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Abstract

The contribution of this paper is two-fold. First, we introduce a generalized principal component (GPC)

beamforming technique for reduced rank processing that allows a trade-off between interference and noise reduction

via the introduction of a control parameter, �: Three variants of the GPC beamformer corresponding to � ¼ 1 (called T1

beamformer), � ¼ 0:5 (called T2 beamformer) and � ¼ 0 (called T3 beamformer), which maximize the signal-to-

interference ratio, the signal-to-interference plus noise ratio, and the signal-to-noise ratio at the array output

respectively, are considered in detail. The second contribution of this paper is to compare the robustness between the

reduced rank and full rank beamformers. We use analytical studies and computer simulations to show that the T2 and

T3 beamformers are robust against calibration and/or pointing errors.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Extraction of a desired signal buried in noise
and interference is of great importance. The use of
an antenna array, with a properly selected weight
vector, has long been recognized as a method to

mitigate the destructive effect of interference and
noise to efficiently extract the desired signal. In the
array processing literature, several algorithms have
been proposed that maximize the array output
signal-to-interference plus noise ratio (SINR)
subject to knowing the direction-of-arrival
(DOA) of the desired signal; see for instance, the
multiple sidelobe canceller (MSC) and the mini-
mum variance (MV) methods [15]. In these cases,
the weight vector is in effect computed from the
signal-free correlation matrix (SFCM). One can
also use the correlation matrix of the received
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mixture of signal, noise and interferences, and
obtain the same result, provided the desired signal
DOA and the array geometry are exactly known,
and the antenna array is perfectly calibrated. Small
errors in calibration and/or DOA estimation will
cause signal cancellation [1,6].

In practice, the measurement of a SFCM is not a
simple task, so that noise and interference are
usually mixed with the signal. In radar applica-
tions, the SFCM may be estimated from the
samples of the target adjacent range cells [5]. To
estimate an SFCM, one can also use the general-
ized sidelobe canceller (GSC) [5,13]. In GSC, a
prefiltering stage is applied to reject the signal
component from the received samples and then the
SFCM is estimated at the output of this stage. In
this method, however, calibration and/or pointing
errors will cause a leakage of the signal component
into the noise subspace, which degrades the
performance of the method by inducing high
sidelobe levels and/or reducing desired signal
power. Diagonal loading has been proposed to
avoid signal cancellation in MV beamformers [4].
However, this loading method only bounds the
white noise gain and its performance varies
between that of MV and the conventional beam-
former.

Besides the above mentioned disadvantages, in
some cases, the performance of detection and
demodulation depends on the signal-to-interfer-
ence ratio (SIR). For example, in spread spectrum
communications, penetration of a smart jammer
into the system may cause a destructive effect on
the system performance. In modern CDMA based
wireless communication systems (e.g., IS-95,
CDMA2000, etc.), the overall capacity, measured
in terms of the number of active users per cell, is
indeed limited by the power level of multi-user
interference [7]. In such cases, interference mini-
mization is much more important than the overall
noise plus interference reduction.

Subspace-based methods offer significant im-
provement in signal reconstruction when com-
pared to the conventional beamforming methods.
Specially, there exist eigenvalue decomposition
(EVD) methods that effectively estimate and track
the eigen-subspace of the received signal covar-
iance matrix [2,16]. As a consequence, the beam-

forming methods, which are based on the
eigendecomposition of array correlation matrix,
have been the focus of much research
[3,6,8,11,12,17,19]. In [6], a signal subspace meth-
od is proposed for interference cancellation that
extracts the desired signal with a searching
method. This method can only cancel one jammer.
Haimovich [8] suggests two types of eigen-cancel-
lers that are based on the eigendecomposition of
the received interference plus noise correlation
matrix and are applicable to radar systems. A
comparison of several reduced-rank processing
techniques for adaptive array can be found in [19].
A beamforming technique, which uses one or more
eigenvectors of the received signal plus interference
covariance matrix, is proposed in [11]. In [17], a
modified eigenspace-based algorithm which is
robust against pointing error is presented.
McWhorter [12] uses the dominant subspace of
the sample covariance matrix to construct an
adaptive beamformer in a non-stationary environ-
ment. Chang et al. [3] presents a beamforming
method based on the generalized eigenspace-based
(GEIB) technique.
Our contribution in this paper is two-fold.

