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Abstract—We study the problem of using path diversification to provide low probability of packet loss (PPL) in wireless networks. Path

diversification uses erasure codes and multiple paths in the network to transmit packets. The source uses Forward Error Correction

(FEC) to encode each packet into multiple fragments and transmits the fragments to the destination using multiple disjoint paths. The

source uses a load balancing algorithm to determine how many fragments should be transmitted on each path. The destination can

reconstruct the packet if it receives a number of fragments equal to or higher than the number of fragments in the original packet. We

study the load balancing algorithm in two general cases. In the first case, we assume that no knowledge of the performance along the

paths is available at the source. In such a case, the source decomposes traffic uniformly among the paths; we call this case blind load

balancing. We show that for low PPL, blind load balancing outperforms single-path transmission. In the second case, we assume that a

feedback mechanism periodically provides the source with information about the performance along each path. With that information,

the source can optimally distribute the fragments. We show how to distribute the fragments for minimized PPL, and maximized

efficiency given a bound on PPL. We evaluate the performance of the scheme through numerical simulations.

Index Terms—Wireless communication, fault tolerance, network monitoring, algorithm/protocol design and analysis, linear

programming.

�

1 INTRODUCTION

IN this paper, we study the problem of using path
diversification to provide probabilistic guarantees on

quality-of-service (QoS) in multihop wireless networks.
The QoS guarantees are bounds on the end-to-end delay
and probability of packet loss (PPL). Path diversification
has two components: Forward Error Correction (FEC) and
load balancing. The source uses FEC to encode each packet
into M þK fragments [1], where M is the number of
fragments in the original packet and K is the number of
parity fragments. The source then transmits subsets of
fragments over multiple disjoint paths. The allocation of
fragments on each path is determined with a load balancing
algorithm. The destination node attempts to reconstruct the
packet with fragments it receives in less than Dmax seconds
after the original transmission. The reconstruction is
possible with the FEC code if the destination receives M
or more fragments. Our objective is to devise a load
balancing algorithm which minimizes the probability that
the destination receives less than M fragments (i.e.,
minimizes PPL) when the delay is fixed.

Examples of wireless networks where path diversifica-
tion can be used are cellular networks with multihomed
mobile hot-spots [2], mesh networks with roaming users [3],
[4], sensor networks [5], and intelligent transportation
systems [6]. In the sequel, we discuss the first two examples.
A multihomed mobile hot-spot is connected to the back-
bone network through multiple receivers, and each receiver
is connected to a different service provider [2], [7]. The
home agent on the wired side of the network sends

IP packets to different addresses of the multihomed remote
agent at the mobile hot-spot. The reason for multiple
interfaces is to get better coverage and higher bandwidth
when available. The problem with this type of data
transmission is that TCP may timeout due to disparate
round trip times (RTTs) on the paths or enter fast
retransmission mode due to out-of-order packets. In both
cases, the TCP congestion algorithm is invoked needlessly
[7]. This problem is accentuated in wireless networks where
packets may be lost frequently at the link level, requiring
retransmissions, which introduce larger path delay than the
delay in wired networks.

For multihomed mobile hot-spots, path diversification
can be implemented on top of the preexisting architectures
to provide guaranteed delay in the network layer [7], [2].
The delay guarantee improves the performance of TCP.
Connection stripping for multihomed mobile hosts was also
proposed in the transport layer [8]. Although, our approach
can work with either layer, in the subsequent discussion we
assume that the implementation is in the network layer. The
advantage of implementing path diversification in the
network layer is that no modifications are required in the
TCP and IP protocols.

Mesh networks [9], [10], [3] are wireless ad hoc networks
that can provide broadband wireless access with high data
rates. A mesh network is made of many wireless routers
interconnected with wireless links. Each router also serves
as an access point for users in its vicinity. There are
two problems with this type of network. First, the mesh
connections may be implemented with IEEE 802.11 proto-
col, which decreases TCP throughput due to the exposed
station problem, and collisions, which cause the link-layer
to retransmit packets [11]. Second, it may be difficult to
provide a guaranteed QoS to mobile users in mesh
networks. For example, mobile IP hand-offs introduce delay
that deteriorates TCP performance [12].
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We propose path diversification as the solution to both
problems in mesh networks. First, we assume that the link
layer does not retransmit any packets since path diversifica-
tion provides end-to-end reliability. Second, we assume that
the source uses a multipath routing protocol and sends
fragments along multiple disjoint paths to several access
points in the user’s vicinity.1 The user listens to the access
points and reconstructs the packets as soon as it receives M
or more fragments. This scheme can be thought of as
“information raining” to mobile users in the mesh network
[13], [14]. The erasure code allows the user to reconstruct
the packet even if some of the fragments are lost due to
channel impairments or because the user is traveling
between access points.

