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Abstract— In this paper, we develop a cross-layer model
for downlink interference in heterogenous DS-CDMA wireless
cellular networks. In this model, interference is described as a
function of application layer parameters (traffic characteristics)
and physical layer variations (channel characteristics). We show
that for a heterogenous service DS-CDMA network, downlink
interference is a second-order self-similar process and thus has
long-range dependence. We then use the predictive structure
of total downlink interference to maximize non-realtime data
throughput. We use fractional Gaussian noise (fGn) to model the
self-similarity of downlink interference. In the proposed method,
the base-station uses an optimal linear predictor, based on the
fGn model, to estimate the level of interference. The estimated
interference is then used to allocate power to users. To maximize
data throughput, we use time domain scheduling. The simulation
studies confirm the self-similarity of downlink interference and
validate the fGn model. The simulation results also show a sub-
stantial performance improvement using the proposed predictive-
adaptive scheme and confirm that the interference model is still
valid after applying the proposed method.

Index Terms— Cross-Layer modelling, downlink interference,
DS-CDMA networks, fractional Gaussian noise, self-similar pro-
cess, time domain scheduling.

I. INTRODUCTION

APROMISING air interface technology for future wireless
communications is the direct sequence code division

multiple access (DS-CDMA), which has been shown to be
interference-limited [1]. Hence, exploiting the fluctuations of
the total interference for system performance improvement
is a major challenge of the next generation heterogenous
wireless networks. Several parameters operating in different
network layers beget interference fluctuation. They include, for
instance, the total number of active users, their call duration,
the allocated power to each call in the corresponding base-
station, channel variation and user mobility. In this paper, we
use a cross-layer approach [2] to model downlink interference
as a time-series. In the cross-layer modelling, for a given time-
scale of interest, the physical layer knowledge of the wireless
medium is shared with higher layers to develop comprehensive
models in the corresponding time scales.
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The time variations of the interference has been studied in
[3], where it has been observed that the total interference in
a data-centric DS-CDMA system is a self-similar process. It
has been shown in [3] and [4] that the source of self-similarity
of the total interference is the user traffic characteristics. The
predictive structure of the self-similar interference is then used
in [3] and [4] to develop resource management algorithms;
they use a predictive mechanism to adjust transmission rate
with the variations of total downlink interference.

In [5], we have shown that under certain conditions, the total
downlink interference for a heterogenous cellular network is
a self-similar process and thus has long-range dependence. In
our heterogenous model the network serves a mixed traffic
of real-time services and non-realtime services with non-
Poisson traffic characteristics. User traffic characteristics and
channel fading process are the two parameters that create
self-similarity in downlink interference. We have also shown
in [5] that the conditions for the self-similarity of downlink
interference are more general than those proposed in [3] and
[4]. The proposed model is cross-layer since both physical
characteristics of the wireless channel and user traffic param-
eters are used in the model. The long-range dependence of
downlink interference is valid in time-scales of the order of
that used in rate control and admission control.

The present paper utilizes the predictive nature of self-
similar model of interference to develop a novel cross-layer
adaptive-predictive radio resource controller. In this paper, we
model the self-similarity of the total downlink interference
with the fractional Gaussian noise (fGn) [6] and then design
an optimal predictor. Note that a substantial simplification is
possible for Gaussian self-similar processes; i.e. an infinite
family of distributions can only be represented by three
parameters over the entire scaling region. The three parameters
are the mean, the variance, and the self-similarity index. The
optimal predictor is then used in a time domain scheduler to
maximize non-real time data throughput. We show that the
proposed fGn model for the downlink interference is valid
even after using the proposed scheduler. The application of
optimal linear predictor on the fGn model is simple and can
easily be realized in either mobile terminal, base-station, or
radio network controller.