Firstly, we introduce a new beamforming method
based on an extended version of the reduced-rank
principal component beamformer [19]. The pro-
posed method, which we call generalized principal

component (GPC) beamformer, incorporates a
control parameter ð0p�p1Þ that allows a proper
trade-off between interference and noise cancella-
tion. Secondly, both analytically and using com-
puter simulations, we study the robustness of the
introduced method for special cases of the
proposed parameter �:
We study the properties of the GPC beamfor-

mer for three special but important cases, i.e. � ¼
1; � ¼ 0:5; and � ¼ 0: For � ¼ 1 (T1 beamformer),
we show that the GPC method maximizes the
signal-to-interference ratio (SIR), producing exact
nulls in the interference directions. With � ¼ 0:5
(T2 beamformer), the GPC method, for a cali-
brated array with the exact knowledge of the
desired signal DOA, is shown to be similar to an
MV beamformer. For � ¼ 0 (T3 beamformer), we
show that under exact knowledge of the array
manifold, the GPC is similar to the conventional
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beamformer. For an arbitrary value of 0o�o1;
the GPC method maximizes a properly weighted
measure of signal-to-interference plus noise ratio.

In our study of robustness, we introduce a
suitable measure of array sensitivity to array
steering vector uncertainties, and use it to study
the robustness of the T2 and T3 beamformers. We
show that T2 and T3 beamformers have smaller
sensitivity compared to the MV and conventional
beamformers, respectively. We conclude that T2
and T3 are robust beamformers.

Throughout the present work, matrices will be
indicated by capital boldface letters and vectors by
lower-case boldface letters.

2. Signal model

We assume an L-element array with arbitrary
geometry illuminated by p uncorrelated, far-field
narrowband signal wavefronts. It is assumed that
the number of sources is smaller than the number
of array elements, that is poL: Let xðkÞ ¼
½x1ðkÞ; . . . ;xLðkÞ�T denote the complex envelope
representation of the data received by the array
elements at the kth snapshot. Data vector xðkÞ can
be expressed as

xðkÞ ¼ AsðkÞ þ nðkÞ; (1)

where

A ¼ ½aðy1Þ aðy2Þ � � � aðypÞ�; (2)

sðkÞ ¼ ½s1ðkÞ s2ðkÞ � � � spðkÞ�T; (3)

nðkÞ ¼ ½n1ðkÞ n2ðkÞ � � � nLðkÞ�T: (4)

Here, nðkÞ is the background noise, which is
assumed to be a stationary zero-mean stochastic
process, siðkÞ is the ith zero-mean stationary signal
impinging on the array from distinct direction yi;
and the superscript T represents transposition. The
noise is temporally and spatially white and is
uncorrelated with the desired signal and inter-
ferers. The complex vector aðyÞ is the array
steering vector defined as the array output for a
planar wavefront arriving at the array from
direction y with a unit power at the array reference
point. In the case of an array with arbitrary planar

geometry, the lth element of the steering vector
aðyÞ—with the array phase center located at the
origin—can be expressed as

½aðyÞ�l ¼ exp j
2prl
l

cosðy� flÞ
� �

; (5)

where ðrl ;flÞ denotes the position of the lth
element in polar coordinates and l denotes the
wavelength at the operating frequency.
Using (1), the autocorrelation matrix of the

array output is given by

R ¼ EfxðkÞxHðkÞg ¼ APAH þ s2IL; (6)

where P ¼ diagðp1; . . . ; ppÞ; is the diagonal signal
correlation matrix, s2 is the noise power and IL is
the L� L identity matrix. Here, Ef:g represents the
expected value, superscript H denotes Hermitian
transposition and pi is the received power of the ith
signal source. The diagonal structure of P indi-
cates uncorrelated sources. Since P is diagonal, we
can write (6) as