In both examples of wireless networks, TCP does not
perform well due to high end-to-end PPL. For example,
using the results of [15], it can be easily shown that a
decrease in reliability from 0.999 to 0.95 (a decrease of
5 percent), decreases the throughput more than five times
(80 percent). Note that reliability of 0.95 corresponds to a
PPL of 0.05. So, it is important to achieve low PPL or high
reliability in wireless networks for TCP to perform well.

Path diversification is a difficult problem to solve in the
general case, which involves optimizing the routing and
load balancing at the same time. For example, finding the
optimal set of QoS constrained multiple disjoint paths is
computationally hard [16]. The problem is more difficult in
wireless networks where the channel conditions and node
connectivity change with time. If, in addition, the solution
should be implemented on the time scale of packet
transmissions the problem becomes even harder. Therefore,
we assume that the system is composed of two separate
sublayers. The first sublayer is responsible for creating and
maintaining multiple disjoint paths. Several solutions have
been proposed for this problem in the literature [17], [18],
[19], [20], [21], [22]. The second sublayer distributes the
fragments over the paths. In this paper, we focus on the
latter sublayer.

We address the problem of achieving low PPL in
two steps. First, we assume source cannot collect any
information about the path performance. In this case, the
source distributes the fragments uniformly over the parallel
paths. We call this case blind load balancing. We will show
that blind load balancing outperforms single-path transmis-
sions for low values of PPL. Second, we assume that some
performance metrics about the parallel paths are available
at the source. This can be the case if the destination moves
slowly. The metrics are provided by a feedback from the
network to the source, or by some form of probing initiated
by the source; we assume that the metrics are updated
periodically. The source node uses the information about
the paths to periodically change the load on each path.

For the second case, where the source has information
about the paths, we discuss two different optimization
problems: minimization of packet loss and maximization of
efficiency subject to a fixed packet loss. The optimum way
to allocate the packets to minimize PPL is to use a greedy
algorithm. The greedy algorithm allocates the maximum

possible number of packets possible to the path with the
smallest PPL and then the maximum possible number of
packets to the path with the second smallest PPL, and so on.
We show that in order to make this method robust, we need
to limit the number of fragments on each path.

The second optimization maximizes the efficiency of the
scheme. The efficiency is defined as the ratio of the size of
the original packet to the amount of the transmitted data.
We give an algorithm that performs a linear search for the
smallest K fragments for which the minimum required
reliability is satisfied. The algorithm increases K until it
reaches the reliability threshold. We also examine the
probability that the network may not be able to provide
service at a given guaranteed reliability and efficiency; that
is connections are blocked due to lack of resources.

We give a model of path diversification in Section 2 and
use it in the subsequent sections to solve the optimization
problems. Blind path diversification is analyzed in Section 3.
We minimize PPL in Section 4, using two different
techniques. The first technique uses an exact algorithm that
calculates PPL under ideal conditions. The second techni-
que uses the Poisson cumulative distribution function
allowing us to account for nonideal conditions in our
optimization. We maximize efficiency in Section 4.3.
Simulation results are given in Section 5 to illustrate the
benefits of path diversification. Finally, we conclude the
paper in Section 6. Next, we review the related literature.

1.1 Related Work

First, we review the related work in the QoS implementa-
tions for wireless networks and multipath routing and then
in path diversification. The work closest to ours is [24], [25]
and we review this work in more details. We will also point
out the differences between that work and our approach in
the subsequent sections.