In the proposed method, the mobile terminal measures the
received downlink interference in each time slot. A linear
predictor is then employed to estimate the interference level
in the next time-slot based on this measured value and the
stored interference levels in the past. The model parameters
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are also adaptively adjusted based on the stored interference
values. The estimated interference is then used in base-station
or radio network controller to allocate power to users over the
next time-slot. First, power is allocated to real-time traffics
and then the remaining power is assigned to users with best-
effort service. We use a time domain scheduler [7] to maximize
the throughput of non-realtime data traffic. In time domain
scheduling, over each time interval, the total power is allocated
to a single user with the rest of the users kept silent. The
temporal extent of the interval depends on the user data rate,
the average channel conditions, and the available power.

We simulate a heterogenous DS-CDMA network based on
the Universal Mobile Telecommunication System (UMTS)
standard [8]. We validate the model and observe self-similarity
in total downlink interference when the call duration—of at
least one service—has a heavy tail distribution. The self-
similarity of downlink interference persists even after the time
domain scheduler is applied. Simulation results show that fGn
is an appropriate model for downlink interference. We also
study the non-realtime data throughput of this scheme by
locating the call admission region. The simulation results show
that our proposed method provides a higher throughput than
other competing schemes.

Organization of this paper is as follows. The interference
model and the results on the self-similarity of the interference
are presented in Section II. In Section III, we discuss the
proposed method. The simulation results are presented in
Section IV. The paper is concluded in Section V.

II. INTERFERENCE MODEL

In a DS-CDMA cellular network, the total downlink inter-
ference, I(n), is a weighted sum of the transmitted power of
base-stations (BSs), P c(n), for n ∈ Z, Z = {. . . ,−1, 0, 1, . . .}
and c = 1, . . . , NC , where NC is the number of cells in the
network,

I(n) =
NC∑
c=1

ξc(n)P c(n)gc(n). (1)

The weight coefficients are the corresponding channel gains,
gc(n), and the average normalized cross-correlation, ξc(n),
between the user’s signal and the received signals of other
users. The two processes gc(n) and ξc(n) are stationary
processes independent of P c(n). Each sample of I(n) is valid
over a window of length Tw seconds, the modeling time scale.
We assume that Tw � Tc, where 1/Tc is the spreading
bandwidth of the cellular CDMA network. Without loss of
generality, let the user under study be located in cell 1. In (1),
we assume that the power allocated to that user is not included
in P 1(n).

To study I(n), we assume that a regular power transmission
regime is applied network-wide, in which the transmitted
power by any BS is not substantially higher than the transmit-
ted power by other BSs. This assumption is practically valid if
a load balancing mechanism is applied in the cellular network.

In time-slot n, each BS serves a set of active users (calls)
in its coverage area, therefore the transmitted power by the
BS c, P c(n), is the sum of allocated powers to all calls in the

corresponding coverage area,

P c(n) =
J∑

j=1

∑
i∈N

pc
ji(n − υc

ji + 1), (2)

where J is the number of services provided by the network,
N = {1, 2, . . .}, pc

ji(.) is the allocated power of call i of service
j of cell c, and υc

ji ∈ Z is the start time of the ith call in cell c
that receives service j. Calls are enumerated by i in the order
of their arrival, such that in each cell c, υc

ji ≤ υc
ji+1. For the

ith call of service j in cell c with a call duration of τ c
ji ∈ N

seconds, pc
ji(.) is the allocated power in its call duration, and

is equal to zero otherwise.
To characterize I(n), we first need to obtain the characteris-

tics of P c(n) and gc(n). We assume that for each given cell c
and service j, the call duration sequence process {τ c

ji, i ∈ N},
the new call arrival rates sequence process {μc

ji(.), i ∈ N},
and the allocated power sequence process {pc

ji(.), i ∈ N}
are independent and identically distributed (i.i.d.) random
processes. We denote τ c

ji, μc
ji(n) and pc

ji(n) by the generic
random variables τ c

j , μc
j(n) and pc

j(n), respectively.
In this model, the traffic characteristics of a user of service

j is specified by three processes, μc
j(n), τ c

j and pc
j(n), where

pc
j(n) is a function of the service type j, the bit-rate, and the

power allocation strategy in the network. In [5], we show that
the downlink interference can be completely specified by traffic
characteristics corresponding to different services provided by
the network and channel processes, gc(n), for all c. Here, we
briefly review the models we use in this paper for new call
arrival process, call duration process, allocated power process,
and wireless channel process.

