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A New Choice of Penalty Function for Robust
Multiuser Detection Based onM -Estimation

Babak Seyfe and Shahrokh Valaee

Abstract—In this letter, we propose a new robust MUD, called
detector, for non-Gaussian noise. We consider the Gaussian-

mixture model for non-Gaussian or impulsive noise. Our tech-
nique outperforms the decorrelator and the minimax detectors in
highly impulsive noise. The proposed method uses a parametric
cost function, where the parameter is selected using the differ-
ence between the asymptotic variance of estimation error of the
detector and that of the minimax detector.

Index Terms—Impulsive noise, -estimation, minimax de-
tector, robust multiuser detection.

I. INTRODUCTION

RECENTLY, a robust multiuser detector (MUD) for
non-Gaussian noise has been proposed by Wang and

Poor [1]. This technique designs the optimum detector for the
worst-case (least-favorable) model. The minimax MUD has
a significant performance gain over the linear decorrelator in
impulsive noise. Wang and Poor use the minimax approach of
Huber [2] to design a MUD that has near-optimum performance
for a limited degree of impulsiveness of noise.

Other robust methods also exist in the literature. Vikalo et
al. [3] introduce a synthesis procedure to design finite impulse
response (FIR) MUDs based on and mixed
design techniques. In [4], the signature waveform mismatch
is addressed via second-order cone programming. Spasojevic
and Wang [5] propose a robust MUD technique based on
the slowest-descent search through the minimization of the
Huber penalty function. In [6], Tian et al. use multiple linear
constraints to preserve the output energy that is scattered in
multipath channels. Shahbazpanahi et al. [7] address the blind
multiuser receiver based on uncertainties in the covariance
matrices of the desired user signature and of the received data.

In this letter, we propose a novel nonlinear penalty function
for the -estimator. The proposed nonlinear penalty function
generates a detector that outperforms the minimax detector in
highly impulsive noise. We will refer to the proposed detector
as the detector.

II. SYSTEM MODEL

Consider a baseband-synchronous direct-sequence code-divi-
sion multiple-access (DS-CDMA) system. At any time instant,
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the received signal comprises the waveform of active users
plus the ambient noise

(1)

where is an matrix with the
columns , being the normalized signa-
ture vector of the th user, is
the diagonal matrix of the received signal amplitude, and

is the user symbol vector ( ,
); the superscript indicates transposition.

In (1), is a vector of independent and identically distributed
(i.i.d.) random variables. Let . Then, our model will
be

(2)

To estimate the vector , we need the sign of .

A. Minimax Multiuser Detection

It is well known that even a slight deviation of the noise den-
sity function from the Gaussian distribution causes a substantial
degradation of the least square (LS) estimate [1]. The robustness
of an estimator refers to its insensitivity to small changes in the
underlying statistical model [8]. The LS estimate can be made
robust by using the class of -estimators proposed by Huber
[2]. His approach has recently been used by Wang and Poor in
robust MUD [1].

Consider

(3)

where is an increasing function of the residuals, is the th
component of the th user’s signature waveform, is the th
component of , and is the th component of . Let have
a derivative . Then, the solution of (3) satisfies

(4)

where for any ,
and denotes the -dimensional zero vector. An estimator
defined by (3) is called an -estimator. Note that for

, the conventional maximum-likelihood (ML) esti-
mator is obtained; hence, the name -estimator.

The robust minimax MUD, as suggested in [1], uses the fol-
lowing derivative of the penalty function:

if
if

(5)
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where and is the noise variance. It has been
shown that for a noise with moderate degree of impulsiveness,
the bit-error rate (BER) of the proposed minimax detector is
close to that of the ML detector [1]. In the following section, we
will propose a new penalty function for the -estimator that
has a better performance than the minimax detector for highly
impulsive noise.

