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T
his article provides a brief review of radar space-time
adaptive processing (STAP) from its inception to
state-of-the art developments. The topic is treated
from both intuitive and theoretical aspects. A key
requirement of STAP is knowledge of the spectral

characteristics underlying the interference scenario of interest.
However, these are seldom known in practice and must be
estimated using training data. The collection of training data in
a given scenario is limited by the scale of change of the interfer-
ence phenomenon with respect to space and time as well as by
system considerations such as bandwidth. Increasingly complex
interference scenarios give rise to stressful conditions of train-
ing support, and the choice of training data becomes a crucial
component of the adaptive process. Additional issues of impor-
tance in STAP include the computational cost of the adaptive

algorithm as well as the ability to maintain a constant false
alarm rate (CFAR) over widely varying interference statistics.
This article addresses these topics, developing the need for a
knowledge-based (KB) perspective.

Signal detection using adaptive processing in spatial and tem-
poral domains offers significant benefits in a variety of applica-
tions including radar, sonar, satellite communications, and
seismic systems [1]. The focus here is on signal processing for
radar systems using multiple antenna elements that coherently
process multiple pulses. An adaptive array of spatially distrib-
uted sensors, which processes multiple temporal snapshots,
overcomes the directivity and resolution limitations of a single
sensor. Specifically, using STAP, i.e., joint adaptive processing in
the spatial and temporal domains, creates an ability to suppress
interfering signals while simultaneously preserving gain on the
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desired signal. Using training to estimate interference statistics,
this suppression is possible despite lack of a priori knowledge of
the interference scenario. Training, therefore, plays a pivotal
role in adaptive systems. This article focuses on several aspects
of this crucial phase from a KB perspective.

Consider the operation of an airborne phased-array radar
with J elements. The radar transmits a pulse in a chosen direc-
tion. The goal is to look for a target in this direction (the look
angle). This transmitted pulse reflects off (possibly) a target (the
desired signal) and the ground (or other clutter interfering
sources). On receive, the radar samples this reflected wave at a
high rate, with each of the R samples corresponding directly to
reflections from a specific range. The sampled signal may also
include other interfering effects of electronic counter-measures
(ECM), such as jamming. This process is repeated for N pulses
transmitted at a rate of the pulse repetition frequency (PRF).
The entire received data can
therefore be organized in a
J × N × R data cube [2], [3].

The problem at hand is to
detect and locate targets, if
they exist, within this data
cube. This location is in
terms of range (at a primary
range cell) and Doppler
(velocity) with the angle set to the look angle. In practice, the
interference statistics and the target complex amplitude are
unknown; thus the detection problem is equivalent to the prob-
lem of statistical hypothesis testing in the presence of unknown
nuisance parameters. From another point of view, the Doppler-
wave number or angle-Doppler spectrum per range cell provides
a unique representation of a signal in a three-dimensional plane.
Hence, the STAP problem may also be viewed as spectrum esti-
mation where the two-dimensional (2-D) adaptive spectral
transform of spatio-temporal data affords separation of the
desired target from interference. Indeed, in spatially and tempo-
rally white noise, the 2-D Fourier transform is optimal.

In the context of STAP, for each range cell, the interference
spectral characteristics correspond to the spatio-temporal
covariance matrix of the JN × 1 complex data vector under the
target-free condition. The presence of these unknown parame-
ters precludes use of a uniformly most powerful test for hypoth-
esis testing [4]. This is because joint maximization of a
likelihood ratio over the domain of unknown parameters
becomes mathematically intractable and computationally
expensive. Hence, ad hoc approaches have been proposed to
overcome this problem. Present day computing power permits
the use of well-known tools from statistical detection and esti-
mation theory in the radar problem.

The optimal STAP algorithm assigns a complex weight to
each degree-of-freedom (DOF) one range cell at a time. These
weights are generally found in  the minimum mean square
error (MMSE) sense assuming Gaussian interference, requir-
ing prewhitening (inversion of the interference covariance
matrix) followed by a matched filter (MF). In  the MMSE sense,

the theoretically optimal and most straightforward algorithm
uses all JN DOF within each range cell, estimating the
unknown JN × JN interference covariance matrix using train-
ing data. Clearly, the statistics of this data must match that of
the interference, i.e., the training data must be target free and
homogeneous. Unfortunately, obtaining an accurate estimate
requires a large number of homogeneous training samples
that, generally, are not available in practice. This is mainly
because the training uses data from the secondary range cells,
i.e., range cells other than the primary range cell.
Furthermore, even if they were available, the associated com-
putation load makes the optimal approach impractical. This
problem is worsened because the STAP process must be
repeated for each Doppler and range bin of interest.

There are, therefore, two fundamental issues that limit
the application of STAP algorithms in practice: the need for

adequate homogeneous
training data and the com-
putation load of the algo-
rithm. This article addresses
these issues in some detail,
drawing from the authors’
extensive research in these
areas. In the area of algo-
rithms, the discussion cov-

ers both the authors’ proposals, plus important fundamental
contributions beyond. We also discuss the important role of
nonhomogeneity detection, covering the basics of ranking and
selection theory, the theory of spherically invariant random
processes (SIRPs) and the use of a nonhomogeneity detector
(NHD) tied to the STAP algorithm used for target detection.
There is, unfortunately, no one best algorithm or approach. The
article attempts to analyze by placing these algorithms using a KB
perspective. We conclude with a preliminary algorithm wherein
these issues are tied together in a combined approach that
addresses all the critical issues mentioned above.

The following section discusses the STAP problem in
some detail, covering early work on radar adaptive signal pro-
cessing and developing a data model for the algorithms that
follow. A discussion of the issue of computation load follows
and then the issue of secondary data support. The final sec-
tions place the algorithms presented from a KB perspective
and concludes the article.

PROBLEM STATEMENT
A radar is a sensor, in our case an antenna array on an airborne
platform, that transmits and receives electromagnetic radiation.
The transmitted electromagnetic signal impinges on various
objects such as buildings, land, water, vegetation, and one or
more targets of interest. The illuminated objects reflect the inci-
dent wave, which is received and processed by the radar receiver.
The reflected signal includes desired signals (targets) but also
undesired returns from extraneous objects, designated as clut-
ter. Additionally, there could be one or more jammers, high-
powered noise-like signals transmitted as ECM, masking the
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desired target signals. Finally, the received returns include the
ubiquitous background white noise caused by the radar receiver
circuitry as well as by man-made sources and machinery.
Typically, if it exists, the power of the desired signal return is a
very small fraction of the overall interference power (due to
clutter, jamming, and noise). The problem at hand is to detect
the target, if it exists, within the background of clutter and jam-
mer returns. The key to solving this problem is the availability
of suitable models for targets, clutter, and jammers [2], [3], [5].
These models account for the angular position of the target in
relation to the receiving array. If moving, the target signature
includes the effect of the resulting Doppler frequency.