1) New Call Arrivals: Assuming that the arrival rate of new
calls for each service type is less than the value for which the
network was designed, we show in [5] that, using a regular
interface based call admission control, the Poisson distribution
is an appropriate model for call arrival μc

j(n),

Pr{μc
j(n) = ν} =

(λc
j)

νe−λc
j

ν!
,

where λc
j is the arrival rate.

2) Call Durations: Here, we denote both packet duration
(for packet-oriented transmission) and call duration (for con-
nection oriented transmission) as “call duration”. For voice
service, an exponentially distributed call duration is assumed
[9]. For non-voice traffic, a general heavy-tail distribution is
considered (see e.g. [10]). A random variable X is said to be
heavy-tailed with infinite variance if for 0 < κ < 2, there exist
a slowly varying function L(x) such that as x → ∞,

P (|X| ≥ x) ∼ L(x)x−κ,

where the symbol ‘∼’ means behaves asymptotically as (i.e.,
φ(k) ∼ ϕ(k) means: limk→∞

φ(k)
ϕ(k) = 1). A function f(x) >

0, x ∈ R is called a slowly varying function if for all u ∈ R+,
f(ux)
f(x) → 1, as x → ∞. An example of a heavy tail distribution

is Pareto distribution:

Pr{τ = l} = η0l
−α−1,



where l ∈ N and
η0

Δ=
1

Σ∞
l=1l

−α−1
.

Pareto distribution has been used to model call durations (see
e.g. [10]).

3) Allocated Power to Each Call: For pc
j(n), we note that

for a given channel, the allocated power to a given user at
time-slot n is a concave function of its bit-rate [9].

4) Wireless Channel: We assume that the channel gain,
gc(n) is a second-order stationary process for c = 1, . . . , NC .
To obtain the channel gain gc(n), we assume a deterministic
distance-dependent path loss and two fading effects: fast
fading and shadowing. Note that fast fading (e.g., Rayleigh
or Rician) affects P c(n) in (1) in smaller time-scales than
the shadowing. Fast fading is also partly cancelled by the fast
power control. Moreover, the short-range effect of fast fading
is averaged out in longer time-scales such as Tw. Therefore,
we neglect fast fading and assume that the channel gain gc(n)
is given by

gc(n) = Lcd
−γc
c θc(n), (3)

where dc is the distance between the base-station c and the user
for which the downlink interference is measured, γc is the path
loss exponent which is a function of the antenna height and
the signal propagation environment, Lc is an environmental
constant, and θc(n) is the shadowing process. The shadowing
process θc(n), has a log-normal distribution with standard
deviation σc. The Gudmundson correlation model [11] is used
for log-normal shadowing as

Θc(n + 1) = ηcΘc(n) + (1 − ηc)νc(n), (4)

where the time-scale is Tf (fading period), Tf ≥ Tw, Θc(n) =
log θc(n) is the log-normal fading in dB, νc(n) is a zero-mean
white Gaussian noise with variance σ2

c (1 + ηc)/(1− ηc), and
0 < ηc < 1 is the channel correlation coefficient.

The auto-covariance function of gc(n) is denoted by Cc
g(k).

We further assume that

Cc
g(k) ∼ Lc

g(k)k−βc
g , k → ∞, (5)

where k denotes time with a temporal resolution Tw, Lc
g(k)

is a slow varying function, and βc
g > 0 is the channel

auto-covariance decay exponent. In [5], we show that (5) is
consistent with shadowing models in the corresponding time
scales.

