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ABSTRACT

A new algorithm for parametric localization of multiple incoher-
ently distributed sources is proposed. Our algorithm is based on
an approximation of the array covariance matrix using central and
non-central moments of the source angular power densities. Based
on this approximation, a new computationally simple covariance
fitting-based technique is proposed to estimate these moments. The
source parameters are then obtained from the moment estimates.
Compared to earlier algorithms, our technique has lower compu-
tational cost and obtains the parameter estimates in a closed form.
Also, it can be applied to scenarios with multiple sources that may
have different angular power densities while other known methods
are not applicable to such scenarios.

1. INTRODUCTION

In most applications of array processing, source localization meth-
ods are based on point source modeling, where it is assumed that
the energy arriving on a sensor array originates from multiple point
sources. In terms of direction finding, this means that the source
energy is assumed to be concentrated at discrete angles which are
referred to as the Directions-Of-Arrival (DOA’s). Based on this as-
sumption, several high-resolution direction finding methods have
been proposed to estimate the source DOA’s. MUSIC [1] and
ESPRIT (2] are representative examples of such methods. How-
ever, in numerous applications such as sonar, radar and wireless
communications, signal scattering phenomena may cause angu-
lar spreading of the source energy. Hence, in such cases the dis-
tributed source model is more appropriate than the point source
one.

Several techniques have been proposed for distributed source
localization and DOA estimation of sources with imperfectly co-
herent (randomly distorted) wavefronts', see [3]-[15] and refer-
ences therein.

In the present paper, we develop a new algorithm for Incoher-
ently Distributed (ID) source localization. We use the Taylor se-
ries expansion of the array response vector to approximate the ar-
ray covariance matrix using the central or non-central moments of
the source angular power densities. Based on this approximation,
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we propose a covariance fitting optimization to estimate these mo-
ments. We show that the source central angles and angular spreads
can be obtained from the central and non-central moments. Us-
ing the second central moment of the source angular power den-
sity as a measure of angular spread, we propose a simple way to
estimate this parameter in the presence of sources with different
angular power densities. The algorithm developed is applicable to

- the multiple source scenarios and, unlike the DSPE and DISPARE

algorithms [3]-[4], it does not require any spectral search. As a re-
sult, the proposed method has lower computational cost than these
techniques and outperforms the ESPRIT-based estimator presented
in [9].

2. SIGNAL MODEL

Assume that stationary signals with the same central frequency wo
impinge on an array of p sensors from g distributed narrowband
far-field sources. The output of the ith sensor of the array is given
by

sm(0,%,,,t) ai(0) db + n;(t) (¢))
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where s, (8,,,,t) is the complex random time-varying angular
distribution of the mith source, a;(8) is the response of the ith sen-
sor to the unit energy source emitting from the direction 6, 9, is
the location parameter vector of the mth source, and n;(t) is the
additive zero-mean spatially white noise in the ith sensor. Exam-
ples of the parameter vector ), are the two angular bounds of a
uniformly distributed source, or the mean and standard deviation
of a source with Gaussian angular distribution. Equation (1) can
be rewritten in the vector form as

2= [ @b 0a@d 00 @
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where z(t) £ [z1(t), ..., 2, ()], n() £ [ (), .., np(®)]T,
and a(d) £ [a1(8), . . .,ap(8)]” are the array observation, sensor
noise, and array response vectors, respectively, and ()T denotes
the transpose. Assuming that the sources and noise are uncorre-
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lated, the covariance matrix can be written as

R.. £ E{z(t)z" (1)}
q q % %
=22 [ [ pen i)
m=ln=1"y “p
2 2
-a(0)a(0')dodo + o°1 )
where o2 is the unknown noise power, I is the identity matrix,

E{-} is the statistical expectation operator, and (-)# denotes the
Hermitian transpose. The function

Prmn (8,059, %) £ E{sm(8,%,,,t)50 (6, 90,,1)} (4

is termed as the angular cross-correlation kernel, where (-)* stands
for the complex conjugate.