Generally, it is difficult to provide QoS in wireless
networks. Ahn et al. [26] and Lee et al. [27] use reservation
to guarantee QoS. However, the reservations are not
effective since the source reserves the resources on a single
path. If there is a serious impairment on the path or the path
is broken because of mobility, the reservations and the
packets on that path are lost. Another approach to improve
QoS is multipath routing. The primary use for multipath
routing has been to reduce route discovery time in ad hoc
networks [17], [18], [19]. For example, in [17], [18], the source
node finds multiple paths to the destination, but it only uses
a single path for transmissions. The other paths are on
standby and are only used if the main path fails. The usage
of secondary paths reduces route discovery time; however,
it does not address the problem of unreliable links.

Other multipath schemes use multiple paths simulta-
neously. However, even if the multiple paths are used
simultaneously, the performance of TCP decreases [20], [21].
Lee and Gerla [20] used connection splitting in ad hoc
networks to transmit parts of a packet simultaneously over
multiple links. However, this approach was shown in [21] to
be inappropriate for TCP connections due to disparate delays
on the disjoint paths. This is because packets get reordered or
lost due to the discrepancy in the quality of the paths.

Maxemchuk [28] introduced path diversification for
wired networks. In that work, path diversification was
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called dispersity routing. However, this method is actually
load balancing with FEC coding, so we use the term path
diversification. In [28], a single fragment is transmitted on
each path. The focus of the work was to analyze the
decrease in delay due to load balancing, introduced with
path diversification. The approach of [28] may not be
appropriate for wireless multihop networks, especially if
the wireless network is sparse, so that only a few disjoint
paths are available between the source and the destination.

Tsirigos and Haas [24], [25] investigate path diversifica-
tion in wireless multihop networks. In that work, the
authors apply the path diversification of [28] to minimize
packet loss in highly mobile ad hoc networks. The authors
allow for multiple fragment transmissions on each path. The
model of the path transmission used in [24], [25] is that, if a
fragment is lost on a path, all of the fragments on that path
are also lost. This model may be appropriate in highly
mobile networks where path breakage means that all
corresponding fragments are lost. However, the model is
not appropriate in wireless networks with lossy connections.

Our work is appropriate for wireless networks with lossy
connections. First, we assume that the source transmits each
fragment individually. Second, we assume that the links are
highly unreliable. In wireless networks, with mobile users,
this is the case if there is fast fading or collisions in the
physical channel and if the link layer does not retransmit
the lost packets. In this type of networks, the fragment
losses can be approximated as independent or loosely
correlated. In such a scenario, the load balancing of [24],
[25] is not appropriate since there it is assumed that the
fragment losses are completely correlated. Therefore, a new
load balancing algorithm should be designed.

In addition to having a model distinct from [24], [25], we
give a load balancing algorithm that maximizes the
efficiency when the minimum packet loss is bounded. This
algorithm is more practical than the algorithm that
minimizes PPL since it allows the connections to specify
the QoS, in terms of PPL, beforehand and then it minimizes
the cost of the connection.

2 PATH DIVERSIFICATION

In this section, we propose our version of path diversifica-
tion for multihop wireless networks. We first describe path
diversification and then we give the details of how
information is collected at the source node. Finally, we
give the wireless model used in the rest of the paper.

Fig. 1 shows how path diversification works. Assume
that the source has multiple paths to the destination and
that the paths are independent (i.e., the fragment delay is

statistically independent on each of the paths.) This
assumption is true if the networks, which carry the paths,
are owned by different service providers [7], as in the
example of multihomed mobile hot-spots, or if each access
point in a mesh network can use multiple frequencies to
forward fragments to other nodes. In the latter case, the
paths should be arc-disjoint as well as frequency disjoint2

for the statistical independence. An example of this is when
wireless nodes have multiple network interface cards, each
operating on different physical channels. For example, in
the case of IEEE 802.11a, channels are created with different
carrier frequencies and there are a total of 11 channels
available.

The network layer on the source node receives an Mb bit
packet every Dmax seconds. The network layer encodes each
packet with the FEC code into M þK fragments each of
size b.3 In Fig. 1, M ¼ 7 and K ¼ 2. The fragments are
distributed on the paths and transmitted one-by-one to the
destination. The destination listens to the paths and tries to
reconstruct the packet from the fragments it receives in
Dmax seconds; some of the fragments may be lost before
they arrive at the destination. For example, in Fig. 1,
fragment 2 is lost on node B and fragment 9 is lost on the
last hop from node J to the destination. However, the
destination can still reconstruct the packet since it has
received 7 fragments.