A. Self-similarity of Downlink Interference

Here we restate the results in [5] where we show that the
total downlink interference in multi-service wireless CDMA
networks is an asymptotically self-similar process where the
self-similarity emanates from user traffic characteristics. First,
we present the definition of an asymptotically self-similar
process:

Definition [12]: A real-valued second-order stationary ran-
dom process I = {. . . , I(−1), I(0), I(1), . . .} is called an
asymptotically self-similar process (as-s), with self-similarity
index H = 1 − β/2, 0 < β < 1, if

lim
m→∞C(m)(k) =

C(m)(0)
2

(
(k+1)2−β−2k2−β +(k−1)2−β

)
,

(6)

where k ∈ Z+ , Cm(k) is the auto-covariance function of Im

that is the average process of I over blocks of length m.
In other words, a process I is as-s if the correlation

coefficients of the average process of block length m as
m → ∞ are identical to those of a self-similar process.
A sufficient condition for a second-order stationary process
I being asymptotically self-similar is that for k ∈ Z+,
k → ∞, the auto-covariance function of I , C(k), behaves
asymptotically as L(k)k−β , (i.e. C(k) ∼ L(k)k−β), in which
0 < β < 1, and L(k) is a slowly varying function [12].

Suppose that the downlink interference process, I =
{. . . , I(−1), I(0), I(1), . . .}, is a finite-mean, finite-variance
second-order stationary process. In the following proposition,
we derive the necessary conditions for the self-similarity of
downlink interference.

Proposition 1 [5]: Consider the downlink interference pro-
cess, I , and let βc

P , c = 1, . . . , C satisfy

J∑
j=1

λc
jPr{τ c

j = k}rc
j(k)(k) ∼ Lc

P (k)k−βc
P −2, k → ∞, (7)

where Lc
P (k) is a slowly varying function. Now, I is an as-s

process with self-similarity index H = 1−β∗/2 if there exists
at least one c such that 0 < βc

P < 1 or 0 < βc
g < 1, and

β∗ = min
c

min{βc
P , βc

g}. (8)

Proposition 1 gives the sufficient condition as a combination
of the service call arrival rate, λj , the service call duration
distribution, Pr{τj = k} for k → ∞, and the asymptote of
the correlation function of the allocated power, rc

j(k)(k), for
k → ∞.

III. THROUGHPUT MAXIMIZATION OF NON-REALTIME

DATA IN THE DOWNLINK

In this section, we introduce a fractional Gaussian noise
(fGn) model for the total downlink interference and use this
model to devise an optimal downlink interference predictor.
The predicted downlink interference is then used to allocate
the available power to non-realtime users. Finally, we utilize
time domain scheduling to maximize the throughput of non-
real time users with best-effort quality-of-service (QoS). The
block diagram of the proposed scheme is illustrated in Fig. 1.
In the following subsections, we discuss the sub-blocks of the
proposed system.

A. Model-based Optimal Downlink Interference Prediction

There are a number of well-known models for self-similar
processes [6]. If the variance and the self-similarity index,
H , of a zero-mean self-similar process are known—subject
to assuming an idealized Gaussian setting—the process can
be modelled by a fractional Gaussian noise (fGn) [6]. fGn
is a self-similar Gaussian process with the auto-covariance
function

γ(k) =
σ2

0

2
(|k + 1|2H − 2|k|2H + |k − 1|2H) , k ∈ Z, (9)

where σ2
0 is the variance and H is the self-similarity index.



Fig. 1. Model-based predictive-adaptive throughput maximization of non-
realtime data in the downlink.

We assume a large number of users in the coverage area
of the network. We also select an appropriate time-scale and
assume that the resource control mechanism does not alter the
total downlink interference model. The interference is then
modelled using a fGn process as follows:

I(n) = mI(n) + z(n), (10)

where mI(n) is the average interference of the process I(n)
measured over a large window of size K (i.e. (n−K,n−1]),
and z(n) is fGn. In our proposed scheme, the parameters of
the interference model in (11) are adjusted based on the past
interference measurements.

