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ABSTRACT

In this paper, we introduce a generalized principal com-
ponent (GPC) beamforming technique that allows a trade-
off between interference and noise reduction via the
introduction of a control parameter, ε. With analyti-
cal studies and computer simulation we compare the
robustness of the GPC beamforming and conventional
beamforming against calibration and/or pointing errors.

1. INTRODUCTION

Several algorithms have been proposed in order to max-
imize the signal to interference plus noise ratio (SINR)
at the output of antenna arrays. Multiple sidelobe can-
celler (MSC) and the minimum variance (MV) meth-
ods [1] are examples of such algorithms. To compute
the array weight vector using such methods, the signal-
free correlation matrix (SFCM) is required to be known.

If the array is perfectly calibrated and the look an-
gle of the desired signal is exactly known, one can in-
stead use the correlation matrix of the received mix-
ture of signal, noise and interferences in these meth-
ods. However, small errors in calibration and/or DOA
estimation causes a strong destructive effect on the per-
formance of these methods [2, 3].

Diagonal loading is an effective method that makes
the MV beamformer relatively robust against such er-
rors [4]. But, the performance of this method varies
between that of MV and the conventional beamformer.

In addition, in some systems the performance of
detection and demodulation depends on the signal-to-
interference ratio (SIR). For example, in spread spec-
trum communications, penetration of a smart jammer
into the system may cause a destructive effect on the
system performance.

In compare to the conventional beamforming meth-
ods, subspace-based methods offer considerable improve-
ment in signal reconstruction. There exist eigenvalue
decomposition (EVD) methods that are able to effec-
tively estimate and track the eigen-subspace of the re-
ceived signal covariance matrix [5]. Consequently, the
subspace-based beamforming methods have attracted
more attention for research [6, 7].

In this paper, we obtain a new subspace-based beam-
forming method, which incorporates a control parame-
ter that allows a proper trade-off between cancellation
of interference and noise. We call the proposed method
the generalized principal component (GPC) beamformer.
Then introducing some novel yardstick we study the ro-
bustness of GPC beamformer.

2. RECEIVED SIGNAL MODEL

We assume a scenario with p uncorrelated, far-field nar-
rowband signals and an arbitrary geometry antenna ar-
ray with L > p elements. The received signal vector
x(k) = [x1(k), . . . , xL(k)]T by the antenna array at
the kth snapshot can be expressed as

x(k) = As(k) + n(k) . (1)

Here, s(k) = [s1(k), . . . , sp(k)]T represent the p sig-
nals, n(k) is the temporally and spatially white noise
with variance σ2, and

A = [a(θ1, φ1) a(θ2, φ2) · · · a(θp, φp)]. (2)

Here θn and φn represent the azimuth and elevation of

the nth source, respectively, and an
def= a(θn, φn) is

the array steering vector. Using (1), the autocorrelation
matrix of the array output is given by

R = E{xxH} = APAH+σ2IL =
p∑

i=1

piaiaH
i +σ2I .

(3)
Here, E{.} represents the expected value, superscript
H denotes Hermitian transposition, and

P = E{ssH} = diag(p1, · · · , pp) , (4)

where pi is the received power of the ith signal source.
Note that the diagonal structure of P is a result of un-
correlated sources.

The sample covariance matrix, for a window of N
snapshots, is computed as [8]

R̂ =
1
N

XXH . (5)



where X is,

X = [ x(1) x(2) · · · x(N) ] . (6)

For the positive-definite Hermitian correlation matrix
R, there exist a set of L orthonormal eigenvectors {q1,
. . . , qL} and corresponding eigenvalues {λ1 ≥ · · · ≥
λL}, such that

R =
L∑

i=1

λiqiqH
i , (7)

R−1 =
L∑

i=1

λ−1
i qiqH

i . (8)

The following property can be proved for the eigen-pair
decomposition of correlation matrix (3) [9],

AHQs(Λs − σ2I)−1QH
s A = P−1 , (9)

where,
Qs = [q1, · · · ,qp] , (10)

Λs = diag(λ1, · · · , λp) . (11)

We also define Qn = [qp+1, · · · ,qL].
The followings are known,

λk = σ2

AHqk = 0

}
for (p + 1) ≤ k ≤ L . (12)

3. PROPOSED BEAMFORMING METHOD

We propose to find the beamforming weight vector w
in order to maximizes the following ratio when the de-
sired signal arrive from (θn, φn),

wn,ε = max
w

So

εIo + (1 − ε)No
for 0 ≤ ε ≤ 1 .

(13)
Here So, Io and No, which are functions of weight vec-
tor w, respectively denote the desired signal power, the
total interference power, and the noise power at the ar-
ray output. Note that maximization (13) for ε = 0,
ε = 0.5, and ε = 1 corresponds to maximizing the
array output SNR, SINR, and SIR , respectively.