We show the mathematical model of path diversification

in Fig. 2. Let us assume that n parallel and independent

paths are available between the transmitter and the receiver.

TheM þK fragments are subdivided into n nonoverlapping

sets with mi fragments in each set and mi is the number

of fragments transmitted on path i. PPL is given as

the probability that the destination receives less than

M fragments or, equivalently, that more than K fragments

are lost. In the rest of the paper, we will use the probability

of success Psucc in our optimizations instead of PPL. Psucc is

the probability that at least M of the fragments are received

successfully:
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2. Two arc-disjoint paths have no nodes or edges in common [16], but in
wireless environments they still have the first and the last edges in
common. However, if the paths are frequency disjoint, the first and the last
hop should also behave independently.

3. There are many ways to implement an erasure code like this. For
example, [1] uses integer modulus algebra while [29] uses the more efficient
modulo-2 algebra. The actual implementation details are not important for
this paper, we use erasure codes to increase reliability without duplicating
transmitted information.

Fig. 1. Path diversification.

Fig. 2. Mathematical model for path diversification.
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Psucc ¼ Pr½W � K� ¼ Pr
Xn
i¼1

Xmi

j¼1
I iðjÞ � K

" #
; ð1Þ

where W is a random variable indicating the total number
of lost fragments, and I iðjÞ is an indicator random variable
corresponding to an unsuccessful transmission of fragment
j on path i; that is, I iðjÞ ¼ 1 if fragment j on path i is lost
and I iðjÞ ¼ 0 if the segment arrived at the destination
within Dmax seconds.

Path diversification introduces overhead in the network
in terms of buffering costs and increased traffic, however
this cost can be justified with the benefits of path
diversification. The buffer overhead is comparable to the
cost of IP fragmentation. The destination needs a buffer of
Mb bits to hold the fragments before they are discarded.
The traffic is increased both with the increase in the
transmitted information and with the increased header
cost. We measure the increase in the transmitted informa-
tion with efficiency of path diversification:

� ¼4 Effective Throughput

Actual Throughput
¼ M

M þK
: ð2Þ

The total header overhead introduced with path diversifi-
cation is hðM þKÞ, where we assume that the header size
in the network layer is h. In order to decrease the traffic
cost, we maximize �, which decreases the total number of
parity fragments K and the total number of fragments
transmitted by the source. Nevertheless, the overhead can
be justified by the decrease in PPL that we get with our
scheme. As we showed in Section 1, a relatively small
decrease in PPL substantially increases the TCP throughput.

2.1 Collection of Information

If the network status does not change very often, the source
and the destination can collect information about the paths.
This information can be used in the two optimization
techniques that we will present in later sections. We show
this in Fig. 2 as information collection moving in the
opposite direction of traffic flow. We assume that the status
of the paths is communicated to the source by a periodic
feedback mechanism. This information can be transmitted
to the source as a part of routing or as a separate probing
mechanism. If path diversification is used in conjunction
with routing, each node can collect its own statistics about
fragment loss [30] and this information can be carried to the
source as a part of routing information.

Alternatively, path diversification can be implemented
separately from routing with an ingress probing technique
similar to [31] or an egress probing technique such as [32] to
collect statistical information at the source. Ingress probing
is initiated by the source sending a series probing packets to
the destination. The destination bounces all of the probes
back to the source, allowing the source to find out the delay
and packet loss statistics on a path. Egress probing, is a
more passive technique in which the destination collects the
delay and loss statistics of each data packet and occasion-
ally sends information to the source. The network measure-
ments are updated every Tw seconds. Ideally, this period is
less than the network variation time and close to the
maximum transmission time Dmax.

2.2 Wireless Model

We model wireless connections with a Markov chain model
[33] with multiple “GOOD” and “BAD” states. A GOOD
state corresponds to a high probability of successful segment
transmission, qiðjÞ ¼4 Pr I iðjÞ ¼ 0½ �, and a BAD state corre-
sponds to a high probability of failure piðjÞ ¼4 1� qiðjÞ. If
only two states are considered, we arrive at the Gilbert-
Elliott model [34]. An alternative model uses multiple states
and has been proposed in [35] to replace the Gilbert-Elliott
model. In each state, we model the fragment losses as
independent, meaning that I iðjÞ are independent Bernoulli
random variables. Nevertheless, we also consider the case
where I iðjÞ are dependent and show in the appendix how to
account for dependence in our optimizations.