R ¼
Xp
i¼1

piaðyiÞaHðyiÞ þ s2IL: (7)

The sample covariance matrix, for a window of N
snapshots, is defined as [9]

R̂ ¼ 1

N

XN�1

i¼0

xðk � iÞxHðk � iÞ: (8)

The sample correlation matrix is a random matrix
and for Gaussian x; it will be Wishart distributed
[14].

2.1. Eigen-decomposition of covariance matrix

For the positive-definite correlation matrix R;
one can find a set of eigenvalues fli þ s2g and
orthonormal eigenvectors fqig such that

Rqi ¼ ðli þ s2Þqi for 1pipL: (9)

We assume li’s are in decreasing order as

l1X � � �XlL; (10)

where li ¼ 0 for poipL: Hereafter, we will use
the following notations

lmax ¼ l1 and lmin ¼ lp; (11)
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K ¼ diagðl1 þ s2; . . . ; lp þ s2; s2; . . . ; s2Þ; (12)

Ks ¼ diagðl1 þ s2; . . . ; lp þ s2Þ; (13)

Kn ¼ s2IðL�pÞ; (14)

Q ¼ ½q1; . . . ; qp j qpþ1; . . . ; qL� ¼ ½Qs jQn�: (15)

It is well known that Qs and A span the same
space called the signal subspace; while the eigen-
vectors corresponding to the ðL� pÞ smallest
eigenvalues, Qn; are orthogonal to aðyiÞ for
1pipp and span the so-called noise subspace.
Thus, we have

QH
n A ¼ 0: (16)

The correlation matrix R and its inverse R�1

can also be expressed as (Karhunen–Loève
expansion)

R ¼
XL
i¼1

ðli þ s2ÞqiqHi ¼ QKQH; (17)

R�1 ¼
XL
i¼1

ðli þ s2Þ�1qiq
H
i ¼ QK�1QH: (18)

2.2. Properties of eigen-decomposition

Since A and Qs both belong to the signal
subspace, each ai ¼ aðyiÞ can be written as a linear
combination of the qj’s (for 1pjpp), that is

½a1 � � � ap� ¼ ½q1 � � � qp�
k11 � � � k1p

..

. ..
.

kp1 � � � kpp

2
664

3
775: (19)

In matrix form, (19) is given by

A ¼ QsK: (20)

Since the qi’s are orthonormal, we have

aHi qj ¼ k�ji (21)

or equivalently, in matrix form,

AHQs ¼ KH: (22)

The following lemmas express some important
relationships for kji:

Lemma 1. The Euclidean norm of any column of K;
ki; is equal to L, that is for 1pipp;

jjkijj2 ¼
Xp
j¼1

jkjij2 ¼ L: (23)

Proof. Using (5), (19), and the orthonormality of
eigenvectors, we have for 1pipp;

aHi ai ¼ L;

ðk1iq1 þ � � � þ kpiqpÞHðk1iq1 þ � � � þ kpiqpÞ ¼ L;

Xp
j¼1

jkjij2 ¼ L: & ð24Þ

Lemma 2. The inner product of any two columns of

K is equal to the inner product of the corresponding

columns of A;

kHmkn ¼
Xp
i¼1

k�imkin ¼ aHman: (25)

Proof. Using (19), we have

aHman ¼ ðk1mq1 þ � � � þ kpmqpÞHðk1nq1 þ � � � þ kpnqpÞ

¼
Xp
i¼1

k�imkin ¼ kHmkn: &

Lemma 3. The columns of KðKs � s2IpÞ�1=2 are

orthogonal to each other and

Xp
i¼1

k�inkim=li ¼ dnm=pn: (26)

Proof. Using (7), (9) and (21), one gets for 1pjpp

Rqj ¼ ðlj þ s2Þqj

�!
Xp
i¼1

piaia
H
i qj ¼ ljqj ;

�!
Xp
i¼1

ðpik�ji=ljÞai ¼ qj : ð27Þ

Write (27) as

A ~K ¼ Qs; (28)
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where ~K is defined as

~K ¼

p1k
�
11

l1
� � � p1k

�
p1

lp

..

