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Abstract— Given limitations with current technology, nodes
in a sensor network have stringent energy and complexity
constraints. This paper presents a scheme for cooperative error-
control coding, using rateless and low-density generator-matrix
codes, for sensor networks. Assuming knowledge of the source-
relay channel quality, we use density evolution to show that the
proposed scheme achieves good performance and a good energy
tradeoff despite low computational complexity. The scheme
exploits the flexibility of rateless codes to permit, depending on
the channel conditions, independent, relay and cooperative modes
of operation. As a motivating example, we analyze networks of
two cooperating nodes communicating with a more sophisticated
receiver. We also discuss the generalization of our framework to
a multi-node system.

I. I NTRODUCTION

A sensor networkis a system in which distributed sensors
take local measurements of a phenomenon and form a network
to share their information, or to transmit it to some central
authority. Such networks have a wide variety of potential
applications, from wildlife monitoring [1] to load monitoring
in structures [2]. Many of these applications require the
network to be unobtrusive and ubiquitous, and to function
with little or no maintenance. Nodes, therefore, must be as
small, inexpensive, and efficient as possible, though the data
sink (receiver) may be quite sophisticated.

In the literature, an important strategy for efficient commu-
nication in a network uses the relay channel [3], in which a
transmitter is assisted by intermediate transceiver in sending a
message, where the transceiver has no message of its own to
send. This idea can be generalized to cooperative diversity [4],
in which two (or more) transmitters assist each other in
sending their messages to a common receiver. This idea has
been developed for wireless ad-hoc and sensor networks.
In [5], cooperative diversity was combined with error-control
coding as a more flexible strategy than merely repetition by
the partner while in [6], the two component codes of a Turbo
code were split up between two relaying nodes, and used to
implement a distributed Turbo code.

It is notable that much current research in sensor network
communication, including research cited above, ignores the
computational limitations of the deployed sensor nodes. For
instance, many proposed schemes for sensor networking, such
as [7], rely on the capability of the sensor node to decode
complicated error-control codes, such as LDPC codes. Even
the encoding of such codes requires relatively high complexity,

large amounts of memory, or both. If the true gains of
error-control coding are to be achieved in practical sensor
networks, it will be necessary to find powerful codes that
are simple to encode, and relay schemes that can operate
without intermediate decoding. In this regard, the proposal
in [8], though using a simplistic code, is interesting for its
simplicity of encoding.

Another challenge for sensor nodes is to ensure reliable
communication in channels with widely varying qualities. In
order for a sensor’s signal to be discerned successfully, a
sufficient amount of energy must arrive at a receiver. With
a traditional error-correcting code, since the block length (and
hence the transmission time, for fixed symbol rate) is fixed,
this may be done by changing the transmitted power. However,
there has recently been much interest inrateless codes, such
as Luby transform (LT) codes [9], which can vary their block
length to adapt to any channel condition. Rateless codes also
have the appealing property the encoding process is extremely
simple. Rateless codes have recently been proposed for relay
channels [7], though in a manner that greatly increases the
complexity and requires intermediate decoding at the relay.
These codes are very similar tolow-density generator-matrix
(LDGM) codes, which are easy to encode, at the expense of
some performance as compared to LDPC codes [10]. In fact,
one may think of an LDGM code as a rateless code where the
rate is fixed in advance.

The main contribution of this paper is a low-complexity
error-control coding and cooperation scheme based on rateless
and LDGM codes. The proposed system is unique in the
literature in that it has been expressly designed with flexibility
and simplicity in mind, and should be usable on contemporary
sensor networking hardware. We are most interested in using
rateless codes in the relay as a tool to improve efficiency –
that is, using the extra information provided by the code and
the relay to reduce the computational or energy burden at each
of the sensors. Of work in the literature, our approach is most
similar to [6]–[8]. However, unlike [6], [8], we provide the
flexibility of an inherently variable rate to match a wide range
of possible channel conditions, and the use of the relay is not
mandatory to gain the benefit of the full code. Furthermore,
our approach has a much lower computational burden than the
one proposed in [7]. We point out that Turbo encoding, such
as suggested in [6], is relatively simple, and that much work
has been done on reducing the complexity of LDPC encoding



(such as [11]), but LDGM encoding is extremely simple, and
neither of these existing codes can be used ratelessly.