More precisely, the radar receiver front end consists of an
array of J antenna elements, which receives signals from tar-
gets, clutter, and jammers. These radiations induce a voltage at
each element of the antenna array, which constitutes the
measured array data at a given time instant. Snapshots of the
measured data collected at N successive time epochs give rise
to the spatio-temporal nature of the received radar data. The
spatio-temporal product JN = M is defined to be the system
dimensionality. Figure 1 uses the angle-Doppler space to illus-
trate the need for space-time (joint domain) processing. A tar-
get at a specific angle and traveling at a specific velocity
(corresponding to a Doppler frequency) occupies a single point
in this space. A jammer originates from a particular angle but
is temporally white (noise like). The clutter, due to the motion
of the platform, occupies a ridge in this 2-D space [5]—a clut-
ter patch in front of the moving aircraft has the highest
Doppler frequency, while one at broadside has zero Doppler
(no relative velocity). The clutter spectrum reflects the two-
way beampattern of the transmitted signal.

The figure also illustrates the effect of strictly temporal
(Doppler) or spatial processing (in angle). The former is equiva-
lent to a projection of the 2-D target plus interference spectrum
onto the Doppler plane—however, the target signal is masked by
the temporally white jamming. The latter is equivalent to a pro-
jection of the said spectrum onto an angular plane, but since the
clutter power is strongest at the look angle, the target cannot be
distinguished from clutter. However, joint domain processing
identifies clear regions in the 2-D plane, which affords recovery
of the target from the interference background.

The detection problem can be formally cast in the framework
of a statistical hypothesis test of the form: 

H0 : x = d = c + j + n (1)

H1 : x = αe(θt, ft) + d = αe(θt, ft) + c + j + n, (2)

where x ∈ C JN × 1 denotes the received data under either
hypothesis, d represents the overall interference being the sum
of c the clutter vector, j the jammer vector, and n the back-
ground white noise. Finally, e is a known spatio-temporal steer-
ing vector that models the target return for a specific angle-
Doppler, and α is the unknown target complex amplitude. For
the popular case of a linear array of equispaced elements,

e = et ⊗ es (3)

et =
[
1 zt z2

t . . . z(N−1)
t

]T
, (4)

es =
[
1 zs z2

s . . . z( J−1)
s

]T
, (5)

zs = e j2π fs = e( j2π d
λ

sin φt), zt = e j2π ft/fR, (6)

where φt and ft represent the look angle, measured from broad-
side, and Doppler frequency, respectively; ⊗ represents the
Kronecker product of two vectors; fR the PRF; and λ the wave-
length of operation. The vectors et and es represent the tempo-
ral and spatial steering vectors, respectively. Note that from one
pulse to the next and from one element to the next, the steering
vectors represent a constant phase shift.

Adaptive algorithms generally determine a weight vector w
to obtain a test statistic, �, i.e.,

� =
∣∣∣wHx

∣∣∣2
H1
>

<

H0

λ, (7)

where the H represents the Hermitian transpose of a
vector/matrix, and λ represents a threshold above which a target
is declared present. This threshold determines the probability of
false alarm, the rate at which a target is detected by mistake. For
Gaussian interference statistics, the optimum processing
method, corresponding to the case of a known interference
covariance matrix Rd, is the whiten-and-match filter for detecting
a rank-1 signal given by [6]

w = R−1
d e√

eHR−1
d e

⇒ �MF = |eHR−1
d x|2

eHR−1
d e

H1
>

<

H0

λMF, (8)

which represents the matched filtering of the whitened data
x̌ = R−1/2

d x and whitened steering vector ě = R−1/2
d e. It can be

readily shown that �MF is simply the output signal-to-inter-
ference-plus-noise ratio (SINR) of the minimum variance dis-
tortionless response (MVDR) beamformer, the maximum

[FIG1] The target and interference scenario in an airborne radar.
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likelihood estimate of the target complex amplitude. The rela-
tionship between �MF and the MVDR beamformer output sig-
nal-to-noise ratio (SNR) thus provides a unified perspective of
detection and estimation in the context of STAP. 

In practice, the covariance matrix, Rd, is unknown and must
be estimated. Early work on antenna arrays by Widrow (least
squares method) [7] and
Applebaum (maximum SNR
criterion) [8] suggest use of
feedback loops to ensure
convergence of iterative
methods for calculating the
weight vector. However,
these methods were slow to
converge to the steady-state solution. Fundamental work by
Reed, Mallet, and Brennan (RMB beamformer) [9] showed that
the sample matrix inverse (SMI) method offered considerably
better convergence. In the SMI approach, the basis for most
modern STAP algorithms, the interference covariance matrix is
estimated using K data ranges for training

R̂d = 1
K

K∑
k = 1

xkxH
k = 1

K
XXH, (9)

where X = [x1, x2, . . . , xK] and the adaptive weights are
obtained as w = R̂−1

d e. A drawback of the RMB approach is the
lack of a CFAR, i.e., the false alarm rate varies with the interfer-
ence level, an important consideration in practical systems.
Variants of the RMB beamformer to obtain CFAR, such as the
Kelly generalized likelihood ratio test (GLRT) [10], the adaptive
MF [6], and the adaptive coherence estimator (ACE) [11], were
the focus of a number of efforts in the 1980s and early 1990s.
Interestingly, the whiten-and-match filter of (8), with the true
covariance matrix, Rd, replaced with the estimated covariance
matrix, R̂d, has CFAR. There are, however, three fundamental
problems with this approach when applied in the real world: the
associated computation load, the need for an adequate number
of training samples, and finally and most importantly, the het-
erogeneity of the available data.

The SMI algorithm requires the solution to a system of linear
equations involving a JN × JN matrix in real time, an
O( J 3N 3) operation. The fact that the algorithm must be exe-
cuted for each range and Doppler bin of interest exacerbates the
problem. Furthermore, to obtain performance within 3 dB of
optimum, one requires approximately K ≥ 2 JN training samples
to estimate the JN × JN matrix Rd. Such a large number of
samples are generally not available.