Throughout the paper, we will consider the ID source model.
A distributed source is said to be ID if its components arriving
from different directions are uncorrelated. That is, for the mth
source we have

P (6,639 1, ¥r) = 0 P (6,%,,) 66 =6 (5)

where 6(6 — ') is the Dirac delta-function, o7, is the power of
the mth source, and pr, (8,4, ) is its normalized angular power
density. The index m in pm (8, 1p,,,) is used to emphasize that the
sources can have different parameterized angular power densities.
Note that

/2

[ oo wmas=1,
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m=1,2,...,q 6)

Let us assume that all distributed sources are mutually uncorre-
lated. Then, we can rewrite (4) as

P (8,83 %,,0,) = 02 P (8,4,,)6(0 — 8') . (D)

where é,,n is the Kronecker delta. Using (7), we can represent (3)
as

q /2

Roz= /

m=1

~-n/2

o2 pm(0,%,,) a(8) a” (0)dd + o°I  (8)

For further convenience, let us define the central angle of the
mth source as the mass center of the source angular power density:

/2
f epm(9,1/’m)d9 /2

for & T2 = [ oo ®
J pm(6,9,)d0 /2
—m/2

The source central angles form the vector
00 = 601,002, - ,00q)" (10)

Next, let us define the nth non-central_moment of the angular
power density of the mth source around 8o, as

w/2
[ @by puiowas an

—m/2

Mnm (§0m) é

where 50m is an arbitrary angle and, for the sake of brevity, we use
the notation where the dependence of M., on 2, is not shown
explicitly.

In what follows, fo,, will be viewed as a coarse initialization
of the true central angle 6o,,. If fom = Bom then Mnm(a%m)
becomes the nth central moment Mpm(8om) of the mth source
angular power density. The following Lemma is of key importance
for our subsequent derivations.

Lemma 1: For the mth source, the value of the first non-central
moment around an arbitrary angle §o,» determines the deviation of
fom With respect to the central angle 8o, .

Proof: See [16] O

Therefore, given some estimate for the first non-central mo-
ment, we are able to estimate the source central angle.

In what follows, we assume that the angular distribution of
each source is determined by the normalized angular power den-
sity which is a non-negative function parameterized by two param-
eters: the central angle and the angular spread. We also assume
that different sources may have different shapes of their angular
distribution function. However, for each source, we assume that
we know the shape of the angular power density function (for ex-
ample, we know whether it is Gaussian or uniform), but we do not
know the parameters of this shape which have to be estimated.

3. COVARIANCE MATRIX APPROXIMATION

In this section, we show that the array covariance matrix can be ap-
proximated using a few non-central moments of the source angular
power densities. ‘

Consider an I-term Taylor series approximation of a(8) arou-
nd 90m

I-1
JOEDY 37(0 ~ Bom)*a” (Bom) 12
i=0

where a(? (fo,.) = a(fom) and

d'a(8)

o (fom) = =25, 0=y

13)

Inserting (12) into (2), we obtain the following approximation of
the snapshot vector:

q I-1

LOEDIDY % im (Bom, ., )2 Gom) + () (14)
m=11:i=0
where
/2
im (Bom, Yo, 1) = / (8 — Bom ) s5m(8,9,,,t)d0  (15)
—-n/2

The following Lemma holds for aim (fom, ¥,,,, 1)
Lemma 2: For uncorrelated ID sources,

E{ctim@om, ¥, t)in Bon, ¥, )}
= 028mn M 41ym(Bom) (16)

Proof: See [16]. a
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Using the results of Lemma 2, and neglecting the terms which
contain moments with the orders higher than I — 1, we get

R.. ~R+7°1 an
where
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7! a6 =00
In (19), we use the followmg property of the derlvatlve operator:
(u0)) = i C‘u(‘ (*=%) where C: £

2 s
4. COVARIANCE FITTING

The covariance fitting scheme (sometimes referred to as the co-
variance matching approach) has been frequently used for dis-
tributed source localization (see [5], [7], [8], [10], [12] and ref-
erences therein). In this section, we derive a new computationally
simple covariance fitting-based direction finding algorithm.