III. THE DETECTOR

The minimax MUD is designed for the worst-case (least-fa-
vorable) density function of noise [1]. Huber [2] states that it
might be worthwhile to increase the maximum risk slightly be-
yond its minimax value in order to gain a better performance at
very long-tailed distributions. Hampel [8] shows that, to achieve
robustness, it is necessary for the to be bounded and con-
tinuous. Most -estimators use a monotone increasing function
for . However, it has been shown that there exists a family
of nonmonotone increasing functions that begets a very good re-
gression estimator [9]. It can be shown that in most cases, non-
monotone functions have the same behavior as the mono-
tone increasing functions [10]. In this section, we devise a new
robust MUD for non-Gaussian noise using a nonmonotone .

We start with using the Gaussian-mixture model of noise that
is defined as a noise with the probability density function (PDF)

(6)

where indicates the probability that impulses occur,
and is the variance factor of the impulsive component.
The Gaussian-mixture model (6) serves as an approximation to
the more fundamental Middleton Class-A noise, and has been
used extensively to model physical noise in radio and acoustic
channels [1].

We propose the following derivative of the penalty function
that exponentially suppresses the large values of noise:

(7)

We note that for large values of noise, is exponentially
decreasing. Therefore, we expect that the proposed detector will
substantially suppress excessive noise amplitudes.

Using (7), we get the following penalty function for our
detector:

(8)

where is a parameter of design and is a constant. Note that
the performance of the detector does not depend on . Therefore,

can be chosen arbitrarily. is a function that increases
less rapidly than . We call the detector that is generated by
this nonlinearity the detector. Fig. 1 illustrates the nonlinearity
of the ML estimator ( ) for Gaussian-mixture noise,
and also the penalty function of the detector for two values of

and for . In this figure, for the
Gaussian-mixture model, we have , , ,
and , , . Note that at each case, the penalty
function of the detector can be viewed as an approximation to
the penalty function of the corresponding noise model.

Fig. 1. Penalty function �(x) of the ML estimator of the Gaussian-mixture
model, and the penalty function of the � detector for � = 0:1 and � = 0:2.

Swami and Sadler [11] propose a nonlinearity which is sim-
ilar to the detector, but not identical. Unlike the detector,
their proposed nonlinearity has two breakpoints and some con-
trol parameters. A nonlinearity similar to (8), with a minor dif-
ference, was used by Holland and Welsch [9], [12] for a dif-
ferent application. As indicated by Zhang [12], it is very diffi-
cult to select a penalty function for general use. It seems that
each penalty function has superior performance in some appli-
cations. Our study shows that our proposed detector has a better
performance, as compared with minimax and decorrelator, for
MUD in highly impulsive noise.

For and small values of , our detector tends
to the linear case (decorrelator). To show this, note that

(9)

where is the Euclidean norm of vector . Then, is the
decorrelator detector [1]. Also note that for , we have

. Therefore, for input samples with large ampli-
tude, the penalty function of the detector does not increase.
However, the penalty function of the ML estimator increases
with , and therefore, the ML estimator is not robust [8]. The
influence function (IF) (or influence curve) is the most useful
heuristic tool of robust statistics. By definition, an estimator is
robust if its IF is bounded [8]. Since is bounded and
has continuous derivatives, the detector has a bounded IF, and
hence, is robust.

We use an iterative Newton-type algorithm to estimate the
data vector . Let be the estimate of at the th step. Then,
the new estimate of is given by

(10)

where is a constant step size and indicates

the member-wise application of to the elements of the
vector . The algorithm (10) converges if we use the
ML estimation of in Gaussian noise for [9].
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A. Selecting and Computing the Performance

In this subsection, we devise a method to select an appropriate
value for the parameter in the proposed detector. We select
by comparing the asymptotic variance of the estimation error of
the proposed detector with that of the minimax detector. We use
the minimax detector in the Gaussian-mixture noise model, and
then set for the desired range of noise impulsiveness.