The remainder of the paper is organized as follows. In
Section II, we introduce our system model and motivating
example. In Section III, we discuss the use of rateless and low-
density generator-matrix codes, and show the modifications
required to operate in our framework. In Section IV we
analyze our system with density evolution, and show how our
framework can be generalized beyond two nodes. Finally, in
Section V, we present some preliminary results found using
density evolution.

II. SYSTEM MODEL

We are concerned with sensor networks that transmit their
measurements to a central authority, i.e., the sensor network
is composed of several sensors and one information sink. The
sensors are equipped with simple two-way digital radios, and
are capable of computational tasks of limited complexity. The
energy resources of the sensors are also limited, and the most
energy-intensive task of the sensor is assumed to be wireless
transmission; all other tasks are assumed to have negligible
energy cost. On the other hand, the information sink is con-
sidered to have effectively unlimited power and computational
resources. The task of the sensors is to communicate their
measurements as accurately as possible to the sink.

Since reception is far more energy efficient than transmis-
sion, it makes sense for the sensors to cooperate with each
other in transmitting their measurements. However, we assume
that the constrained computing resources of the sensors will
be fully occupied withencoding an error-correcting code.
Decoding the relayed transmission is assumed to be beyond
the sensor’s abilities.

As the motivating example of this paper, consider the
system in Fig. 1, with two sensors, numbered 1 and 2. Let
x1 ∈ {0, 1}k represent thek-bit binary information sequence
observed by sensor 1, andx2 ∈ {0, 1}k the k-bit information
sequence observed by sensor 2. Because it observes part of
sensor 1’s transmission, sensor 2 may use part of its transmis-
sion to act as a relay for channel 2. The vector of transmitted
bits sent by sensors 1 and 2 arex1 andx2, respectively; the
binary vectors received at the sink from sensors 1 and 2 are
y1 andy2, respectively. The transmission received by sensor
2 from sensor 1 isyc. The links from sensors 1 and 2 to the
information sink are binary symmetric channels (BSCs) with
crossover probabilitiesp1 andp2, respectively; while the cross-
link from sensor 1 to 2 is a BSC with crossover probabilitypc.
This scenario is depicted in Fig. 1. Our scheme need not be
restricted to two sensors; in Section IV-B we briefly discuss
the generalization of our scheme to larger sensor networks.

For ease of analysis, we assume that only sensor 2 acts as a
relay, but this assumption may be relaxed. The assumption of
BSCs from the sensors to the destination simplifies the analysis
- in the final version of the paper we will show results where
these channels are Gaussian. However, the assumption that the
cross-link is a BSC is appropriate for our relay strategy, since
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Fig. 1. Schematic of the system model. Each link is a BSC with the indicated
crossover probability.
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Fig. 2. System modes of operation. Clockwise from top left: independent;
relay; cooperative.

the relay would make a hard decision rather than attempting
to encode a continuous Gaussian value.

As illustrated in Fig. 2, three possible system architectures
are considered in this paper:independent transmission, in
which relays are not used;relay transmission, in which sensor
2 has no information of its own, and only acts as a relay
for sensor 1; andcooperative transmission, in which sensor
2 splits its transmission between relaying for sensor 1 and
transmitting its own information.

III. LDGM AND RATELESSCODES

A. Single rateless and LDGM codes

A rateless code is a code in which an information sequence
x is mapped into a semi-infinite sequencew, so that any prefix
of w is a codeword of a good error-correcting code. Such



codes are called rateless because they have no pre-determined
rate, and the prefix property implies that the code can be
terminated at will (for example, when an acknowledgment
is received). An LDGM code is a linear code in which the
generator matrix,G, is sparse. The block length, and hence
the rate, of an LDGM code is fixed. In this paper, we restrict
ourselves to systematic LDGM codes, so that the generator
matrix has the form

G = [I P] ,

whereP is called theparity generator matrix, andP must be
sparse.

The rateless code that we use is related to the LT code [9];
codes of this type are also related to LDGM codes. In a LT
code, for 1 ≤ i ≤ ∞, the encoded bitwi is obtained by
forming an even parity of a random subset ofx (of size
ui), chosen uniformly from all possibilities. More formally,
let N = {1, 2, . . . , k} represent an index set, letNi ⊆ N
represent a subset ofN such that|Ni| = ui, and let σi :
{1, 2, . . . , ui} → Ni be an arbitrary bijective mapping. Letpi

be a binary row vector of lengthk such thatpi,j = 1 if j ∈ Ni

andpi,j = 0 otherwise. Then

wi = xpT
i ,

where the superscriptT represents transposition. For any fixed
length n, the rateless codeword may thus be represented as
w(n) = xP(n), wherew(n) represents the firstn bits of w,
and the parity generator matrixP(n) is given by

P(n) =


p1

p2

...
pn


T

.