We use the correlation structure of the total received inter-
ference and the auto-covariance of fGn, (9), to propose the
following optimal linear predictor for the total interference
[13]

Î(k + 1) = mI(k) + (Γ−1γ)T (I(k) − mI(k)1M ), (11)

where Î(k+1) is the predictor of I(k+1), I(k) Δ= [I(k), I(k−
1), . . . , I(k − M + 1)]T is the M × 1 vector of stored
interference measurements, M ≤ K is the memory length
of the predictor, Γ is the covariance matrix with entities
Γij

Δ= γ(i− j), γ
Δ= [γ(1), . . . , γ(M)]T and 1M is the M × 1

identity vector; the superscript T denotes vector transposition.
The variance of the prediction error is

ε = γ(0) − γT
1 Γ−1γ1. (12)

In Fig. 2, we illustrate the variance of the prediction error
versus self-similarity index H for a fGn process with σ0 = 1
with three values of M . It is seen that, the variance of error
decreases with H . Also the variance of error is not sensitive to
the value of M for M ≥ 5. The figure shows that the optimal
linear predictor can be implemented using a small number of
measured interference samples.

1) Model Adjustment: Since self-similarity of downlink
interference emanates from user traffic characteristics, the
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Fig. 2. Variance of the prediction error versus self-similarity index, H , for
different values of M , for a fGn model with σ0 = 1.

application of the proposed scheme—and possibly other ra-
dio resource control mechanisms—would not alter the self-
similarity of the downlink interference; nevertheless it may
alter the model parameters. In this paper, this claim is validated
with simulations (see Section IV). To compensate the effect
of model parameter variations, we adaptively adjust the model
parameters in appropriate time scales. We assume that K
samples of the stored measured interference in the past are
available in the predictor.

For the estimation of the mean of the interference, a simple
weighted summation of measured values of total interference
is used for mean estimation as follows:

mI(k) =
1
K

k−1∑
m=k−K

I(m). (13)

The interference variance is also estimated as follows

σ0 =
1

K − 1

k−1∑
m=k−K

(
I(m) − mI(k)

)2
. (14)

To estimate the self-similarity index, H , we use an on-
line version of Abry-Veitch wavelet-based estimator in [14].
This method is based on performing a weighted least squares
fitting between the different octaves, j1, j2, j2 > j1, in a
multi-resolution platform using wavelet transformation. It is
straightforward to show that the computational complexity for
this method is in the order of O(K) [14]. The confidence
interval of the estimated self-similarity index, Ĥ , by Abry-
Veitch method is given in [14]:

Ĥ − σĤzβ ≤ H ≤ Ĥ + σĤzβ , (15)

where zβ is the (1 − β) quantile of the standard Gaussian
distribution, (i.e. P (z ≥ zβ) = β) and

σĤ =
( 2

(ln 2)22−j1K

)( 1 − 2J

1 − 2−(J+1)(J2 + 4) + 2−2J

)
,

(16)



where J = j2 − j1.
Note that in our proposed scheme the interference predictor

in Fig. 1, is implemented for all users including realtime
and non-realtime users. This interference predictor can be
implemented in mobile station, base-station or radio network
controller. In each case, the measured interference level should
be provided to the predictor in appropriated time-scales. The
base-station or radio network controller then uses the predicted
interference levels to evaluate and then allocate the available
transmit power in the next control window.

B. Downlink Power Allocation

Let G be the set of real-time calls (such as voice and mul-
timedia) served with guaranteed delay requirement and B be
the set of delay-tolerant calls served under best-effort service
category. For all users, the value of the total interference is
predicted in the next control window using the model in (10).
The parameters of the model, mI(n), σ0, and H , are evaluated
and adjusted based on the received interference, utilizing the
methods presented in Section III.A. Using an offset shift to
the required received bit energy to the interference-plus-noise
spectral density, Eb/I0, threshold, the power allocation to the
users in set G is performed conservatively. Therefore, after
allocating the remaining available transmission power to non-
realtime users, their Eb/I0 will be larger than or equal to
the actual required threshold. This offset is then adaptively
adjusted to satisfy the initial required Eb/I0 for the users in
G.

We assume that the total transmit power of the base-station
at time instant n is Pmax(n). This value may be set either
permanently in the network dimensioning phase or adaptively
by the radio network controller. Therefore, the available power
for non-realtime users in time-slot n, PA(n), is

PA(n) = Pmax(n) −
∑
i∈G

pi(n), (17)

where pi(n) is the allocated power to call i; we have dropped
the cell and service indexes for the brevity of discussion.