Finally and most importantly, the training data must be
homogeneous, i.e., statistically representative of the interference
within the range cell of interest. This is generally impossible to
obtain in practice due to limitations imposed by the spatio-
temporal nonstationarity of the interference as well as by system
considerations such as bandwidth and fast scanning arrays. For
example, with J = 11 and N = 32, the parameters for the
knowledge-aided sensor signal processing expert reasoning
(KASSPER) data set [12], the training data support for 3 dB per-

formance is 704. Assuming an instantaneous RF bandwidth of
500 KHz, this calls for the wide-sense stationarity (homogeneity)
over a 400-km range. The scarcity of training data is exacerbated
by system errors such as aircraft crabbing and internal clutter
motion [5] and environmental considerations such as strong
clutter discretes [13], range varying interference spectra and

power levels [14], and out-
lier contamination of train-
ing data by target-like
signals [15] occurring in
dense target scenarios
caused by flight formations.

These three issues are
interlinked—the computa-

tion load is a function of the DOF in the adaptive process and
the number of training samples are approximately twice the
DOF, i.e., reducing the computation load also reduces the
required training. Clearly, reducing the required training also
addresses the heterogeneity problem, making it easier to acquire
an adequate number of training samples.

As is clear from the above discussion, adequately and effec-
tively training the adaptive filter is essential. The central theme
of the following discussion is the use of preexisting and the
development of real-time knowledge bases to help in the training
process. This knowledge base comprises many aspects—using a
priori knowledge in choosing the secondary data, using real
time processing to identify homogeneous data samples, and
choosing the most effective algorithm based on the available
information. The use of KB processing has resulted in the devel-
opment of the KASSPER program [12]. Using simulated and
measured data, the preliminary results, now appearing in the lit-
erature, show both the importance of and improvements from
using knowledge-aided processing [15]–[19].

LOW COMPUTATION LOAD ALGORITHMS
Succinctly stated, the fully optimal STAP algorithm consists of
the following steps:

1) Starting with a data cube, identify the cell under test (cor-
responding to the length-JN data vector x) and form the
target steering vector e for every Doppler bin of interest.
2) Select K representative training data from both sides of the
cell under test, avoiding guard cells to account for target
leakage and competing targets.
3) Form R̂d the estimated interference covariance matrix
using the training data.
4) Calculate a weight vector w ∝ R̂−1

d e and apply the weight
vector to test cell data to obtain a test statistic, � ∝ wHx.
5) Compare the test statistic to a threshold (corresponding to
a specified false alarm rate) and declare target presence when
test statistic exceeds the threshold.
To overcome the problems associated with this fully adap-

tive algorithm, researchers have developed alternate, partially
adaptive approaches that reduce the DOF with attendant reduc-
tions in required sample support and computation cost.
Important works in this area include the joint domain localized

D3 ALGORITHMS USE DATA FROM THE
PRIMARY RANGE CELL ONLY, AND SO 

BYPASS THE PROBLEM OF THE REQUIRED
HOMOGENEOUS SECONDARY DATA SUPPORT. 
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(JDL) processing algorithm [20], the parametric adaptive MF
(PAMF) [21] (and references therein), the multistage Weiner fil-
ter (MWF) [22] and factored STAP methods [5]. Another impor-
tant approach, not dependent on any statistical training, is the
direct data domain (D3) approach [23]. This algorithm was then
extended to include statistical processing in [24]. Several stud-
ies show that there is no best algorithm but that an effective
implementation would require the use of the most effective
from of a library of algorithms. Other than the PAMF, D3, and
MWF (depending on the type of implementation) algorithms,
all STAP methods require explicit formation and inversion of
the interference covariance matrix, i.e., the issue of homoge-
neous training data remains.

This section develops in some detail the most popular low
computation load algorithms. These algorithms are the most
popular for a specific reason—they all address the issue of com-
putation load in innovative though completely different ways. A
common framework for reduced DOF process is that they all
rely on a transformation of the steering vector and received data
into a subspace of dimension r < JN . In the following, T
denotes a general transformation matrix, and ẽ = Te, x̃ = Tx,
and X̃ = TX denote the transformed steering vector, test cell
data, and training data, respectively. The transformation matrix
T can either be data dependent or data independent. The JDL
algorithm is an example of a data independent transformation,
while the PAMF, MWF, and LRNAMF [15] are instances of data
dependent transformations.

JDL PROCESSING
The JDL algorithm as developed by Wang and Cai [20] maps the
received data to the angle-Doppler domain. The transformation
to angle-Doppler localizes the target and interference to a few
angle and Doppler bins, significantly reducing the required DOF,
with corresponding reductions in required sample support and
computation load. The authors assume the receiving antenna to
be an equispaced linear array of ideal, isotropic, point sensors.
Based on this assumption, space-time data is transformed to the
angle-Doppler domain using a 2-D discrete Fourier transform
(DFT). This approach is only valid in the ideal case under certain
restrictions. The presentation here is for the generalized JDL
algorithm valid for real world antenna arrays as well [25].

The JDL algorithm begins with a transformation to the
angle-Doppler space, i.e., the angle-Doppler response of the data
is obtained at the few angle and Doppler bins within the LPR.
Mathematically, the angle-Doppler response of the data vector
x at angle φ and Doppler fd is given by

x̃(φ, fd) = eH(φ, fd)x, (10)

where the tilde above the scalar x denotes the transform
domain. Repeating this process for ηa angles and ηd Doppler
bins (corresponding to ηaηd space-time steering vectors) gener-
ates a length-ηaηd vector x̃ of angle-Doppler domain data. These
ηa angles and ηd Doppler frequencies are said to comprise the
localized processing region (LPR). Note that this scheme may be

used in conjunction with real world arrays where the space-time
steering vector would include a measured spatial steering vec-
tor. The scheme reverts to the 2-D DFT in case of an idealized
linear array of isotropic point sensors. The transformation
matrix T is given

T = [
e1, e2, . . . , eηaηd

]
, x̃ = THx, (11)

where ei, i = 1, . . . , ηaηd are the steering vectors correspon-
ding to the angles and Dopplers in the LPR. In practice, the
angle and Doppler points are chosen to be close to and symmetric
around the look angle and Doppler. Note that the transformation
matrix is independent of the data. As is usual with a Fourier
transform, one could also use a taper, such as a Hamming or
Kaiser window, to lower the transformation sidelobes. In the
angle-Doppler domain, the adaptive weights are given by

w̃ = R̃−1
d ẽ, (12)

R̃d = 1
K

K∑
k = 1

x̃kx̃H
k , (13)

i.e., the JDL algorithm is basically the original SMI algorithm,
but using data in the angle-Doppler space.
The steps in implementing the JDL adaptive processor are:

1) Choose the size of the LPR, i.e., ηa and ηd and the number
of training data vectors that will be used to estimate the
covariance matrix. 
2) Set the angle bin to be the look direction and choose a set
of ηa angles centered around (and including) the look angle.
3) For each Doppler bin of interest, choose a set of ηd Doppler
bins centered around (and including) the look Doppler. Use
the set of angles and Doppler bins to form the transformation
matrix T using (11).
4) Transform the entire data cube to angle-Doppler space and
find the transformed steering vector ẽ.
5) For each range of interest, estimate an angle-Doppler
covariance matrix using (13) and obtain the angle-Doppler
weights using (12) to obtain a decision statistic.
Comparing the decision statistic to the chosen threshold, as

in (8), completes the detection process. The key here is that K,
the number of required homogeneous samples is reduced to
about 2ηaηd − 4ηaηd (as opposed to 2 JN) and the computation
load to O(η3

aη
3
d). Common values of ηa and ηd, usually odd, are

on order of 3, 5, and 7, resulting in enormous savings in compu-
tation load and required sample support.

PAMF
The PAMF method is a case of reduced dimension processing
that relies on a decomposition of the JN × JN interference
covariance matrix Rd of the form Rd = LDLH , where L is a
lower block-triangular matrix with J × J identity matrices along
the main block diagonal, and D is a block diagonal matrix with
Hermitian matrices Di ∈ CJ× J , i = 1, 2, . . . N [21].
Consequently, L−1 admits a representation of the form
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L−1 =




I J O O . . . O
AH

1 (1) I J O . . . O
...

...
...

...
...

AH
N−1(N − 1) AH

N−1(N − 2) . . . AH
N−1(1) I J


 ,

(14)

where Al(k), k = 1, 2, . . . , N denote the coefficients of the lth
order multichannel forward linear predictor or multichannel
(matrix) autoregressive (AR) linear predictor, and Di is the
covariance matrix of the residual from the i th order multichan-
nel linear predictor. Thus, the transformation matrix T takes on
the form TPAMF = D(−1/2)LH−1

for the multichannel parametric
method. The block form of the transformation is computational-
ly expensive to implement due to the fact that it requires the
calculation of all the matrix prediction coefficients of orders 1 to
N. Consequently, a sequential method for implementing TPAMF

is developed in [21]. Furthermore, it has been found for a variety
of simulated and measured radar data sets that a low-order
(p = 3 or 4) multichannel linear predictor provides a good
approximation to Rd [21]. When Rd is unknown, the adaptive
algorithm directly estimates the coefficients of a pth order mul-
tichannel linear predictor and the associated block diagonal
covariance matrix using training data from the data matrix X.
The PAMF test is given by

�PAMF = |ẽHx̃|2
ẽHẽ

H1
>

<

H0

λPAMF, (15)

where ẽ and x̃ are the steering vector and observed data vector
transformed by TPAMF. The low model order p << JN enables
significant reduction in the training data support requirements.
Thus, explicit formation and inversion of the interference
covariance matrix is avoided. Instead, the coefficients of multi-
channel linear prediction and the associated residual error
covariance matrices, succinctly embed the information con-
tained in Rd. For example, with both simulated and measured
data sets, it was shown in [21] that the sample support for
JN = 128, p = 3, and K = 8, the PAMF exhibited performance
to within 0.5 dB of the optimal MF. The key to obtaining
enhanced PAMF performance is the use of efficient parameter
estimation algorithms for calculating the multichannel coeffi-
cients of linear prediction and the block diagonal error covari-
ance matrix. A number of approaches for this purpose have been
discussed in [26]. However, the method best suited for the STAP
problem is the covariance method of linear prediction also
known as the method of least squares. The computational cost
underlying the algorithm is O(( JN)2 p), which provides an order
of magnitude reduction in the computational cost for p << JN.
However, when the training data is subject to outlier contami-
nation, the PAMF performance is severely degraded. Mitigating
strategies for this problem have been discussed in [27] with
other PAMF extensions and variants presented in the references
therein. Unfortunately, the detection and false alarm probability
for the PAMF test and its variants cannot be calculated using

closed form analytical expression. Consequently, these issues are
studied using Monte Carlo simulations in [21] and [27] and the
references therein.

MULTISTAGE WEINER FILTER
The MWF is another reduced rank processing method, which
relies on a serial decomposition of the MVDR beamformer weight
vector in the form of a generalized sidelobe canceller (GSC) [22],
[28]. The GSC processor relies on a projection of x onto the signal
subspace, d = eHx, and a projection onto an orthogonal comple-
ment subspace, b = Bx, where B is a blocking matrix with ortho-
normal columns that are orthogonal to e. The GSC weight vector
is given by wGSC = [1 v]T, where v = −R−1

b rbd is a 1 × M − 1
row vector, with Rb = BRdBHand rbd = BRde. The error vari-
ance at the MVDR beamformer output can then be expressed as
(1/eHR−1

d e) = eHRde − rH
bdR−1

b rbd . This form of the error
admits a sequential representation in terms of a Rayleigh 
quotient and an inverse Rayleigh quotient. More precisely,
let δi = (vH

i Rivi/vH
i vi) and ξi = (vH

i vi/vH
i R−1

i vi) , where
v0 = e, R0 = Rd, v1 = R−1

b rbd. Then, we have a recurrence
relationship between the error residuals at the output of succes-
sive stages of the MWF. Specifically, for i = 0, 1, . . . , M − 1, 

ξi = ||vi||2δi − ||vi+1||2
ξi+1

, (16)

where ||.|| denotes the norm of a vector. This form of implemen-
tation provides a continued fraction expansion of the MVDR
beamformer output variance, which results in a tridiagonal
covariance structure for the transformed data [22], [28]. Such a
form lends itself to an iterative calculation of the MVDR beam-
former weight vector via the conjugate gradient method [29]. In
sample support deficient scenarios, this method has been found
to converge to the principal components inverse method [30].
Key features of this method are the absence of the formation
and inversion of the full dimension covariance matrix.
Additionally, the MWF implementation in [22] and [28] is com-
putationally expensive due to the need to calculate a sequence of
matrix products to recombine the error residuals from the
transformed data. However, this is greatly alleviated by the
conjugate gradient method which only requires a one-way com-
putation [29]. Performance comparisons of the MWF with com-
peting techniques can be found in [22], [28], and [29], and the
references therein.