. ..
.

ppk
�
1p

l1
� � � ppk

�
pp

lp

2
6664

3
7775 ¼ PKHðKs � s2IpÞ�1:

(29)

Since it is assumed that A is full column rank, and
using (20) and (28), we have

~KK ¼ Ip: (30)

Thus, the nmth element of ~KK may be written
as

Xp
i¼1

pn
k�inkim
li

¼ dnm (31)

and the proof is completed. &

Lemma 4. The rows of KP1=2 are orthogonal to

each other and

Xp
i¼1

piknik
�
mi ¼ lmdnm: (32)

Proof. Using (28) and (20), yields

K ~K ¼ Ip: (33)

The nmth element of K ~K will then be

Xp
i¼1

piknik
�
mi ¼ lmdnm: & ð34Þ

Lemmas 3 and 4 can also be expressed in the
following matrix forms,

KHðKs � s2IpÞ�1K ¼ P�1; (35)

KPKH ¼ ðKs � s2IpÞ: (36)

In the sequel, we will use the above results to study
the characteristics of the GPC beamformer.

3. GPC beamformer

We propose to find the beamforming
weight vector w in order to maximize the following

ratio

wn;� ¼ max
w

So

�Io þ ð1� �ÞNo
for 0p�p1; (37)

where So; Io and No; which are functions of weight
vector w; respectively denote the signal power due
to nth source, the total interference power, and the
noise power at the array output. To maximize the
ratio (37), one can equivalently solve the following
optimization problem,

min
w

�So þ �Io þ ð1� �ÞNo subject to So ¼ c;

(38)

where, c is some positive constant.
Assuming that the nth point source is the desired

one, So ¼ pnjaHn wj2: The solution to (38) can be
obtained using the Lagrange multiplier method by
means of minimizing,

Lðw; lÞ ¼ �So þ �Io þ ð1� �ÞNo

� lð ffiffiffiffiffi
pn

p
aHn w� ffiffiffi

c
p Þ: ð39Þ

Putting @Lðw; lÞ=@w ¼ 0; taking into account that
So þ Io ¼ wHðR� s2IÞw; and ignoring a constant
coefficient, it is straightforward to show that

wn;� ¼ ð�Rþ ð1� 2�Þs2IÞ�1an: (40)

Now, with the assumption that the other p� 1
interferers are also point sources, we can use (17)
and (16), to write (40) in terms of signal subspace
eigen-pairs (i.e. (li; qi) for i ¼ 1; . . . ; p).

wn;� ¼
Xp
i¼1

qiq
H
i

�li þ ð1� �Þs2 an; for 0p�p1: (41)

Considering the reduced-rank principal compo-
nent beamformer1 [19], which corresponds to the
case � ¼ 0:5; we call (41) the GPC beamformer
(where several beamformers are formed by varying
�; thereby extending the original PC scheme in [19])
to compute the beamforming weights.
Here, our main goal is to study the properties of

this beamformer for three different values of �
(that is � ¼ 1; 0:5; 0).
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3.1. Type-1 (T1) beamformer

For this beamformer, we use � ¼ 1 in (41)
and compute the beamformer weight vector
as

wn;1 ¼
Xp
i¼1

qiq
H
i

li
an ¼ QsðKs � s2IpÞ�1QH

s an: (42)

The set of beamformer weight vectors for all
signals can be represented as

W1 ¼ ½w1;1 � � �wp;1� ¼ QsðKs � s2IpÞ�1QH
s A: (43)

Theorem 1. The pattern of T1 beamformer has

nulls in the direction of interferers and its gain

in the direction of the desired signal is equal to

the inverse of the received power from the target

source.