To maximize the ratio (13), one can equivalently
solve the following optimization problem,

min
w

εSo + εIo + (1 − ε)No ,

s.t. So = c
(14)

where, c is some positive constant. Assuming that the
nth point source is the desired one then So = pn|aH

n w|2.
We define the Lagrangian L(w, λ) associated with prob-
lem (14) as,

L(w, λ) = εSo +εIo +(1−ε)No−λ(
√

pnaH
n w−√

c)
(15)

where λ is the so called Lagrange multiplier associated
with equality constraint So = c.

Taking into account that So+Io = wH(R−σ2I)w
and No = σ2wHw, (15) can be written as,

L(w, λ) = εwH(R − σ2I)w + (1 − ε)σ2wHw

−λ(
√

pnaH
n w −√

c) . (16)

Since L(w, λ) is a convex quadratic function of w, the
solution can be find by putting ∇wL(w, λ) = 0 as,

∇wL(w, λ) = εwH(R − σ2I) + wH(1 − ε)σ2

−λ
√

pnaH
n . (17)

Thus,

w = λ
√

pn(εR + (1 − 2ε)σ2I)−1an , (18)

where we have to adjust λ to satisfy the constraint So =
c. However, for our problem we can ignore the constant
coefficient λ

√
pn. Thus, the optimum weight vector for

optimization (14), which is a function of ε and an, can
be written as

wn,ε = [εR + (1 − 2ε)σ2I]−1an . (19)

Note that, similar to (8), the following is valid,

[εR + (1 − 2ε)σ2I]−1 =
L∑

i=1

qiqH
i

f(λ, ε, σ)
, (20)

where
f(λ, ε, σ) = ελ + (1 − 2ε)σ2 . (21)

Now, with the assumption that all p − 1 interferers are
also point sources, we can use (20) and (12), to write
(19) in term of signal subspace eigen-pairs (i.e. (λi,qi)
for i = 1, ..., p), as

wn,ε =
p∑

i=1

qiqH
i

f(λi, ε, σ)
an . (22)

We call (22) the weight vector for GPC beamformer.
Let us assume that the nth signal arriving from look

angle (θn, φn) is the desired signal and GPC beam-
former (22) is used for signal extraction. In this case,
the output signal power is,

So = pn|wH
n,εa(θn, φn)|2

= pn

∣∣∣∣∣
p∑

i=1

a(θn, φn)HqiqH
i a(θn, φn)

f(λi, σ, ε)

∣∣∣∣∣
2

(23)

and the output noise power is,

No = σ2wH
n,εwn,ε

= σ2

p∑
i=1

p∑
j=1

a(θn, φn)HqiqH
i qjqH

j a(θn, φn)
f(λi, σ, ε)f(λj , σ, ε)

.

(24)



Knowing that qi’s are orthonormal and λ1 ≥ · · · ≥ λL,
it is straightforward to show,

pn
Q2

a(θn, φn)
f2(λ1, σ, ε)

≤ So ≤ pn
Q2

a(θn, φn)
f2(λp, σ, ε)

, (25)

σ2 Qa(θn, φn)
f2(λ1, σ, ε)

≤ No ≤ σ2 Qa(θn, φn)
f2(λp, σ, ε)

, (26)

where Qa(θn, φn) =
∑p

i=1 |qH
i a(θn, φn)|2.

Now, using inequalities (25) and (26), we would
find the following bounds for the output SINR,(

S

N

)
o

≤
(

S

N

)
i

f2(λ1, σ, ε)
f2(λp, σ, ε)

Qa(θn, φn) (27)

(
S

N

)
o

≥
(

S

N

)
i

f2(λp, σ, ε)
f2(λ1, σ, ε)

Qa(θn, φn) (28)

In the sequel, we study the properties of this beam-
former for three special values of ε (i.e. for ε = 1,
ε = 0.5 and ε = 0).

3.1. Type–1 (T1) beamformer

For this beamformer, we use ε = 1 in (22) and compute
the beamformer weight vector as

wn,1 =
p∑

i=1

qiq
H
i

λi − σ2
an = Qs(Λs − σ2Ip)−1QH

s an.

(29)

Theorem 1 The pattern of T1 beamformer has nulls in
the direction of interferers and its gain in the direction
of the desired signal is equal to the inverse of the re-
ceived power from the target source. That is [9],

aH
mwn,1 =

p∑
i=1

aH
m

qiq
H
i

λi
an =

δmn

pn
. (30)

From (30), it is seen that the array produces exact nulls
in the direction of interference (that is for θm when-
ever m �= n), and the array gain in the direction of the
desired source is equal to the inverse of the received
signal power pn.

The desired signal power at the array output, say
So, is equal to the desired source power, pn, multiplied
by the array power gain in the direction of the desired
signal. Therefore, for T1 beamformer, the output power
of the desired signal is,

So = pn|aH
n wn,1|2 = pn| 1

pn
|2 =

1
pn

. (31)

3.2. Type–2 (T2) beamformer

For this beamformer, we use ε = 0.5 in (22) and ob-
tain1

wn,0.5 =
p∑

i=1

qiq
H
i

λi
an = QsΛ−1

s QH
s an , (32)

1For sake of simplicity , a coefficient 0.5 in the denominator of
(32) has been ignored.