Thismodel is different from themodel in [24], [25]where it
is assumed that the I iðjÞ on a path are fully dependent, i.e.:

Xmi

j¼1
I iðjÞ ¼ mi; with probability qi

0; with probability pi:

�
ð3Þ

The assumption (1) may be true if the fragments are lost
only due to path disconnections. However, in this paper, we
model the paths as highly unreliable wireless connections
due to fast-fading and collisions in the physical layer. We
also assume that there are no retransmissions in the link
layer so that the reliability in the network is provided end-
to-end with erasure coding.

3 BLIND LOAD BALANCING

In blind load balancing, no knowledge of the performance of
parallel paths is available at the transmitter. Assume that
there are M fragments offered by the connection and
K parity fragments generated by the source node. In blind
load balancing, the source deploys MþK

n fragments on each
path; for simplicity, we assume that MþK

n is an integer
number. In this section, we show that blind load balancing
has a higher probability of success than the single-path
transmission as Psucc ! 1. However, we also show that blind
load balancing is suboptimal and motivate the need for
optimum methods in Section 4.

We study blind load balancing in two extreme cases
using the Markov chain models. In the first case, we assume
that K is very small as compared to M. This case
corresponds to a high value of efficiency. For a channel
that is in a BAD state, most of the transmitted fragments
will be lost. In a multiple-path transmission, since K is
small, to reconstruct the original packet, we will need most
of the fragments from each path to arrive at the destination.
Intuitively, we will need to have all parallel paths to be in
GOOD state simultaneously. Since the paths move inde-
pendently among the states, the probability of this event
will be small. On the contrary, for a single-path transmis-
sion, when the channel is in GOOD state, most of the
fragments will succeed. Since the probability of having a
GOOD state along a single path is higher than the
probability of having simultaneous GOOD states across
multiple paths, we can conclude that single path transmis-
sion will result in better performance. Note that in this case,
since K is small, the erasure coding is not effective.
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In the second case, we assume that K is large compared

to M. This case corresponds to a low value of efficiency. For

large values of K, the packet can be reconstructed even if a

fewer number of channels are in GOOD state. Note that the

probability of having a single channel in the BAD state is

more than that of having multiple channels simultaneously

in the BAD state. Therefore, we can expect that for higher

K, multipath transmission will perform better.
We have performed a simulation in which we transmit

N ¼ 5; 000 packets over a Gilbert-Elliott channel. The

channel has a GOOD and a BAD state. In GOOD state,

qi ¼ 0:7, and in BAD state, qi ¼ 0:3, giving the average

probability of error of qi ¼ 0:5. We have used M ¼ 100; the

value of K can be found from K ¼ 1��
� M. The transitions

from the GOOD state to the BAD state form aMarkov Chain.

For simplicity, we assume that the channel only changes

states between the transmissions of packets. We distribute

the packets uniformly over the n paths. In Fig. 3, we show the

likelihood of packet recovery, Psucc, as the number of paths

increases for the full range of Psucc of ½0; 1:0�. However, if we

consider the performance of TCP over this channel, the

region of interest is ½0:9; 1:0�. It is clear that in the region of

interest, the performance of the erasure code increases with

the number of paths. Note that for a given Psucc > 0:9 the

efficiency converges to a maximum value with increasing n

the number of paths.
We now find maximum efficiency achievable with blind

path diversification, as the number of paths n increases. We

note that as n becomes large, the maximum number of

fragments that will be sent on each path approaches 1 while

M þK � n. So, j ¼ 1 for all I iðjÞ in (1)whenM þK � n, and

Psucc ¼
n!1Pr

XMþK
i¼1
I i � K

" #
; ð4Þ

where I i are i.i.d. Bernoulli random variables. Here, we

have assumed that the paths are independent and have

identical statistical properties. For large M þK � n, we can

use the Central Limit Theorem (C.L.T.) to further approx-

imate Psucc as:

Psucc �
MþK!1

�
K � ðM þKÞpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM þKÞpqp
 !