Here, our main objective is to maximize throughput of non-
realtime traffic. Thus, we consider the problem of optimal
allocation of PA(n) in the nth control window with length Tw.
Let t ∈ [nTw, (n+1)Tw) be the time variable and let pi(t) and
ri(t) denote the allocated power and the instantaneous rate of
the ith user, respectively. Define the average rate of user i over
time-slot n by

Ri(n) Δ=
1

Tw

∫ (n+1)Tw

nTw

ri(t)dt. (18)

The total number of data bits transmitted from traffic i over
time-slot n is Ri(n)Tw.

For a given value of PA(n) and N non-realtime traffics, we
assume there exist average rates Ri(n) such that

Ri(n) =
W

ρi
SIRi, i = 1, . . . , N, (19)

where ρi is the required Eb/I0 for user i, SIRi is the
received signal-to-interference ratio of user i and W = 1/Tc

is the spreading bandwidth. The objective is to provide the
average rate of Ri(n) for user i in Tw. If such rates can
be found for all users, we say that the rate vector R(n) Δ=
(R1(n), . . . , RN (n)) is feasible. For a feasible rate vector,
the total number of transmitted bits over the nth sampling
interval is given by

∑N
i=1 TwRi(n). For time-slot n, we define,

pn(t) Δ= (p1(t), . . . , pN (t)) and rn(t) Δ= (r1(t), . . . , rN (t)).
The power and rate are allocated so as to maximize the total
throughput defined as 1

T

∑N
i=1 TwRi(n) where T is the time

required to transmit the traffic of all users. Note that since
we have assumed a feasible rate vector, we will always have
T ≤ Tw.

We select rate vector rn(t) and allocate power pn(t) such
that the total throughput is maximized. Let R(n) be a feasible
average rate vector. If we assume that the total number of
transmitted bits is constant i.e.

∑N
i=1 TwRi(n) = B, then the

maximum throughput problem can be formulated in terms of
the total transmit time T :

min
pn(t),rn(t)

T (20)

s.t.
1

Tw

∫ T

0

ri(t)dt = Ri(n), i = 1, . . . , N (21)

N∑
i=1

pi(t) ≤ PA(n), 0 ≤ t ≤ T (22)

N∑
i=1

TwRi(n) = B. (23)

In this optimization problem, the first constraint, (21), selects
the rates ri(t) such that R(n) is feasible. We note that to
reduce T , it is beneficial to allocate the maximum available
power over the window [0, T ]. Therefore, the second con-
straint, (22), indeed holds with equality. Note that the power
should only be assigned to user i when it is larger than a
detection threshold; the users with the allocated power less
than the threshold are not selected for transmission in the
current control window. In other words, when the assigned
power is smaller than the detection threshold, the signal cannot
be detected and the allocated power will be wasted. The last
constraint shows that the total number of transmitted bits is
constant.

In the following, we show that the solution of (20)-(23)
belongs to the set of time domain schedulers. Time domain
scheduling is a scheme in which the total power is allocated
to a single user over the normalized (with respect to Tw) time
extent of φi seconds, where φi is the fraction of TW that
is allocated to user i. During this time extent, base-station
transmits only to user i; the rest of the users are kept inactive.
We assume that there exists a scheduling scheme T , that can
transmit Ri(n)Tw bits to user i, i = 1, . . . , N , within TT ≤
Tw seconds. Let T ≤ TT be a time extent in which T serves
more than one non-real time users (namely Q) simultaneously.
It is straightforward to show that equal amount of data can be
transmitted within TTDS < T for any T , where TTDS is the
time required in the time domain scheduling. Therefore, time
domain scheduling is throughput optimal. The basic idea is
that in time slot n, the feasible rates, Ri(n), are related to