Using the LS criterion and equations (17) and (18), let us min-
imize the function

f(m(éo),éo) é ”ﬁzz - R - 021”2

q I-1
= ”RII _Z Zaanrm(GOm)Crm (00711)

m=1r=0

- (20

where R, = ~ Et 1 :r:(t)w (t) is the sample covariance
matrix, and the vectors 90 = [001, foz, - - 004] m(00)
[m{ (o), m3 (Bo2), - » My (BOG)a 17, and M (fom) £
a1, Mlm(b‘o,n) Mzm(l%m), <y M- 1)m(00m)] contain the
model parameters.

Assuming some initial value Bo for the vector 8¢, we find the
estimate of m (o) as

m(0o) = argmintr{(Ro. — (R+0°1))?} (21

where tr{-} denotes the trace operator.
Differentiating f(mm(60), o) with respect to the ith i =
1,2,---,qI) element of m(8y), we get

8f(m(Bs), 60)
8[m(8o));

qg I-1
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+2tr{C1(Bor) }[m(80)]qr 41— 2tr{Rea Cri(for)} (22)

>
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where [-]; denotes the ith element of a vector. Here, it is assumed
thate = (I-1)I+k+1 (0 < k < I; 1 €1 < m). Differentiating
F(m(Bo), Bo) with respect to the (qI + 1)st element of m(8y),
we have

3f(m(8o), o)

T S e @o)larns
qg I-1
=23 ") tr{Crm(Bom)Hm(B0)](m-1)14r+1
m=1r=0
+2p[m(é0)]q1+l -2 tr{Rzz} (23)

Then, equating (22) and (23) to zero and rewriting these equations

in the vector form as [f{, f3, ..., fir41]" = 0, after straightfor-
ward manipulations, we have
Q(80)m(Bo0) = p(Bo) 24
where
[QB0)]i; 2 tr{Cki(601)Crm(fom)} (25)
[}7(90)]1 é tr{ckl(éol)ﬁzz} (26)

forz~(l—1)I+k+1 j=m-DI+r+11<I,m<q
0<k,i<I;and

[Q(80)),141,; £ tr{Crm(fom)} @n
[Q(éo)]j,ql+l £ tr{crm(éOm)} (28)
[Q(éo)]q1+1,q1+1 £ p 29)
[p(éo)]qI-H 2 tr{R..} (30)

The solution to (24) is given by’
m(80) = Q" (80)p(Bo) (3D

Using (31), we estimate the non-central moments, and then,
using Lemma 1, the central angles can be estimated as

éOm = Mlm(éOm) + e.Om (32)

where M ((%m) is the first estimated non-central moment of the
angular density of the mth source.

Note that 8oy, is an arbitrary angle. However, it is important to
select 90m as close as possible to 6o, to maintain the estimation
errors reasonably small.

When the central angles are estimated, we can obtain the es-
timates of the central moments, Mnm(égm) (m=1,2,...,9),
by means of solving the system (24) again with fom replaced by
fom. Hence, the estimation algorithm should involve two stages.
In the first stage the non-central moments and, consequently, the
central angles are estimated, while in the second stage the cen-
tral moments can be obtained using previously estimated central
angles.

According to our assumptions, the angular power density of
each source is determined by its central angle and angular spread.

21f the matrix Q(8o) is singular or ill-conditioned, one can replace its
inverse by pseudoinverse. However, note that in our simulations (based on
multiple simulation runs, see below) there was no single run where this
matrix became singular or ill-conditioned.
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Fig. 1. RMSE of the central angle estimates versus the SNR; first
example.