ISSUES OF DATA SUPPORT
As discussed in this article, an extremely important issue in
STAP is the formation and inversion of the covariance matrix
underlying the disturbance. In practice, the unknown interfer-
ence covariance matrix is estimated from a set of independent
identically distributed target-free training data, which is
assumed to be representative of the interference statistics in a
cell under test. Frequently, the training data is subject to con-
tamination by discrete scatterers or interfering targets. In either
event, the training data becomes nonhomogeneous. As a result,
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it is not representative of the interference in the test cell. Hence,
standard estimates of the covariance matrix from nonhomoge-
neous training data result in severely undernulled clutter.
Consequently, CFAR and detection performance suffer.
Significant performance improvement can be achieved by
employing preprocessing to select representative training data.

Figure 2, borrowed from [13], illustrates the importance of
nonhomogeneous data. The figure plots the probability of detec-
tion (Pd) versus SINR for a false alarm rate of Pf a = 0.01 and a
clutter-to-noise ratio of 40 dB. The system uses M = JN = 64
and K = 128 range cells to estimate the interference covariance
matrix. MF curve is theoretical, corresponding to optimal per-
formance in Gaussian clutter. The curve for the AMF, operating
with homogeneous interference has performance within 3 dB of
optimal. The curve corresponding to nonhomogeneous data is
obtained using Monte Carlo simulations. The training data is
corrupted using 30 high-amplitude discrete targets. As is
clear, the nonhomogeneity of the data significantly worsens
detection performance, by as much as 3–5 dB. Using an NHD
[31], the performance of the AMF algorithm is restored. 

In general, nonhomogeneity of training data is caused by
environmental factors, such as the presence of strong discrete
scatterers, dense target environments, nonstationary reflectivi-
ty properties of the scanned area, and radar system configura-
tions such as conformal arrays, and bistatic geometries. A
variety of robust adaptive signal processing methods to combat
specific types of nonhomogeneities have been developed in
[15] and [32]–[35]. In this effort, we confine ourselves to the
problem of selecting representative training data, when the
training data is contaminated by outliers resembling a target
of interest (specifically, outliers sharing the same steering vec-
tor as a target of interest).

NONHOMOGENEITY DETECTION
The problem of outlier contamina-
tion of STAP training data assumes
increased significance in dense tar-
get scenarios, where outliers resem-
bling a target of interest
contaminate the training data. This
results in an incorrect threshold set-
ting due to an erroneous estimate of
the interference covariance matrix.
Furthermore, the presence of out-
liers in the training data causes tar-
get cancellation resulting in
degraded output signal to interfer-
ence ratio and perforce degraded
detection performance. A common
signal processing method in this
context is to excise outliers from the
training data and use the resulting
outlier free training data for covari-
ance matrix estimation. Several
algorithms for outlier removal have

been proposed in recent times [13]–[15], [17], [27], [31] in a
variety of dense target environments. For the purpose of this
section, and in practice, the columns of the data matrix X are
no longer independent, identically distributed and free from
outlier contamination. The problem therefore is to classify the
columns of X into groups sharing the same covariance matrix
and thereby detect the presence of outliers, which have a delete-
rious impact on STAP performance, when used in covariance
estimation. When outliers are in the form of strong clutter dis-
cretes, the generalized inner product (GIP) method [13], [31]
and references therein gives a method for outlier removal as
summarized below:

1) First an initial estimate of the covariance matrix using an
extended training data set is formed as R̃ = X̃X̃H/L where X̃
is a data matrix with L columns, where L � 2 JN. For exam-
ple, L may be equal to all available ranges R.
2) Each column of X̃ is used in a sliding window process
to form a statistic pi = xH

i R̃−1xi for the available range of
i. Note that R̃ for each xi is formed by excluding that col-
umn and a one column on either side of xi (to allow for
guard cells).
3) If the columns X̃ shared the same covariance matrix,
empirical realizations of pi will conform to an F-distribution
[13], whose theoretical mean µ is readily calculated.
4) The absolute value |pi − µ| are calculated and sorted in
increasing order and K � 2(DOF) columns of X̃ correspon-
ding to pi showing the least deviation from µ are retained for
covariance matrix estimation. The remaining columns are
discarded.
Approximately 3–5 dB of performance improvement in the

AMF performance in heterogeneous clutter scenarios was
demonstrated in [13] using simulated and measured data.
However, such an approach relies on full dimension STAP

[FIG2] Impact of nonhomogeneous data on detection performance.
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processing and therefore is not suited for conditions of limited
sample support. An alternate reduced dimension extension of
this procedure known as the innovations power sort was devel-
oped in [27], wherein a multichannel linear predictor approxi-
mation to R̃ is employed along the lines of the multichannel AR
model described in the PAMF. This form of the estimator has
been found to be extremely valuable in conditions of small sam-
ple support. The procedure for outlier removal therein is very
similar to the GIP approach described previously. Significant
performance improvement over competing methods was
demonstrated using measured radar data in [27]. When outliers
resembling a target of interest contaminate the training data, it
becomes imperative to use the steering vector in calculating the
test statistic for use in outlier identification and removal.
Motivated by this and the need to operate in conditions of limit-
ed sample support, the authors in [15] develop an eigen-based
method, which relies on the simple principle that the output of
a MF peaks when data containing a desired target is passed
through the filter. This fundamental idea is used in an iterative
manner in [15] to identify the outliers in training data. An
extension of this method is pursued in [17] from a KB perspec-
tive to significantly reduce the sample support for covariance
estimation, while obtaining near clairvoyant STAP detection
performance. Other approaches include the use of the adaptive
process as a NHD [36]. 

Theoretical approaches to the problem of nonhomogeneity
include use of SIRPs. In other instances, there could be range
varying clutter power properties due to environmental and sys-
tem considerations. In this instance, the clutter statistics depart
from the Gaussian behavior, which leads to unacceptably large
false alarm rates. This calls into question a suitable model for
these impulsive (heavy-tailed) clutter scenarios. There is no
unique model for representing the joint probability density
function (PDF) of a set of M correlated non-Gaussian random
variables. However, a popular model for non-Gaussian radar
clutter is the SIRP [14]. Every SIRP is equivalent to the product
of a complex Gaussian process and a nonnegative random vari-
able, whose PDF is defined to be the first order characteristic
PDF of the SIRP. Consequently, every SIRP is uniquely deter-
mined by the specification of a mean vector, a covariance matrix
and a characteristic first-order PDF. As a result, the sample
covariance matrix is no longer the maximum likelihood esti-
mate for the SIRP covariance matrix. Furthermore, the covari-
ance matrix estimate cannot be calculated in closed form.
Instead the maximum likelihood (ML) estimate is a weighted
sample covariance matrix, which could be calculated iteratively
using the expectation maximization
algorithm. Key issues in this context
include the convergence properties of
the algorithm and the associated
numerics. Having obtained the ML
estimate of the covariance matrix
(which is usually within a multiplica-
tive constant of the covariance matrix
of the Gaussian component of the

SIRP), a scale invariant test statistic, such as the ACE, is called
for. Using the statistics of the ACE test, a formal goodness-of-fit
test is developed in [14] to detect and remove outliers.
Performance of the approach is presented in [14] using simulat-
ed and measured data. The method outperforms all competing
candidate algorithms. The extension of this method for sample
support starved scenarios is the focus of ongoing research.