Proof. The array gain in the direction ym is
generally expressed as aHmwn;�: Using (21), (42),
and Lemma 3, we can proceed as follows:

aHmwn;1 ¼
Xp
i¼1

aHm
qiq

H
i

li
an ¼

Xp
i¼1

k�imkin
li

¼ dnm
pn

: (44)

Using (22) and (35) in matrix form, we have

AHW1 ¼ AHQsðKs � s2IpÞ�1QH
s A

¼ P�1 ¼ diagðp�1
1 ; . . . ; p�1

p Þ: ð45Þ
From (44) and (45), it is seen that the
array produces exact nulls in the direction of
interference (that is for ym whenever man),
and the array gain in the direction of the desired
source is equal to the inverse of the received signal
power p�1

n : &

Since the T1 beamformer produces exact nulls in
the direction of interferences, the output inter-
ference power for this beamformer is zero. In other
words, this weight vector maximizes the array
output SIR. Accordingly, the output SNR and
output SINR are identical.

The desired signal power at the array
output, say So; is equal to the desired
source power, pn; multiplied by the array
power gain in the direction of the desired signal.
Therefore:

Corollary 1. The output power of the desired signal,
So; is

So ¼ pnjaHn wn;1j2 ¼ pn
1

pn

����
����
2

¼ 1

pn
: (46)

Theorem 2. For the T1 beamformer, the output

SNR is bounded by lmin=s2 and lmax=s2:

Proof. Using (21), (42), and the orthonormality of
qi’s, the array output noise power, No; is

No ¼ s2wH
n;1wn;1 ¼ s2

Xp
i¼1

jkinj2
l2i

: (47)

Using (46), (47), and Lemma 3, we have

s2

lmax

Xp
i¼1

jkinj2
li

pSop
s2

lmin

Xp
i¼1

jkinj2
li

;

1

pn

s2

lmax

� �
pNop

1

pn

s2

lmin

� �
;

lmin

s2
p So

No
p lmax

s2
: & ð48Þ

3.2. Type-2 (T2) beamformer

For this beamformer, we use � ¼ 0:5 in (41) and
obtain2

wn;0:5 ¼
Xp
i¼1

qiq
H
i

li þ s2
an ¼ QsK

�1
s QH

s an; (49)

which is the weight vector for the conventional
reduced-rank principal component method [19].
Using the Karhunen–Loève expansion, (17), and
(16), the following relationship—the minimum
variance (MV) solution for the array weight
vector—can be obtained

wn;0:5 ¼ R�1an: (50)

A shortcoming of the MV beamformer is its
sensitivity to signal DOA uncertainty and array
calibration error [4]. We will see in the sequel that
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the T2 beamformer is less sensitive to these errors
when compared to the MV technique.

Definition. For an array with the weight vector w;
we define the sensitivity of array output SINR with
respect to the array steering vector error
(Da ¼ ~a� a) as3

Sw
SINRo;a

¼ lim
Da!0

jDSINRoj
jjDajj2 ; (51)

where DSINRo ¼ SINRojDa¼0 � SINRojDaa0:
Now, we use (51), as a novel and suitable measure
of beamformer sensitivity to array steering vector
errors, to show the robustness of T2 beamformer.

Theorem 3. The sensitivity of output SINR to the

array steering vector error in T2 beamformer is

smaller than that for MV.