TABLE I

SIMULATION PARAMETERS

Parameter Value
Number of BSs 19
Cell Radius 100 m
BSs Transmit Power 10 W
Physical Layer Based on UMTS
Power Control Fast Power Control 1500/s
Tw 10 ms
Standard Deviation of Fading 8 dB
Loss Exponent -4
Thermal noise density -174.0 dBm/Hz
Tf 100 msec
Eξ1 0.5
Services 12.2 kbps voice, 32 and 64 kbps data
12.2 kbps voice Eb/I0 = 5 dB, 5 Erlangs
32 kbps data Eb/I0 = 3 dB

Pareto Dist., α1 = 1.5, Eτ1 = 2 s
64 kbps data Eb/I0 = 2 dB

Pareto Dist., α2 = 1.8, Eτ2 = 1.5 s

the corresponding allocated power (see (19)). In T , the total
available power, PA, is simultaneously allocated to Q users.
In time domain scheduling, the total power is allocated to
user i over φiT seconds, which removes intra-cell interference
received from other non-real time users. We use this fact and
then through a straightforward mathematical derivation, we
show that

∑Q
i=1 φi < 1. Therefore, TTDS < T , this shows that

the solution of the optimization problem in (20) belongs to a
set of time domain schedulers.

Note that, if Ri(n) is a feasible rate, φi should be lower
bounded by Ri(n)/Rmax where Rmax is the maximum bit-
rate of the system.

IV. SIMULATION

To study the system performance, we consider a two-tier
hexagonal cell configuration with a wrap-around technique
[15]. A UMTS [8] cellular network, with a fast power con-
troller running at 1500 updates per second, is simulated. Cross-
correlation between the codes is assumed to be equal to
0.5. Three traffic types are used: 12.2 kbps voice (with the
required Eb/I0 = 5 dB), 32 kbps data (with Eb/I0 = 3
dB) and 64 kbps data (with Eb/I0 = 2 dB). We assume 5
Erlangs of voice traffic. For data traffics, we assume Pareto
call duration with α1 = 1.5, Eτ1 = 2 minutes and α2 =
1.8, Eτ2 = 1.5 minutes. Control window is Tw = 10 ms.
Both data traffics have Poisson distributions with average rate
of 10 arrivals per second. Channel fading is based on the
Gudmundson [16] model with σc = 8 dB and Tf = 100 ms. A
distance-dependent channel loss with path exponent γ = −4
is considered. Users are distributed uniformly with different
service types. The details of the simulation setting are given
in Table I.

A. Model Validation

The heavy-tail call durations of data traffics satisfy the
conditions of Proposition 1. This proposition also gives the
self-similarity index H = 0.75. We study the time trace of the
received downlink interference measured at different locations.
Measurements were taken at an arbitrary location in cell c = 1.
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Fig. 3. The Normalized variance plot for total received downlink interference
in the simulated network.

High variations are seen in traces with different time scales. A
bursty behavior is observed in all time scales and as noticed,
the total interference is self-similar.

To estimate the self-similarity index H , we use the variance
plot method [6]. In this method, we divide I(n) into non-
overlapping blocks, each with m samples. For an as-s process
with the self-similarity index H , the variance of the mean
processes for m → ∞ in a logarithmic scale, is a straight
line. We estimate H by using the slope of this line. Fig. 3
illustrates the variance in the logarithmic scale. Using a linear
curve fitting, we have H = 0.63. We also estimate the
value of the H parameter using the Whittle estimator. This
method is shown to be more accurate than the variance plot
[6]. The Whittle estimator gives H = 0.65. The discrepancy
between the estimated value of H by the Whittle estimator
and that obtained from Proposition 1 is mainly due to the fact
that, unlike the computation in Proposition 1 the interference
threshold crossing does not allow the network to accept all
call requests.

We now show that fGn is an appropriate model for I(n). We
use the quantile-quantile (Q-Q) plot [6] to show that the total
interference is a Gaussian process. In a Q-Q plot, a Gaussian
distributed process appears as the 45-degree reference line.
Fig. 4 shows that the received total interference for the above
configuration can be closely approximated by the Gaussian
distribution.