D3 METHODS
Purely statistical algorithms, such as JDL and MWF, cannot
suppress a discrete interference source within the primary
range cell. For example, a large target within the test range cell
but at a different angle and/or Doppler appears as a false alarm,
through the sidelobes of the adapted beam pattern, at the look
angle-Doppler domain. The secondary data cells do not carry
information about the discrete nonhomogeneity, and hence a
statistical algorithm cannot suppress discrete (uncorrelated)
interference within the range cell under test. This issue of adap-
tive processing within nonhomogeneous cells has led to the
investigation of a new class of algorithms—nonstatistical, or D3,
algorithms [23], [24]. D3 algorithms use data from the primary
range cell only and so bypass the problem of the required homo-
geneous secondary data support. 

The basis of D3 processing is that, as shown in (6), given the
look angle and Doppler, the steering vector determines the
phase shift of the target signal from one antenna
element/transmitted pulse to the next. The look angle and
Doppler determine zs, the phase shift of the target signal from
one antenna element to the next and zt, the phase shift from
one pulse to the next. If xj(n) represents the total signal at the
j th element and n th pulse, terms such as xj(n) − z−1

s x( j+1)(n)

and xj(n) − z−1
t xj(n + 1) should therefore contain only inter-

ference and noise terms. The D3 approach minimizes the power
in these terms while maximizing processing gain in the look
direction constant. For example, to determine a set of spatial
weights, define the N × ( J − 1) interference and noise matrix A
[see (17) at the bottom of the page] and the optimal weights ws

are the solution to the following optimization problem

wopt
s = arg max

ws,wH
s ws=1

[∣∣∣wH
s es,0: J−2(θ)

∣∣∣2 − κswH
s ATA∗ws

]
, (18)

where the T and ∗ represent the transpose and conjugation oper-
ators, respectively. This formulation is chosen to remain consis-
tent with the notion that the conjugates of the weights multiply
the data. The vector es,0: J−2(θ) represents the first J − 1 entries

A =




x0(0) − z−1
s x1(0) · · · x( J−2)(0) − z−1

s x( J−1)(0)

x0(1) − z−1
s x1(1) · · · x( J−2)(1) − z−1

s x( J−1)(1)

...
...

...

x0(N − 1) − z−1
s x1(N − 1) · · · x( J−2)(N − 1) − z−1

s x( J−1)(N − 1)


 (17)
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of the length- J patial steering vector. The use of only J − 1
weights represents the DOF lost due to the subtraction opera-
tion in xj(n) − z−1

s x( j+1)(n).
The first term in (18) represents the gain of the weight vec-

tor in the direction of the look angle, while the second term
represents the residual interference power after the data is fil-
tered by the same weights. Hence, the optimal D3 weights
maximize the difference between the gain of the antenna at the
look Doppler and the resid-
ual interference power. The
term κs is chosen as a trade-
off between gain and inter-
ference cancellation. Using
the method of Lagrange
multipliers, it can be shown
that the desired weight vec-
tor is the eigenvector corresponding to the maximum eigen-
value of the ( J − 1) × ( J − 1) matrix a0: J−2aH

0: J−2 − ATA∗ . A
temporal weight vector wt can be found analogously, and over-
all weight vector is

w =
[

wt

0

]
⊗

[
ws

0

]
, (19)

where ⊗ represents the Kronecker product and the zeros
appended represent the loss of one DOF in space and time. 
The steps in implementing the D3 processor are the following: 

1) Choose the emphasis parameter κ and form matrix A using
(17) and data from within the range cell of interest only.
2) Find the eigenvector corresponding to its largest eigenval-
ue of a0: J−2aH

0: J−2 − ATA∗ . This is ws. 
3) Repeat steps 1 and 2 to obtain a temporal weight vector
and then the overall weights w using (19). 
Note that the adaptive weight vector in (18) is obtained using

data from the primary range cell only, without estimation of a
covariance matrix. This property gives D3 processing its
greatest advantage and its greatest disadvantage. The lack of
an estimation of correlation allows use of D3 processing in
severely nonhomogeneous situations. In theory, it could be
used by itself, however, the nonhomogeneous range cells have
two components of interference—the discrete and the homoge-
neous components. By their very nature, D3 algorithms are
effective against discrete interference, but they are not as effec-
tive against the homogeneous component of the interference.
This is because they ignore all statistical information. 

HYBRID APPROACH
We present here a hybrid technique, a two-stage process based
on the D3 and JDL algorithms, that combines the benefits of
D3 and statistical processing [24]. Consider the framework of
any STAP algorithm. The algorithm processes received data to
obtain a complex weight vector for each range bin and each
look angle/Doppler. The weight vector multiplies the primary
data vector to yield a complex number. The process of obtain-
ing a real scalar from this number for threshold comparison

is part of the postprocessing and not inherent to the algo-
rithm itself. The adaptive process effectively estimates the sig-
nal component in the look angle/Doppler, i.e., it is a 2-D
adaptive spectral estimate. The adaptive weights can therefore
be viewed in a role similar to that of the nonadaptive steering
vectors in JDL processing, used to transform the space-time
data to the angle-Doppler domain. 

The JDL processing algorithm begins with a transformation
of the data from the space-
time domain to the angle-
Doppler domain. Statistical
adaptive processing within a
LPR in the angle-Doppler
domain follows. The hybrid
approach uses the D3

weights, replacing the
nonadaptive steering vectors used earlier. By choosing the set
of look angles and Dopplers to form the LPR, the D3 weights
perform a function analogous to the nonadaptive transform. The
D3 algorithm is used repeatedly with the ηa look angles and the
ηd look Doppler frequencies to form the LPR using the same
primary data. This implies that there is a main look direction for
the overall hybrid STAP process but a set of auxiliary look direc-
tions for use with the D3 algorithm.