It is interesting to remind that (32) is the conventional
reduced-rank principal component beamforming method
method [6].

Using the Karhunen-Loève expansion (8), the fol-
lowing relation, which is the MV beamformer would
be written,

wn,0.5 = R−1an. (33)

It is well known in the array processing literature that
the MV beamformer is sensitive to signal DOA uncer-
tainty and array calibration error [4].

However, it can be shown that the T2 beamformer
is less sensitive to these errors when compared to the
MV technique.

Let us define the sensitivity of array output SINR
with respect to the array steering vector error (Δa =
ã − a) by 2

Sw
SINRo,a = lim

Δa→0

|ΔSINRo|
||Δa||2 , (34)

where w is the array weight vector and

ΔSINRo = SINRo|Δa=0 − SINRo|Δa �=0 .

Eq. 34 is a novel and suitable measure of beam-
former sensitivity to array steering vector errors, that
can be used to show the robustness of T2 beamformer.

Theorem 2 The sensitivity of output SINR to the array
steering vector error in T2 beamformer is smaller than
that for MV beamformer [9].

3.3. Type–3 (T3) beamformer

For this reduced-rank beamformer, we use (22) with
ε = 0, that is,

wn,0 =
p∑

i=1

qiq
H
i

σ2
an =

1
σ2

QsQH
s an. (35)

Knowing that QsQH
s = IL −QnQH

n and QH
n an = 0,

(35) can be written as

wn,0 =
1
σ2

an, (36)

which is the well-known conventional beamformer (note
that (35) and (36) are identical if an is exactly known,
otherwise they are different). However, as we shall
show, the T3 beamformer is less sensitive to steering
vector errors than the conventional beamformer.

We define the sensitivity of array output SNR with
respect to the array steering vector error (Δa = ã− a)
as

Sw
SNRo,a = lim

Δa→0

|ΔSNRo|
||Δa||2 (37)

2The steering vector mismatch (ã �= a) may be due to system
calibration error, pointing error, and/or unsynchronized A/D convert-
ers.
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Figure 1. Plots of the beampatterns for GPC beam-
forming method (ε =1, 0.5, 0.2, 0.1, 0.05).

where

ΔSNRo = SNRo|Δa=0 − SNRo|Δa �=0

and w is the array weight vector.

Theorem 3 The sensitivity of output SNR of T3 beam-
former to the array steering vector error is smaller than
that for the conventional beamformer[9].

4. SIMULATION RESULTS

For simulation, an 8-element uniform circular array with
half a wavelength inter-element spacing is considered.
The power of the received noise is estimated based on
the average of the L − p smallest eigenvalues of the
correlation matrix and received power of all source are
assumed to be the same.

The patterns of GPC beamformer (22) for various
ε’s are plotted in Fig. 1. Here, the desired signal look
angle is 180◦ and the interferences arrive from 76◦ and
236◦.

Fig. 2 illustrates the effect of ε on the array output
SINR and SIR for up to 7 sources (i.e. for p = 2, ..., 7),
where sources have 10dB SNR. Here, each point of
simulation result is the average of 2000 Monte-Carlo
runs.

In our next experiment, we assume an array con-
sists of one directional antenna and 9 omnidirectional
antennas. The directional antenna is located at the ori-
gin of the xy plane and points toward z+. This direc-
tional antenna pattern is depicted in Fig. 4(a). The om-
nidirectional elements are arranged in a crossed form in
the xy plane and located at the center distance d = 5λ
from the directional antenna. The spacing of the om-
nidirectional elements on each arm of the cross is λ/2
(see Fig. 3).

The desired signal is at (θ = 0◦, φ = 90◦) and
two interferers are assumed at (θ = 0◦, φ = 62◦) and
(θ = 90◦, φ = 62◦). Received SINR is 15 dB and the
total output power of the main antenna is 10.1 dBm.
Fig. 4(b) shows the resulting pattern using the GPC
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Figure 2. Array output SINR and SIR as a function of ε for
p = 2, ..., 7.
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Figure 3. Antenna array with one directional antenna and 9
omnidirectional elements used in simulation.

with ε = 0.5 in the case of a φ = 0.01◦ pointing er-
ror. Fig. 4(c) shows the produced pattern using MV
beamforming method for the same scenario. The out-
put SINR for the GPC and MV methods are 37.1dB
and 15.8dB, respectively. The lower output SINR for
MV beamformer is a result of split mainlobe and high
sidelobes.

5. CONCLUSION

We introduced the GPC beamforming technique that
uses a weighted combination of the signal subspace
eigenvalues and eigenvectors of the received signal cor-
relation matrix. The beamformer weight vector is pa-
rameterized with respect to a variable, ε to allow a trade-
off between noise and interference reduction.

Three special cases of the beamformer called T1,
T2, and T3 were discussed. If the array is calibrated
and the autocorrelation matrix is perfectly known, it
was shown that T2 and T3 coincide with the MV and
conventional beamformers, respectively. However, us-
ing analytical studies and computer experiments, we
shown that T2 and T3 beamformer outperforms the MV
and conventional beamforming methods.
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