Proof. See Appendix A. &

3.3. Type-3 (T3) beamformer

For this reduced-rank beamformer, we use (41)
with � ¼ 0: The corresponding weight vector is

wn;0 ¼
Xp
i¼1

qiq
H
i

s2
an ¼

1

s2
QsQ

H
s an: (52)

Knowing that QH
n A ¼ 0 and QsQ

H
s ¼ IL �QnQ

H
n ;

(52) can be written as

wn;0 ¼
1

s2
an; (53)

which is the well-known conventional beamformer
(note that (52) and (53) are identical if an is exactly
known, otherwise they are different). Accordingly,
the T3 beamformer maximizes the output SNR.
However, as we shall show, the T3 beamformer is
less sensitive than the conventional beamformer to
steering vector errors. Using (53), it is straightfor-
ward to compute the output SNR as

SNRo ¼ pn
aHn an

s2
; (54)

which is independent of the number of sources p.

Definition. For an array with the weight vector w;
we define the sensitivity of array output SNR with
respect to the array steering vector error
(Da ¼ ~a� a) as

Sw
SNRo;a

¼ lim
Da!0

jDSNRoj
jjDajj2 ; (55)

where DSNRo ¼ SNRojDa¼0 � SNRojDaa0:

Theorem 4. The sensitivity of output SNR of T3
beamformer to the array steering vector error is

smaller than that for the conventional beamformer.

Proof. See Appendix B. &

For the T3 beamformer, the array output signal
and noise power, using (53), can be computed as

So ¼ pnjaHn wn;0j2 ¼ pn
1

s4
L2; (56)

No ¼ s2wH
n;0wn;0 ¼

1

s2
L: (57)

Dividing (56) by (57), the array output SNR can
be expressed in terms of input SNR as

So

No
¼ L

pn
s2

¼ L
S

N

� �
in

: (58)

4. Simulation results

This section presents some numerical results to
illustrate the performance of the proposed GPC
approach. Here, all sources have unit power and
are uniformly distributed in ½0�; 360��: Ten thou-
sand Monte-Carlo runs are performed to calculate
each point in the simulations. We assume that the
additive noise is spatially and temporally white.
Additionally, we assume that the true correlation
matrix is known. To investigate the performance
of the proposed method, an 8-element uniform
circular array (UCA), with the inter-element
spacing l=2; was considered.
Fig. 1 shows typical patterns produced with the

beamformer wn;� (41) for � ¼ 1, 0.5, 0.2, 0.1, 0.05.
The interference is generated by two point sources
located at angles 76� and 236�: The desired signal
DOA is at 180�: The figure shows the changes in
beampattern with � as expected from the above
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analysis. Note the deep nulls in the direction of
interferers for large values of �:

Fig. 2 illustrates the effect of � on the array
output SINR, SNR, and SIR for up to seven
sources (i.e. p ¼ 2; . . . ; 7), where sources have
10 dB signal-to-noise ratio. These figures illustrate
how the array output SINR, SNR and SIR vary
with the parameter �: Specially, for this example,
the maximum output SIR, SINR and SNR occur
respectively at � ¼ 1; � ¼ 0:5; and � ¼ 0; which
agrees with our analytical studies in Section 3. The
observed high SIR at the output for large value of
� is due to the presence of exact nulls in the
direction of interfering sources. According to the
simulation results, it is seen that for larger values
of p, SNR may experience large variations versus
�: This may be explained by the larger dimension
of the signal subspace, where as a result, the GPC
beamformer (41) will pass more noise in its output
when � is not properly tuned for optimum noise
rejection. The curves in Fig. 2 show that the output
SINR, SNR and SIR decrease with p. However, as
suggested by (54), for � ¼ 0; the output SNR is
independent of the number of interferers.

In Section 3.2, it has been proved that the array
output SINR for the T2 beamformer is less
sensitive to calibration or pointing error as
compared to the MV beamformer. To investigate
this aspect, we define RS1; a measure for relative

sensitivity, as

RS1 ¼ S
wm;0:5

SINRo
=S

wm;MV

SINRo
; (59)

Fig. 3 illustratesthis relative sensitivity as a
function of the received noise power for different
values of p. The curves indicate that the T2
beamformer is robust for the steering vector
estimation errors when compared to the MV
method, specially for high SNR and small p.
Similarly, we define RS2 as