¼ �

ffiffiffiffiffi
M

�

s
1� � � pffiffiffiffiffi

pq
p

 !
;

ð5Þ

where �ðxÞ ¼4 1=2�
R x
�1 e�t

2=2dt is the cummulative distribu-
tion function of the standardized normal random variable
and Pr½I i ¼ 1� ¼ p ¼ 1� q. So, for a given Psucc the max-
imum � that can be achieved is given by the roots of:

� þ
ffiffiffiffiffi
pq

M

r
��1ðPsuccÞ ffiffiffi�p þ p� 1 ¼ 0: ð6Þ

We show the performance of blind load balancing as
n!1 in Fig. 3. As a check, we also show the performance
of path diversification for n ¼ 1; 000 paths. It is clear from
the figure that the C.L.T. approximates Psucc closely for large
values of n and relatively large Psucc. From the C.L.T.
approximation, we see that blind load balancing cannot
achieve efficiency higher than � ¼ 0:5. For Psucc > 0:9 and,
for single path transmission, the efficiency is � ¼ 0:28.
Increasing the number of paths to n ¼ 10, increases the
efficiency to � ¼ 0:42, and increasing the number of paths to
n ¼ 1 increases the efficiency to 0:47. Clearly, blind load
balancing is better than single path transmission, however
simply increasing the number of paths is not the best way to
increase reliability in the network.

In Fig. 3, we also show a case in which at each time
instant all fragments are transmitted on the path with the
lowest probability of fragment loss pi. This case has been
denoted by “Optimum” in the graph. Note that transmitting
the fragments in this way substantially increases the
performance. The notable gain obtained for the optimum
curve in Fig. 3 motivates us to investigate the problem for
cases where a performance metric along each path is
available at the source.

We also show the performance of multipath diversity in
Fig. 4 for a five-state Markov Chain channel. In this model,
the channel changes gradually between the GOOD and BAD
states, and the states form aMarkov Chain. Note that for this
channel, we will also need to have multiple paths to achieve
both high probability of success and acceptable efficiency.

So far, we have assumed that no knowledge of the
performance along theparallel paths is available at the source
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Fig. 3. Performance of blind diversification.

Fig. 4. Performance of blind diversification.
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node.WesawinFig. 3 thatwith this approach it isnotpossible
to increase the efficiency for largevaluesof reliability.Wesaw
in the figure that, if we could collect performance indexes
along each path and use them to distribute fragments over
multiple paths, we could have achieved much higher
efficiency. In the rest of the paper, we assume that some
performancemetrics are available at the source node and use
thesemetrics to devise optimum schemes for the distribution
of fragments along parallel paths.

4 OPTIMUM LOAD BALANCING

We characterize QoS in the network in terms of delay and
packet loss. We assume that the maximum delay in the
network is fixed toDmax and that all fragments received after
this time are considered to be lost. This allows us to
characterize path’s QoS behavior in terms of just one
parameter for each path in the network, namely, fragment
loss. We assume that the network has a mechanism that
allowsus to collect statistical information, suchaspath failure
and delay statistics about the paths. The information allows
us to improve on blind load balancing and minimize PPL.

The optimization is performed every Tw seconds, when a
new vector of estimated packet loss statistics q becomes
available. Ideally, Tw should be updated before every packet
transmission. First, we show how Psucc can be calculated
with an exact algorithm. The algorithm is valid when
subsequent fragment losses are independent. Second, we
use an approximation of Psucc, with the Poisson cumulative
distribution function (c.d.f), which also allows us to account
for the possible dependency between successive fragment
losses. Third, we show that Psucc can be maximized with a
“greedy” algorithm. In the ideal case, when the fragment
losses are independent, both the Poisson approximation
and the exact algorithm have the same solution.

We also give the maximization of efficiency of the
scheme subject to minimum reliability. This optimization
takes into account how the network operates. First, QoS of
service parameters must be satisfied; this is the minimum
reliability constraint. Second, the network optimizes the
usage of resources with maximum efficiency.