It can be shown that, within mild regularity conditions, the
asymptotic variance of estimation error for an -estimator of

, at the noise probability distribution function , is given by
[2]

(11)

For the detector and in Gaussian-mixture noise, after algebraic
manipulations, we have

(12)

Wang and Poor [1] compute the asymptotic variance of estima-
tion error, , of the minimax MUD for Gaussian-mixture
noise.

To choose the value of , we compare the asymptotic variance
of estimation error of the detector with that of the minimax (as
a standard suboptimum) detector. We define a distance measure
as

(13)

where the limits and are selected so as to span
the range of variation of the noise-model parameters. Our obser-
vations show that is a positive function of and has a
unique minimum, therefore, it is an appropriate distance metric.
Indeed, (13) is the -norm in the space of integrable functions
on the rectangle .

Fig. 2 illustrates as a function of the control param-
eter for and . It shows that the
minimum distance between the variance of the two detectors,
for the given range of and , is located at . Note
that is a function of the range of variations of and . For
each application, the range of variations of and should be
measured and used to select an appropriate . Since we are in-
terested in and , in the following,
we will use .

We study the performance of the detector by comparing its
asymptotic variance with that of the ML estimator. The penalty
function of the ML detector for any noise model is

. Then, the asymptotic variance of estimation error
for the Gaussian-mixture noise will be the inverse of the Fisher
information [2]. We find the asymptotic variance of the estima-
tion error of the ML estimator for Gaussian-mixture noise and
use it to get the relative efficiency (RE), defined as

(14)

Fig. 3 illustrates as a function of and . Here,
we have assumed and . Note

Fig. 2. Distance between the asymptotic variance of the estimation error of the
� detector and that of the minimax detector for 0:01���0:1 and 1���100.

Fig. 3. RE of the � detector to the ML detector as a function of � for � =
10; 50;100, � = 0:15;1, and the noise variance (1� �)� + ��� = 1.

that for and large values of and (highly impulsive
noise), the asymptotic variance of the estimation error of the
detector approaches that of the ML detector. It means that the

detector has a good performance in highly impulsive noise
for . This figure also shows that for , the pro-
posed detector has a good performance in impulsive noise. For
instance, the detector has a performance near the ML perfor-
mance for , , and .

IV. SIMULATION RESULTS

Consider a synchronous DS-CDMA system in which the
spreading sequence for each user is a shifted -sequence [1].
Noting that -stable distributions are the well-known models
for impulsive noise, we use the Gaussian-mixture noise model
that is a very good approximation of -stable distributions
[5]. The signal-to-noise ratio (SNR) is defined as the ratio of



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 53, NO. 2, FEBRUARY 2005 227

Fig. 4. BER versus SNR in a synchronous DS-CDMA system with Gaussian
and impulsive noise for the � detector (� = 0:15; 1), the minimax detector,
and the ML detector. Here, N = 31, K = 6, � = 0:1, � = 100, the power
of the desired user (the first user) is P = P , and the powers of the interferer
users are P = P , P = P = 2P , and P = P = 4P .

the received signal power to the noise variance. As the initial
condition in the recursion (10), we use the LS solution of .

Fig. 4 illustrates the performance of three detectors for the
Gaussian and impulsive noises. The processing gain of the
DS-CDMA signal is , and the number of users is

. The impulsive noise parameters are and
. Here, the second user has the same power as the

desired user (the first user). The third and the fourth users have
3 dB, and the fifth and the sixth users have 6 dB more power
than the first user. The figure shows that in Gaussian noise,
the detector for has a performance similar to the
minimax detector, but for , it performs worse than the
minimax detector. The figure also shows that the detector

has a considerable gain over the minimax detector in highly
impulsive noise. As noticed, the detector can easily handle
the near–far problem in CDMA networks.

V. CONCLUSIONS

In this letter, we have proposed a new penalty function for
robust MUDs based on -estimation. The proposed method is
called the detector. We have proposed a metric to select the pa-
rameter in the desired range of noise impulsiveness. We have
shown that for non-Gaussian noise, the detector outperforms
the minimax and the decorrelator detectors.
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