RS2 ¼ S
wm;0

SNRo
=S

wm;C

SNRo
; (60)

where wm;C is the weight vector of the conventional
beamformer. Fig. 4 shows RS2 versus received
noise power for different values of p. The
sensitivity of T3 is smaller than that of the
conventional beamformer, as evidenced by values
RS2o1: The curves show that the relative sensi-
tivity is independent of the input SNR. Indeed,
according to (70) and (71), sensitivities of T3 and
the conventional beamformer are linear functions
of input SNR. Hence, the relative sensitivity RS2
will be independent of input SNR. Finally,
referring to (62), (70) and (71), as we might have
expected, RS2 approaches unity with increasing p.
Although all array elements are assumed to be

identical omni-directional elements, in practice,
element imperfection and mutual coupling can
cause both phase and amplitude distortion.
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Fig. 1. Produced beampatterns using GPC beamformers method (� ¼ 1; 0.5, 0.2, 0.1, 0.05).
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Fig. 2. Array output SINR, SNR and SIR as a function of � for p ¼ 2; 3; . . . ; 7:
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Furthermore, different length of transmission
lines, phase error at the local oscillator and mixer
of the antenna elements and synchronization error
of A/D converters in digital beamformers are
sources of phase error of an adaptive beamformer.
Practically, these errors cause degradation in the
performance of beamforming algorithms.

Fig. 5 demonstrates the destructive effect of the
phase error on the proposed GPC method by
illustrating the output SINR, SNR and SIR as a
function of � and fmax where fmax is the maximum
phase error of array elements. In this example, the
input SNR is assumed to be 10 dB, p ¼ 6; and the

array elements experience fixed independent ran-
dom phase errors. As seen, the beamformer
performance is less affected by the phase errors
for small values of �: Regarding Fig. 5(a), we also
note that in order to achieve good SINR
performance in the presence of phase and/or angle
errors, one needs to trade-off interference for noise
suppression via a different choice of �; specifically
for �o0:5: According to the simulation results, the
phase errors may be regarded as an increase in the
noise power; consequently, the SINR is maximized
for a lower �: Note that for this scenario the array
output SINR when MV beamformer is used are
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Fig. 3. RS1 versus the input SNR for p ¼ 2; 3; 4; 5; 6:

Fig. 4. RS2 versus the input SNR for p ¼ 2; 3; 4; 5; 6:
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Fig. 5. Array output SINR, SNR and SIR as a function of � for fmax ¼ 0:05�; 2�; 3�; and 6�:
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13.6, 12.2, 11.1, and 8.1 dB for fmax ¼ 0:05�; 2�; 3�;
and 6�; respectively.

A similar situation prevails for SIR where the
optimal choice of � may be less than 1 for larger
phase errors. Based on these experimental results,
we conclude that one may use the GPC method to
make the beamformer robust against calibration
errors; i.e. one can maximize the output SINR or
SIR by proper choice of the parameter �:

5. Conclusion

In this paper, we have proposed the GPC
beamformer which can be used with arbitrary
array geometries. The GPC beamforming techni-
que uses the signal subspace eigenvalues and
eigenvectors of the array correlation matrix. The
weight vector of the beamformer is a weighted
combination of the signal eigenvectors and is
parameterized with respect to a variable, �:

We have discussed the GPC beamformer with
three values for � —namely T1 (� ¼ 1), T2
(� ¼ 0:5), and T3 (� ¼ 0) beamformers. It has been
shown that T2 and T3 coincide, respectively, with
the MV and conventional beamformers provided
that the exact location of the desired signal is
known and the calibration error is absent. We
have shown with simulations that T2 beamformer
outperforms MV method if the scenario under test
suffers from calibration errors and/or DOA
uncertainty.

With the recent advances in the area of fast
subspace tracking algorithms, the computational
complexity of signal subspace eigenvalues and
eigenvectors estimation and tracking can now be
reduced to OðpLÞ operations per time iteration
[2,16]. While the main advantage of the proposed
GPC method remains its robustness against
different types of modelling errors, the use of such
fast EVD tracking algorithms makes it computa-
tionally efficient for adaptive beamforming in
dynamic signal environments.

