the same
normalized MSE achievable region. We extend these results to
MIMO systems with possibly multiple data streams per user:

Theorem 2: For a given U, V and Pmax, there exist power
allocations p and q such that MSEULkj = MSEDLkj , where
MSEkj is the MSE of the jth substream of user k.

Proof: See Appendix B.
We can therefore solve problem (19) in the virtual uplink

and transform the resulting transmit-receive filters to the
downlink. Using (4) and expanding (18) in the virtual uplink,
the resulting error covariance matrix of user k is

EUL
k = UH

k HVQVHHHUk + σ2UH
k Uk + ILk

−UH
k HkVk

√
Qk −

√
QkV

H
k HH

k Uk. (20)

The optimum uplink MMSE receiver is

UMMSE
k = J−1HkVk

√
Qk, (21)

where J = HVQVHHH + σ2IM . (22)

⇒ EUL,MMSE
k = ILk −

√
QkV

H
k HH

k J−1HkVk

√
Qk. (23)

The sum MSE of the whole system is therefore

SMSE =

K∑

k=1

tr[EUL,MMSE
k ] = L−M + σ2tr[J−1]. (24)

The SMSE expression in (24) is a function of two variables;
uplink power allocation Q and uplink global transmit filter V.
We first assume that V is fixed. Therefore, minimizing SMSE
is equivalent to minimizing the trace of J−1. The resulting
optimization problem is convex in Q [4], making it relatively
easy to solve:

Qopt = arg min
Q

tr[J−1], subject to tr[Q] = Pmax. (25)

The next step is to optimize V for a fixed power allocation
Q. The authors of [9] propose a scheme for calculating V
given per-user power constraints. Similarly, we are interested
in generalizing the scheme to allow for a sum power constraint.
Using the matrix inversion lemma,

J−1 = J−1
kj − qkj

J−1
kj Hkvkjv

H
kjH

H
k J−1

kj

1 + qkjvHkjH
H
k J−1

kj Hkvkj
, (26)

where Jkj = J− qkjHkvkjv
H
kjH

H
k . (27)

If we substitute (26) in (24), we get

SMSE = Wkj − σ2
vHkj(H

H
k J−2

kj Hk)vkj

vHkj(I/qkj + HH
k J−1

kj Hk)vkj
, (28)

where Wkj contains all the terms independent of the beam-
forming vector vkj [9]. Thus the optimal vkj , which mini-
mizes SMSE for a given power allocation when the beamform-
ring vectors of all other streams are fixed, is the dominant gen-
eralized eigenvector of the matrix pair (HH

k J−2
kj Hk, I/qkj +

HH
k J−1

kj Hk). Note that while each step of the iteration is
optimal, it is not guaranteed that the algorithm will converge
to the globally optimal solution.

TABLE II
SMSE MINIMIZATION ALGORITHM

Initialization: Vk = SVD(Hk) and q = (Pmax/L) [1, . . . , .1]T

Iteration:
1- Virtual Uplink Transmit Beamforming (for k = 1 : K, j = 1 : Lk)

vkj = êmax(HH
k J−2

kj Hk, I/qkj + HH
k J−1

kj Hk)

vkj = vkj/‖vkj‖
2- Virtual Uplink Power Allocation

q = arg minq tr[J−1], subject to qkj ≥ 0, ‖q‖1 = Pmax
3- Repeat 1-2 until oldSMSE − newSMSE < ε
Update:
4- Downlink Transmit Beamforming (for k = 1 : K)

Uk = J−1HkVk
√

Qk

5- Set target SINR to actual SINR (for k = 1 : K, j = 1 : Lk)
γkj = SINRULkj

6- Downlink Power Allocation
p = σ2(D−1 −Ψ)−11

In the initialization step above, SVD refers to singular value
decomposition.

The proposed algorithm in Table II first solves the problem
iteratively in the virtual uplink and then transfers the filters
to the downlink. The initialization step starts with the uplink
power allocation Q by distributing Pmax evenly among all
data streams. Vk = SVD(Hk) indicates that the Lk dominant
right singular vectors of Hk (corresponding to the Lk largest
singular values) are used to initialize Vk. The next step
involves optimizing V and Q iteratively. Each iteration begins
with optimizing V for the previous power allocation Q,
where the optimum vkj of every stream is found using the
dominant eigenvector method. After the beamforming vectors
of all streams are found, power allocation is made by solving
the convex optimization problem (25). The iterative step is
executed repeatedly until SMSE converges to its final value.
The downlink transmit filter U is then found using the MMSE
receiver (21). Finally, the algorithm exploits duality by setting
γkj = SINRULkj , which leads to CDL = CUL = 1. The last
step finds p, the downlink power allocation, using (17).

V. NUMERICAL EXAMPLES

In this section we illustrate the performance of the proposed
algorithms. The channel is modelled as Rayleigh with the
channel matrix H comprising independent and identically
distributed (iid) samples of a complex Gaussian process with
zero mean and unit variance. The examples use a noise
variance of σ2 = 1. The transmitter is assumed to know the
channel perfectly.