If ui is usually small, thenP(i) is sparse. Thus, we define a
systematic rateless code as a sequence of systematic LDGM
codes with parity generator matrices{P(1),P(2), . . .}.

With simplicity of the encoder in mind, we propose using
a single value for every check degree, i.e.,ui = u a constant,
∀i. It is known that LT codes achieve the Shannon capacity
of every erasure channel, though no degree distribution exists
to achieve the capacity of every channel with symmetric noise
(such as the AWGN channel) [12].

Consider some properties of this LT code. First, the parity
check matrix is given by

H(n) =
[
(P(n))T I

]
, (1)

which is a low-density matrix sinceP(n) is sparse. As with
a standard low-density parity-check matrix, this code can be
represented on a factor graph, as in Fig. 3. Second, consider
the column Hamming weight ofP(n), which gives the degrees
of the information variable nodes in the factor graph. Since the
subsetsNi are selected uniformly at random from all possible
subsets of sizem, the variable node degrees are also random.

Parity check bits

by gi

Connections given

Information bitsx

Fig. 3. Factor graph representation of a rateless code.

If k andn are asymptotically large, it is easy to see that these
degrees have a Poisson distribution with parameterν, where

ν = u

(
n− k

k

)
.

As a result of the Poisson distribution, some of the rows of
the generator matrix must have low weight, so such a code
has poor minimum distance properties. Thus, it is known that
LDGM codes suffer from high error floors, which can be
mitigated by concatenation of two such codes [10]. Further,
it is known that unmodified rateless codes in noisy channels
suffer from error floors [13]. However, the concatenation
strategy introduces extra complexity, and makes it difficult
to use the codes without a fixed rate. In Section V, we
will present results to show that, for practical code rates and
channels, the error floors might not present a problem.

Since the parity check matrixH(n) from (1) is sparse,
decoding of the rateless code may be accomplished using
the sum-product algorithm over the factor graph [14]. This
algorithm is now well established; we omit the details and
direct the reader to the reference.

B. Rateless codes in relaying and cooperation

We now discuss the impact of relaying on the rateless coding
scheme. As mentioned previously, we do not wish the relaying
node to make any attempt to decode the code. Instead, we wish
the relay to directly incorporate the noisy observations of its
neighbor into its information string.

In our proposed scheme, the first sensor encodes its symbols
in a systematic code and transmits them. The second sensor
observes the first sensor’s transmission, or a fraction thereof.
Let w1 represent the transmitted sequence from sensor 1, and
let yc represent the received sequence at sensor 2, so that

yc = w1 ⊕ z, (2)

where⊕ represents componentwise mod-2 addition, andz
represents a binary noise sequence.
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Fig. 4. Linkage between information symbols in the relay factor graph.
These nodes connect the two rateless code factor graphs.

In relay mode, where sensor 2 has no information of its own
to send, its information sequencex2 is formed by selecting
k elements fromyc, including both systematic and parity
bits. In the cooperative, joint transmission mode, we more
generally defineε as the fraction ofx2 devoted to relaying
as opposed to sending independent information. Thus,x2 is
composed ofk(1− ε) bits of independent information andkε
bits selected fromyc (again, either all systematic observations,
or a mixture). A codeword is formed from the information
vectorx2 using a rateless or LDGM code, in the same manner
as for the first sensor. Notice that settingε = 0 corresponds
to independent transmission, andε = 1 corresponds to the
case of relayed transmission, with all settings in between
corresponding to cooperative transmission.

Decoding is slightly more complicated in the relay case,
but still relies on passing messages with the sum-product
algorithm. The information sequencesx1 andx2 are encoded
as described in the previous section, so these variables are
connected to factor graph structures similar to Fig. 3. However,
these information sequences are themselves correlated random
variables, and are therefore connected with a factor graph
structure. For example, sensor 1 transmitsw1,i (which includes
x1 since the code is systematic), and sensor 2 observesyc,i.
This symbol is then included inx2 asx2,j . From (2),x2,j =
w1,i ⊕ zi. Since we can writePr(x2,j = w1,i) = Pr(zi = 0),
x2,j andw1,i are correlated random variables. Thus, the two
rateless code factor graphs are connected with structures as
depicted in Fig. 4.