B. Performance of the proposed adaptive-predictive method

To study the performance of the time domain scheduling
scheme, we add a fourth non-realtime traffic. This traffic
constitutes fixed-size packets with Poisson arrival with rate
λ. For each λ, the bit rate is varied by changing the packet
length. We set N = 100 and use a linear predictor with M = 5
taps to predict the interference level; we have found that the
predictor error is not sensitive to the value of M for M ≥ 5.
We also assume that the cross-correlation between DS-CDMA
codes in cell c = 1 is 0.5.



Fig. 4. The Q-Q plot for the marginal distribution of total interference.

We have run 50 independent trials with users uniformly
dispersed in the cell. In the sequel, we report the average of
these runs. We consider three systems for comparison. The
first system (System A) uses a pre-assigned share of 20% of
the maximum downlink transmit power for non-realtime users.
This share of power is then used to simultaneously transmit
to non-realtime users (i.e. pure CDMA). The second system
(System B) uses the proposed method in this paper. We first
consider the system using time domain scheduling (System
B-TDS) and then without time domain scheduling (System B-
CDMA). A confidence interval of 95% for the estimate of the
self-similarity index, H , is considered. The third system uses
the average value of 5 last samples of measured interference
as the predicted value (System C). Here, we also consider two
cases with using time domain scheduling (System C-TDS) and
without it (System C-CDMA).

We compare the admission region for the best-effort services
of the systems A, B and C. The admission region is defined as
the average achievable bit-rate for a given arrival rate of best-
effort data services in the presence of a given set of realtime
traffics. A significant improvement of admission region is seen
in Fig. 5 using our proposed method (System B-TDS). In
Fig. 5, it is also interesting to note that there are two different
gains. The first one is due to using the predictor and the second
one is due to the time domain scheduler. The first gain is
captured when we move from System C to System B.

A very important question is: “What is the impact of
applying time domain scheduler on the self-similarity of
interference?” Fig. 6 illustrates the estimated values of H
after applying the proposed method. The figure confirms that
self-similarity of the downlink interference in not affected
by time domain scheduler. This is due to the fact that the
self-similarity of the downlink interference emanates from the
traffic characteristics of the realtime calls that have heavy tail
call durations.

We study the effect of utilizing the proposed method on the
packet drop ratio (PDR) of data traffic. Fig. 7 illustrates the
PDR versus packet arrival rate of best-effort data traffic. In
each case, we consider two traffic patterns: the first traffic is
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Fig. 5. The admission region versus packet arrival rate λ.
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Fig. 6. The estimated values for H for five different runs versus non-realtime
packets arrival rate for a given throughput R = 5000bps.

the one we have used earlier in this section, and the second
traffic corresponds to a system with higher self-similarity index
(H = 0.7) in downlink interference. As it is seen, the PDR
of the system using the proposed method is smaller than
the system using the average value of measured interference.
Fig. 7 also shows the improvement in PDR with the higher
level of self-similarity in the downlink interference. This
observation shows the ability of our proposed method to
exploit temporal correlation in the downlink interference to
improve system performance.

V. CONCLUSIONS

In this paper, we developed a cross-layer model for down-
link interference in heterogenous DS-CDMA wireless cellular
network. In this model, interference is described as a function
of application layer parameters (traffic characteristics) and
physical layer variations (channel characteristics). We showed
that for a heterogenous service DS-CDMA network downlink
interference is a second-order self-similar process and has
long-range dependence. We then used the predictive structure
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of total downlink interference to maximize non-realtime data
throughput. We used fGn to model the self-similarity of down-
link interference. In the proposed method, the base-station
uses an optimal linear predictor, based on the fGn model, to
estimate the level of interference. The estimated interference
is then used to allocate power to users. To maximize data
throughput, we use time domain scheduling. The simulation
studies showed the self-similarity of the total interference
and validated the fGn model of downlink interference. The
simulation results also showed a substantial performance
improvement using the proposed predictive-adaptive scheme
and confirmed that after applying the proposed method the
interference model is still valid.
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