Fig. 2 examines the power minimization algorithm for
different scenarios. The figure plots the minimal transmitted
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power required to satisfy the same SINR constraint γ for
all K users. The example uses M = 8 transmit antennas.
Every user is equipped with Nk = 2 antennas and receives
Lk = 2 data streams. The maximum available power is set
fixed at Pmax = 43dBm (setting the level for infeasibility). As
expected, increasing either the SINR targets or the number of
users requires an increase in the minimum total power needed
to successfully complete the transmission. We also notice that
the scenario becomes infeasible when K ≥M and γ > 0dB,
but the proposed algorithm doesn’t diverge as the case in [5].

In Fig. 3, we plot C versus the total transmission power
Pmax, where C = CUL = CDL is the optimally balanced
level of actual to target SINRs. The figure shows C for varying
numbers of transmit antennas M . As stated previously, the
target SINRs (γ =1dB) can only be achieved for a given Pmax
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Fig. 4. BER vs. SNR for SMSE minimization.

if C ≥ 1. From the figure, we notice that for M ≥ K, the
SINR targets are feasible; i.e., there exists a total power Pmax
that satisfies γ. We notice that as the number of users in the
network increases, it becomes more difficult to achieve desired
targets for all the users. When the scenario is infeasible, the
network has either to drop some users and try to optimize the
link again, or the target SINRs have to be relaxed.

Finally, Fig. 4 plots the average bit error rate (BER)
versus signal-to-noise ratio (SNR) for the SMSE minimization
algorithm, where SNR=Pmax/σ2. The figure also plots the
BER when using the SQP approach of [7]. The simulated
system has K = 2 users, receiving L1 = 2 and L2 = 1 data
streams respectively. Both users are equipped with Nk = 2
antennas each. The figure shows that the proposed algorithm
achieves an almost identical performance in BER to the SQP
algorithm which suffers from being computationally intensive.
However, our algorithm’s implementation suggests that the
iterative approach has a computational complexity an order-
of-magnitude lower than the SQP algorithm.

VI. CONCLUSIONS

We have proposed a solution to the problem of joint
beamforming and power allocation in the downlink of mul-
tiuser MIMO systems, in the most general setting of multiple
transmit antennas and multiple users with possibly multiple
receive antennas receiving possibly multiple data streams. We
proposed an algorithm to find the optimal combination of
transmit-receive filters and transmission powers to minimize
the total transmitted power while satisfying individual SINR
targets for each data stream. The second goal was to find the
same combination that minimizes the sum mean squared error
under a total power constraint. Both solutions are based on
uplink-downlink duality.



VII. APPENDIX

Without loss of generality, we simplify the proof by trans-
forming the system from one having K users with Lk data
streams each into a system having L virtual users with single
data stream each. The transmit and receive filters become
UM×L = [u1 u2 .. uL] and VN×L = diag{v1, v2,.., vL}.

A. Proof of Uplink-Downlink Duality for SINR

Define the coupling matrix Ψ such that

[Ψ]ik =

{
|vHi HH

i uk|2 = |uHk Hivi|2 k 6= i
0 k = i. (29)

It has been shown (see [10]) that for the set of SINR con-
straints to be achievable in the downlink, λmax(DΨ) < 1,
where λmax(.) is the maximum eigenvalue operator. Similary,
λmax(DΨT ) < 1 guarantees achievability in the uplink.
The authors in [11] prove that λmax(DΨ) = λmax(DΨT ).
Consequently, the SINR achievable region is the same for the
uplink and the downlink, with power allocations q > 0 and
p > 0 respectively. Using (17) we write

‖q‖1 = 1Tq = σ21T (D−1 −ΨT )−11

= σ21T (D−1 −Ψ)−11 = 1Tp = ‖p‖1.
With the total power in the uplink and the downlink being
identical, the SINR targets are achieved and CDL = CUL.

B. Proof of Uplink-Downlink Duality for MSE

Along the same lines of the proof presented in [4] for
MISO systems, we generalize the MSE duality to systems with
multiple antennas at the receiver. In what follows, we adopt
the notations ṽi and ũi for the MMSE receive beamforming
vectors in the downlink and the uplink respectively, where

ṽi = (HH
i UPUHHi + σ2I)−1HH

i ui
√
pi, (30)

ũi = (HVQVHHH + σ2I)−1Hivi
√
qi. (31)

Also let vi = ṽi/‖ṽi‖ and ui = ũi/‖ũi‖. We write the
MSE expressions for user i in the downlink and the uplink
respectively:

εDLi = ṽHi HH
i UPUHHiṽi + σ2‖ṽi‖2 + 1

−√piṽHi HH
i ui −

√
piu

H
i Hiṽi, (32)

εULi = ũHi HVQVHHH ũi + σ2‖ũi‖2 + 1

−√qivHi HH
i ũi −

√
qiũ

H
i Hivi. (33)

Setting SINRDLi = SINRULi , we can prove by simple
mathematical manipulation that when ‖ṽi‖ = β/

√
pi and

‖ũi‖ = β/
√
qi, where β is a scalar, we have εDLi = εULi .
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