Messages passed through the connecting node are obtained
simply from the sum-product algorithm. The messages that
arrive at the connecting node represent thea posterioriprob-
abilities of each symbol connected to it. For example, the
message from the connecting node to the node representing

x2,j in Fig. 4 would be given as a log-likelihood ratio by

` = log

∑
w1,i∈{0,1} pX2,j ,W1,i

(x2,j = 0, w1,i)pW1,i
(w1,i)∑

w1,i∈{0,1} pX2,j ,W1,i
(x2,j = 1, w1,i)pW1,i

(w1,i)
,

(3)
where pW1,i

(w1,i) represents thea posteriori probability of
w1,i. A similar calculation is performed for the message in
the reverse direction.

C. A note on encoder complexity

Our primary motivation in proposing these codes is the low
complexity with which they can be encoded. In this section,
we justify our assertion that the encoder is computationally
simple.

There are two computational tasks involved in encoding a
linear code:

1) Storing the information string; and
2) For each column of the generator matrixG, calculating

wi = xgT
i .

The first task requires random-access memory equal to the
length of the information string. For the second task, we delib-
erately formulated the sequence of parity generator matrices
{P(1),P(2), . . .} so that each parity check was generated by
selecting variables at random. As a result, instead of storing a
generator matrix, we can implement a pseudo-random number
generator with a known seed, selecting elements ofx pseudo-
randomly and taking their mod-2 sum. A pseudo-random
number generator can be implemented simply using a finite-
state machine. To reduce the complexity further, we maintain
the same check degreeu for all parity checks, so the length of
every mod-2 sum is the same. Furthermore, note that the bits
wi need not be stored beyond timei, as they can transmitted
immediately.

Clearly, these hardware requirements are not particularly
strenuous; or alternatively, on a general-purpose microcon-
troller, these tasks could be implemented in a straightforward
manner in assembly language.

IV. A NALYSIS AND DISCUSSION

A. Density evolution

We analyze the proposed system usingdensity evolu-
tion [15], which is a method for analyzing message-passing
decoders for linear codes with sparse parity-check matrices.
Messages passed within the factor graph are functions of
random observations of a codeword, and thus are themselves
random variables. Density evolution tracks the probability
density functions (PDFs) of all the messages passed within
the factor graph, and assumes (for the sake of tractability)
that all the previous messages passed through the graph
that contribute to the calculation of a current message are
statistically independent. For LDGM and rateless (as well as
LDPC) codes, it is easy to show that this assumption becomes
asymptotically correct as the number of information symbols
approaches∞. Moreover, the performance at shorter block
lengths is usually similar to the asymptotic performance.



The message calculations performed at the parity check
and variable nodes within the rateless code’s factor graph
are identical to those performed in an LDPC factor graph,
for which density evolution is well known. For example, at a
variable node, the outgoing message` along a particular edge
is the sum of all the incoming messagesmi along the other
edges, i.e.,

` =
dv−1∑
i=1

mi,

where dv is the degree of the variable node. Under the
assumption that the incident messages are all independent, the
message PDF is given by

fL(`) = fM1(m1) ? fM2(m2) ? . . . ? fMdv−1(mdv−1),

where ? represents convolution. The PDF transformation at
parity check nodes is tedious to describe, though not concep-
tually difficult, and the reader is directed to [15] for the details.

As we noted in the previous section, when the system
is operating in relay mode, there exist connecting nodes in
the factor graph that depict the relationship between infor-
mation variables and relay variables. Since such nodes are
not generally found in LDPC decoding, we need a new PDF
transformation in order to implement density evolution for the
relay case. The message calculation is given in (3), and is
a simple mapping from a scalar to a scalar. There are many
possible ways to calculate the resulting PDF transformation,
but in our case, we quantize the PDF, then perform the
message calculation in (3) for each quantized point, and form
a histogram of the results.

B. Generalization to larger networks

It is quite easy to extend the method proposed here to a
large sensor network, so long as the sensors were constrained
to operate through at most one relay, and so long as all nodes
in the network are able to communicate directly with the
receiver. In that case, the complication would be to find a
useful assignment of sensors and relays.