The steps in implementing the hybrid adaptive processor are
as follows: 

1) Choose the size of the LPR (ηa and ηd), the number of sec-
ondary data vectors that will be used to estimate the covari-
ance matrix (usually of the order of 2ηaηd–4ηaηd) and the
number of guard cells (usually 2–4).
2) Choose a set of ηa angles centered around (and including)
the look angle.
3) For each range bin and Doppler bin of interest, choose a
set of ηd Doppler bins centered around (and including) the
look Doppler.
4) Using only the primary data, use the D3 algorithm repeat-
edly (ηaηd times) with each combination of the chosen
angles and Dopplers as the look direction. (Note that this
implies that there is a main look angle/Doppler for the over-
all STAP process but a set of auxiliary look directions for use
with the D3 algorithm.) These ηaηd weight vectors form the
transformation matrix T as in (11).
5) JDL processing continues as in (12) and (13).

KNOWLEDGE-AIDED APPROACHES
The previous sections have addressed the three fundamental
issues associated with practical adaptive processing for airborne
radar: computation load, required sample support, and nonho-
mogeneity detection (including adaptive processing within het-
erogeneous ranges). Clearly, for each issue, there exists an
embarrassment of riches—this article has detailed only a few
key schemes addressing each issue. An equally important issue
that arises is therefore a scheme to pick within all these
potential approaches. One should start with the fundamental
notion that there is no one-best approach—different

THE JDL ALGORITHM MAPS THE RECEIVED
DATA TO THE ANGLE-DOPPLER DOMAIN AND
LOCALIZES THE TARGET AND INTERFERENCE

TO A FEW ANGLE AND DOPPLER BINS.
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algorithms have their own advantages and disadvantages. This
introduces the need for knowledge-aided approaches wherein a
database informs the choice of algorithm, sample support both
in terms of quantity and choice of range bins, the threshold
level that sets the probability of false alarm, potentially even
radar parameters such as frequency of transmission, PRF, and
transmitted waveform. 

Figure 3 illustrates the
potential knowledge sources
that could be exploited—it
includes land-use and cover-
age data, information from
earlier passes over the same
terrain, radar parameters, and feedback from other stages in
the detection and tracking process. Clearly, this requires a
massively complex series of decisions to be made in real time.
The figure serves more to illustrate the long-term goal of
knowledge-aided processing. 

A PRELIMINARY KB PROCESSOR
This section implements a very preliminary KB processor
[37]. KB processing best matches the adaptive processing
algorithm to the interference scenario. The STAP technique is

chosen using knowledge gained by processing the received
data. In the KB processor of Figure 4, each range cell is classi-
fied into one of only two types: homogeneous or nonhomoge-
neous, with different algorithms used for each type of cell.
This classification is made using the NHD based on whether
the JDL detection statistic crosses a chosen threshold. Within

the range cells deemed nonho-
mogeneous, the interference is
assumed to have discrete and
homogeneous components,
and the hybrid algorithm is
used for target detection. We
use the JDL processor. This

choice of statistical processing allows for the use of the JDL
algorithm in all three components of the KB processor. The
only difference between processing in the homogeneous cells
and in the nonhomogeneous cells is the choice of transforma-
tion matrix. Within the homogeneous cells, the transforma-
tion matrix is the nonadaptive transform of (11). Within the
nonhomogeneous range cells, the transformation matrix is
given by the D3 weights. In both cases, the secondary data
used to estimate the angle-Doppler covariance matrix are cho-
sen from range cells deemed homogeneous. 

[FIG3] Sources informing a KB processor.
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The steps in implementing the simple KB processor are as
follows:

1) For each Doppler bin of interest, repeat the following steps:
2) For all range bins, identify homogeneous and nonhomoge-
neous cells using the JDL-NHD. 
3) For each range cell of interest, if it is homogeneous, apply
the JDL algorithm, but now using other homogeneous cells
as sample support. 
4) If it is nonhomogeneous, apply the hybrid algorithm, using
other homogeneous cells as
sample support.
Another KB processor is the

fast maximum likelihood reiter-
ative self-censoring adaptive
power residue concurrent block
processing two weight vector
adaptive cosine estimator (FRACTA) [17], which employs a pri-
ori information pertaining to the clutter covariance matrix. The
FRACTA method demonstrates near clairvoyant detection per-
formance while employing 30% of the sample support needed in
reduced rank STAP. For reduced rank STAP, the RMB rule
requires K = 2r (where r is the clutter rank; typically r � M)
training data snapshots to obtain performance within 3 dB of
the optimum. Performance analysis of the FRACTA algorithm is
carried out using data from the KASSPER program. Due to con-
straints of space, the interested reader is referred to [17] for fur-
ther details. Finally, the LRNAMF developed in [15] is another
example of knowledge-aided adaptive processing, where a priori
information about the clutter rank gained from system parame-
ters such as platform speed, pulse rep-
etition interval, array element spacing,
number of antenna array elements,
and number of pulses processed in a
coherent processing interval is used to
significantly reduce the training data
support for covariance matrix estima-
tion. Performance of the LRNAMF is
benchmarked using data from the
KASSPER program.

NUMERICAL EXAMPLE
The motivation for the KB processor is
practical implementation of STAP in
airborne radars for ground moving
target indicators (GMTIs). With this in
mind, we present here a result of using
the KB formulation of Figure 4 using
measured data from the multichannel
airborne radar measurements
(MCARM) program [38]. The example
chosen here uses the data from
Acquisition 575 on Flight 5. Included
with the data is information regarding
the position, aspect, and velocity of the
airborne platform and the mainbeam

transmit direction. This information is used to correlate target
detections with ground features.

While recording this acquisition, the radar platform was at
latitude-longitude coordinates of (39.379◦, −75.972◦), placing
the aircraft close to Chesapeake Haven, Maryland, USA. The
plane was flying mainly south with velocity 223.78 mi/h and
east with velocity 26.48 mi/h. The aircraft location and the
transmit mainbeam are shown in Figure 5. The mainbeam is
close to broadside. Note that the mainbeam illuminates

terrain of various types,
including several major high-
ways. Each data cube compris-
es 22 elements ( J = 22), 128
pulses (N = 128) at a PRF of
1984 Hz, and 630 range bins
sampled at 0.8 µs (correspon-

ding to 0.075 mi). The array is a 2 × 11 rectangular array. The
array operates at a center frequency of 1.24 GHz.

To illustrate the effects of nonhomogeneities in secondary
training data, we inject two targets at closely spaced range bins.
These artificial targets are in addition to the ground targets of
opportunity on the roadways illuminated by the array. The artifi-
cial targets are injected in range bins 290 and 295. In this acqui-
sition, the zero range is referenced to range bin 74, and so these
injected targets are at ranges of 16.2 mi and 16.575 mi respec-
tively. The parameters of the injected targets are given in Table
1. These values are chosen to ensure that the targets cannot be
distinguished using nonadaptive, MF processing. Note that the
two targets are at the same look angle and Doppler frequency

[FIG4] A preliminary KB process.
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and the second target is 20
dB stronger than the first.