Although falling outside the scope of the present
work, the possibility of optimizing the method
with respect to the choice of � (e.g. based on
application specific penalty function) remains open
for future work.

Appendix A. Proof of Theorem 3

The array output SINR is

SINRo ¼ pmGðymÞ
N þP

iampiGðyiÞ
; (61)

where GðyÞ is the array power gain in the direction
y; and ym is the desired signal DOA. Now, assume
that there is an uncertainty in am and represent its
erroneous estimate by ~am: The estimated ~am can be
shown as a linear combination of the signal and
noise eigenvectors as

~am ¼ am þ Dam ¼ Qskm þQsDkms þQnDkmn;

(62)

where Dam ¼ ½Qs jQn�½DkTms ; Dk
T
mn�T; is the uncer-

tainty in am; and Dkms and Dkmn represent
respectively the signal and noise error vectors in
the mth column of matrix K:
The weight vectors for the T2 and MV

beamformers are, respectively,

~wm;0:5 ¼ QsK
�1
s QH

s ~am ¼ QsK
�1
s km þQsK

�1
s Dkms

(63)

and

~wm;MV ¼ ðQsK
�1
s QH

s þQnK
�1
n QH

n Þ~am
¼ ~wm;0:5 þQnK

�1
n Dkmn: ð64Þ

The signal and interference output powers (in
direction yi) for the two beamformers, respec-
tively, are piGT2ðyiÞ and piGMVðyiÞ; where
GT2ðyiÞ ¼ jaHi ~wm;0:5j2

¼ jkHi QH
s ðQsK

�1
s km þQsK

�1
s DkmsÞj2

¼ jkHi K�1
s km þ kHi K

�1
s Dkmsj2 ð65Þ

and

GMVðyiÞ ¼ jaHi ~wm;MVj2

¼ jkHi K�1
s km þ kHi K

�1
s Dkmsj2: ð66Þ

From (65) and (66), therefore, the signal and
interference powers at the output of the T2 and
MV beamformers are identical.
The noise power at the output of each beam-

former is simply the square of the Euclidean norm
of the array weight vector scaled with s2: Thus,
using (63), the noise power at the output of T2
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beamformer is

NT2 ¼ s2 ~wH
m;0:5 ~wm;0:5: (67)

Similarly, using (64) the noise power at the output
of the MV beamformer is

NMV ¼ s2 ~wH
m;MV ~wm;MV ¼ NT2 þ

1

s2
DkHmnDkmn ð68Þ

Comparing (67) and (68), since DkHmnDkmn is a non-
negative term, we have DSINRo;T2pDSINRo;MV:
Thus

S
~wm;0:5

SINRo;a
pS

~wm;MV

SINRo;a
: (69)

Using (67) and (68), a smaller noise power in the
T2 beamformer with constant signal and inter-
ference powers induces smaller average sidelobes
as compared to the MV beamformer.

Appendix B. Proof of Theorem 4

Assume that there is an uncertainty in am and
represent its estimate by ~am (62). Similar to the
Proof of Theorem 3, it can be shown that the array
output SNR for the T3 beamformer is

SNRo;T3 ¼
pmGT3ðymÞ

NT3

¼ SNRi

jkHmkm þ kHmDkmsj2
s2NT3

: ð70Þ

Similarly, the array output SNR of the conven-
tional beamformer is

SNRo;C ¼ pmGCðymÞ
NC

¼ SNRi

jkHmkm þ kHmDkmsj2
s2NT3 þ DkHmnDkmn

: ð71Þ

Since DkHmnDkmn is a non-negative term, we have
DSNRo;T3pDSNRo;C: Thus

S
~wm;0

SNRo;a
pS

~wm;C

SNRo;a
: & (72)
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