In a large network that disposed of these constraints, there
are examples of interesting features that could be found. Here
we describe two of them and indicate how they could be
included in our framework, which involve minor changes to
the factor graph at the receiver:

• Multiple relays. In a multiple relay, more than one
relay node is used to convey information from source
to destination. The multiple relays, numberedr =
{2, 3, . . . , rmax}, would be represented by multiple vari-
ablesxr,j correlated withw1,i, obeying the relation (2).
If each of the relays were protected by an LDGM or
rateless code, the factor graphs for each code would be
connected by structures such as in Fig. 4, with extra edges
and variables representing the multiple relay symbols,
appearing more like a “star” radiating fromw1,i than a
simple connection.

• Compound relays. In a compound relay, the path from
source to destination includes more than one relay. We

can represent a series of consecutive relays with a factor
graph structure similar to Fig. 4, extending the line with
more nodes and variables corresponding to each new
relay in the path.

Since these behaviors can be described on a factor graph, the
familiar sum-product algorithm may be used to decode the
codes in a system containing them. A further challenge is
the formulation of a protocol to allow them to be exploited
optimally, but such a protocol is beyond the scope of this work.

V. RESULTS

This section presents some proof-of-concept results on the
proposed cooperation scheme. Density evolution is used to
obtain performance results for the proposed system, providing
a theoretical analysis rather than Monte Carlo simulation.
For a given channel and rate, density evolution returns the
average probability of symbol error at every decoding iteration
for every symbol variable in the system. As we have noted
above, the main drawback is that density evolution assumes
the block length approaches∞. In the final paper, we will
present simulation results confirming the results from density
evolution to demonstrate the proposed system’s performance
at practical block lengths.

Since the codes we use have error floors, and since we are
making no effort to mitigate these error floors, density evolu-
tion will inevitably return some nonzero average probability
of error for every possible rate. This may be surprising (and
disappointing) to some rateless coding researchers, who are
accustomed to rateless codes always being decoded correctly
in any channel, if the rate is large enough. On the other hand,
rateless codes exhibitthresholds: for channels worse than the
threshold, the probability of symbol error is very poor (on
the order of10−1), but for channels better than the threshold,
the probability of symbol error is quite good (on the order
of 10−5). As we investigate the rateless properties of this
coding system, we will generally investigate the effect of rate
on the threshold, rather than attempting to determine where
the probability of error vanishes.

A useful definition in this section is theredundancyof a
relay coding system,ρ, which is the total number of channel
uses per information bit. For a single code of rateR, clearly
ρ = 1/R. However, in relay mode, it is easier to use
redundancy since it is additive. For example, ifρ = 2 on
the direct link andρ = 1 on the relay link, then overall we
haveρ = 3.

Our first result, in Fig. 5, indicates the performance of the
system in relay mode, when operated as a pair of LDGM codes
with fixed rates, with fixed check degreeu = 10 in both codes.
In this figure, the system is operating in relay mode, and both
the direct link and the relay link use systematic LDGM codes.
The redundancy in the direct link is 3, while the redundancy in
the relay link is 1.5, for an overall redundancy ofρ = 4.5. The
cross-link between the two sensors has a crossover probability
pc, fixed to the same value asp2, and always less thanp1,,
which is appropriate since the relay channel is not useful
unless the cross-link is very good. The figure indicates the bit
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Fig. 5. Relay mode result for LDGM codes

error performance of the system for various values ofp1 and
p2. For comparison, the dotted line indicates the performance
of the system in independent mode withρ = 4.5. Even for
relatively poorp2, the performance of the relay is superior
to operating in independent mode from the perspective of the
threshold. The error floor, which worsens asp1 gets worse,
is nonetheless low enough (at10−4 to 10−5) for worthwhile
performance.

Our second result, in Fig. 6, indicates the performance of
the system in relay mode, when operated ratelessly. In this
curve, we indicate the minimum redundancy for which the
threshold is passed. The probability of error after the threshold
is not indicated, but is generally around10−4 to 10−5. Again,
we use fixed check degreeu = 10 in both codes, and again,
pc = 0.01. In this scheme, the relay waits until the redundancy
of the original sender isρ = 3 before starting to help, at
which time the relay and the original sender transmit at the
same rate. The relay’s transmission is split evenly between
systematic and parity bits until all the systematic bits have
been sent. In the figure, we see that the redundancy flattens
out asp1 gets worse andp2 is held constant, which indicates
that the decoder is relying on the good information from the
relay moreso than the bad information from the direct link,
and indicates the effectiveness of the relay strategy.

The final version of the paper we will also present results
illustrating the cooperative mode of the system, i.e., with both
nodes transmitting their own data.
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