This example is based on
the JDL algorithm in all
stages. The NHD uses the
JDL-NHD discussed earlier,
while the statistical algo-
rithm is the JDL algorithm using homogeneous range cells for
sample support. The hybrid algorithm, as discussed earlier, is
the JDL algorithm with an adaptive D3 transform to the angle-
Doppler domain. All stages use three angle bins and three
Doppler bins (a 3 × 3 LPR). Thirty-six secondary data vectors
are used to estimate the 9 × 9 angle-Doppler LPR covariance
matrix. Two guard cells are used on either side of the primary
data vector. Based on these numbers, without a NHD stage,
range bin 295 would be used as a secondary data vector for
detection within range bin 290, violating the homogeneity
assumption of statistical STAP algorithms. The example com-
pares the original JDL algorithm of [20] and the KB STAP algo-
rithm of Figure 4.

Figure 6 plots the results of the original JDL algorithm with-
out attempting to compensate for array effects or nonhomo-
geneities. The plot is of the modified sample matrix inversion
(MSMI) statistic as a function of range and Doppler. The red spots
correspond to higher statistics, i.e., the red tend to correspond to
target detections. The figure shows that targets are detected in
almost all range and Doppler bins, including at extremely high

velocities. If using the origi-
nal JDL algorithm with
measured data, therefore,
one must deal with several
false alarms. Also, while the
second injected target is
clearly visible, the first tar-

get is not detected at all. This inability to detect the target is
because the second target is present in the secondary data while
attempting to detect the first target at range bin 290. The pres-
ence of a target-like nonhomogeneity in the secondary data
makes detection of a weak target practically impossible.

The KB processor, illustrated in Figure 4, matches the pro-
cessing to the interference in that it uses JDL processing in the
homogeneous range cells and hybrid processing in the nonho-
mogeneous cells. Figure 7 plots the AMF statistic obtained by
using the KB processor. The improved discrimination, as com-
pared to Figures 6, between a few target signals and residual
interference is clear. The first target is now clearly visible. This
is possible because the NHD treats the second injected target as
a nonhomogeneity, and it is eliminated from the secondary data
while processing the range cell corresponding to the first,
weaker, injected target. The KB processor can, therefore, detect
weak targets buried in nonhomogeneous interference.

The final step in determining the presence or absence of a
target is to apply a threshold to the MSMI statistic of Figures 6
and 7 to yield target declarations. Here, a target is declared at all

[FIG5] Location and transmit direction of the MCARM airplane during acquisition 575.
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points with an estimated MVDR statistic of greater than 40.
Figures 8 and 9 plot the declared target locations as a function
of Doppler and range. These locations are correlated with the
map of Figure 5. In Figure 8, note the extremely high number of
false alarms. Also, as in Figure 6, the weak injected target is not
detected. On the other hand, nearly all the target declarations by
the KB processor in Figure 9 corre-
late directly with major highways in
Maryland and Delaware illuminated
by the radar mainbeam. Routes 290
and 301 in Maryland are closely
spaced at a range of 9.0 and 9.8 mi.
Accounting for the platform motion,
the ground speed of the target(s) is
approximately 50 mi/h.

The target detections at the far
range shown in the plot are
between 19.4 and 20.4 mi. The
range to Route 9 varies between
19.1 and 21.1 mi within the trans-
mit mainbeam. These far range
detections therefore correspond to
Route 9. The targets detected at
these ranges are present in both
Figures 8 and 9.

A LONG-TERM VIEW
Several years of research has shown
that KB approaches are essential for a
practical implementation of STAP in
airborne radars. The twin issues of
data nonhomogeneity and adequate
data support necessitate real-time
analysis of the received data and the
choice of an appropriate adaptive
algorithm (with its associated param-
eters). As shown in Figure 3, there
are several knowledge sources that
make the decision process more
effective. Furthermore, as the refer-
ences show, recent research has
developed the many pieces of the
overall knowledge-aided STAP puzzle.

The fundamental question that is
yet to be addressed is feasibility. As
must be clear, STAP by itself is a
computationally complex process.
Receiving, basebanding, and pro-
cessing multichannel signals in real
time places an enormous burden on
available digital signal processing
technologies. As it stands, KB STAP
will require several orders of magni-
tude gains in available computation
capabilities. Furthermore, as is

TARGET 1 TARGET 2
AMPL 1 × 10−4 1 × 10−3

ANGLE BIN 1◦ 1◦

DOPPLER −9 ≡ −139.5 Hz −9 ≡ −139.5 Hz
RANGE BIN 290 ≡ 16.2 Mi 295 ≡ 16.575 Mi

[TABLE 1]  PARAMETERS DEFINING THE INJECTED TARGETS.

[FIG7] KB processor matching the STAP algorithm to the interference scenario.
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[FIG6] JDL processing ignoring array effects and nonhomogeneities.
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readily apparent, there is no single best solution, and every
choice involves a tradeoff. The feasibility of implementation of
KB STAP needs to be examined on a case-by-case basis. The
computational requirements, storage, access, and communi-
cations overhead in addition to system considerations such as
size, weight, power, and cost will dictate the implementation
of KB STAP for each application of interest. We predict that
looking forward, it will be these factors that limit what will or
will not be implemented. 

CONCLUSIONS
This review has attempted to provide the reader an intuitive and
theoretical basis of STAP. The focus has been on the importance
of STAP, the fundamental issues that have guided research in
this area. Two central problems arise in the application of
STAP—the issue of computation load and the homogeneity of

the sample support needed to train the adaptive filter. There
have been several algorithms to address either of these issues,
the key concepts of which have been presented here. However,
most researchers would agree that there is no one best algo-
rithm, and the only practical approach is to use a KB scheme
that best matches the signal processing to the interference sce-
nario at hand. This matching could be in the choice of adaptive
algorithm including its parameters, the scheme used to distin-
guish nonhomogeneities and the training data used.

We presented an example of using a preliminary KB proces-
sor on measured data. The example illustrates the immense
potential of KB approaches in detecting weak targets and reduc-
ing false alarm rates. However, it must be emphasized that the
algorithm used is extremely simple—in fact, the example
emphasizes the vast amount of work remaining, such as that
undertaken in the KASSPER program. 
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[FIG8] Target declarations using JDL ignoring array effects and
nonhomogeneities.
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