It is clear that all central moments are related to the second param-
eter. The functional form of the angular power density determines
this relationship, see [16] for more details. Hence, having one of
the even-indexed central moments and assuming a certain para-
metric angular power density, we can estimate the angular spread.
For example, using the estimate of the second central moment we

have that A,, = \/31\2’2”,(90,,1) and A,,, = \/Mz,n(éom) for
Uniformly Incoherently Distributed (UID) and Gaussian Incoher-
ently Distributed (GID) sources, respectively [16].

The estimates of the source central angles can be refined by
an jterative algorithm in which the estimates of the source central
angles are used in (31) instead of fom, m = 1,2,...,q. This
refinement procedure can be iterated a few times to improve the
estimates.

Now, we can summarize our algorithm as follows:

e Step 1. Compute the sample covariance matrix Rz
and specify the initial values of fom, m =
1,2,...,q

o Step 2. Compute 72(Bo) from (31) and find the esti-
mates M1, (Gom), m = 1,2,...,g from the proper
elements of the vector 7in(6o).

e Step 3. Update Bom = Bom + Mim(fom) and set
éom = éom.

o Step 4. Repeat steps 2 and 3 a few times. Compute
Q(@o) and p(éo) from (25)-(30). Then, using (31),

calculate the' vector 77(@o) and obtain Mz, (form)
from the proper elements of this vector.

e Step 5. Estimate the source angular spread from
the previously estimated second central moments
Mzm(90m), m= 1, 2, ey Q.
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Fig. 2. RMSE of the angular spread estimates versus the SNR; first
example.

5. SIMULATION RESULTS

We assume a ULA of p = 11 omnidirectional sensors spaced half
a wavelength apart and N = 500. 100 independent simulation
runs are performed to obtain each simulated point. Our algorithm
is implemented with I = 3 and using three iterations of steps 2 and
3. All initial values of om, m = 1, ..., ¢ have been chosen far
enough from the true central angles, so that the difference between
these initial values and the true central angles is larger than that
between the true central angles and their estimates obtained by
means of conventional beamformer.

In the first example, we assume two distributed sources. One
of them is UID with the central angle fo; = 10° and the angu-
lar spread 2A; = 5°. The second source is GID with the central
angle 6o = 30° and the angular spread 2A; = 3°. In this ex-
ample, we compare our method (with the initial values 8p; = 5°
and fg2 = 35°) with the ESPRIT-based method [9]. To simu-
late the ESPRIT-based algorithm in a proper way, two identical
11-element ULA’s with the half-wavelength interelement spacing
have been assumed and the inter-subarray displacement A/10 has
been chosen, where A is the wavelength. Figures 1 and 2 dis-
play the RMSE’s of the estimates of the central angle and angular
spread, respectively. From these figures, we see that our method
essentially outperforms the ESPRIT-based approach.

In our second example, we consider the case of two sources
but, in contrast to the previous example, these sources are closely
spaced. The first source was modeled as a UID source with 6y =
10° and 2A; = 3°, while the second source was GID with g2 =
17° and 2A, = 2°. Similar to the previous example, our method
(with the initial values 801 = 5° and fo2 = 22°) and the ESPRIT-
based algorithm are compared. Figures 3 and 4 show the RMSE’s
of the estimates of the central angle and the angular spread, re-
spectively. Again, our technique substantially outperforms the
ESPRIT-based algorithm.
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Fig. 3. RMSE of the central angle estimates versus the SNR; sec-
ond example. ’

6. CONCLUSIONS

We have presented a new parametric approach to localization of
multiple incoherently distributed sources in sensor array. Our al-
gorithm approximates the covariance matrix using central and non-
central moments of the source angular power densities. Based on
this approximation, a simple covariance fitting optimization tech-
nique is proposed to estimate these moments. Then, the source
parameters are obtained from the moment estimates. Compared to
the existing methods, our approach has a reduced computational
cost and is applicable to the multiple source scenarios with differ-
ent angular power densities.
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