In order to simplify the calculations in subsequent
sections, we will assume that piðjÞ ¼ pi and qiðjÞ ¼ 1� pi.
We will use q ¼ ½q1; q2; . . . ; qn�T to denote the vector of qi

0s.
This assumption will allow us to express the optimization
problems as integer optimization problems with n vari-
ables. However, we can easily modify the integer
programming optimizations, into f0; 1g-integer optimiza-
tions with M þK variables to take into account the
differing values piðjÞ on a single path.

4.1 Calculation of Psucc

The calculation of the exact value for Psucc is directly
related to the calculation of the reliability of algebraic
structures, which in general is computationally hard [24].
However, we use the special properties of k-out-of-n
structures to calculate Psucc [36]. The algorithm is based
on the use of the moment generating function for the sum
of M þK independent Bernoulli random variables. The
technique is similar to the direct calculation of the
probability of failure of k-out-of-n structures with inde-
pendent component reliabilities [37]. We model the

transmission of fragments by the independent Bernoulli
random variables I iðjÞ. By (1), the moment generating
function for the number of lost packets, W, is given by:

GWðzÞ ¼
Yn
i¼1
ðqi þ pizÞMi ¼

XMþK
i¼0

ciz
i: ð7Þ

So, we can calculate Psucc by using the moment generating
function as follows:

Psucc ¼ Pr½W � K� ¼
XK
i¼0

ci; ð8Þ

where each ci is given by (7). Therefore, if the qi; i ¼ 1; . . . ; n
are known, the reliability can be calculated from (8) using
M þK recursions, one for every transmitted fragment. We
use the following recursion to find the coefficients at each
iteration [37]:

c
ðkþ1Þ
j ¼ qkþ1c

ðkÞ
j þ pkþ1c

ðkÞ
j�1: ð9Þ

We now use the cumulative distribution function of the
Poisson random variable to bound the reliability. Psucc can
be approximated with the Poisson distribution, [38], as:

Qð�ðmÞ; KÞ � Psucc � Qð�ðmÞ; KÞ þ 1

2

Xn
i¼1

mi ln
2ðqiÞ; ð10Þ

where

Qð�ðmÞ; KÞ ¼
XK
j¼0

e��ðmÞ½�ðmÞ�j
j!

�ðmÞ ¼
Xn
i¼1

lnðq�mi

i Þ ¼ �mT lnðqÞ
ð11Þ

and lnðqÞ ¼ ½lnðq1Þ; lnðq2Þ; . . . ; lnðqnÞ�T is the natural loga-
rithm of the vector of probabilities of success. The Poisson
approximation is a good replacement for the exact
algorithm since very good values of Psucc can be obtained
in relatively few steps. For example, with just 10 iterations
we can calculate Qð�ðmÞ; KÞwith precision of less than 10�6

(note 10! > 3� 106).
The other advantage of the Poisson approximation is that

we can model the dependence of successive fragment
losses. So far, we have approximated the consecutive packet
losses in the time period Tw as independent in order to
calculate the probability of successful packet transmission
Psucc. Using the Poisson approximation (11), it is possible to
find the estimates for qi that minimize the error of
approximating the dependent variables I iðjÞ as indepen-
dent ([38] gives one such estimate). However, we use a
different approach by expressing the error in dependance
on each path with:

Qð�ðmÞ; KÞ � 2
Xn
i¼1

Xmi

j¼2
pi � Psucc: ð12Þ

We derive the relation in the Appendix.
We make two observations about (12). First, the error in

approximation depends on the total number of transmitted
fragments M þK, meaning that the load balancing
algorithm should be robust if M þK is relatively small.
Second, the error is 0 if each path only carries a single
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fragment. This means that the load balancing is more
robust to the dependance of fragment transmissions if the
number of fragments transmitted on each path is small.
The second observation can be used in the two optimiza-
tions in this paper by limiting the number of fragments
transmitted on each path.

4.2 Minimum PPL (Maximum Psucc)

In this section, we give an algorithm that finds the allocation
vectorm ¼ ½m1;m2; ::;mn�T forwhichPsucc ismaximized.We
note that Psucc is a monotonically increasing function of K.
This is clear from (1) since Psucc is defined as the c.d.f of the
random variableW. So, we will assume thatK is fixed since
Psucc can always be increased by increasingK.

The optimization of Psucc is constrained by the maximum
number of fragments that can be transmitted on each path.
The optimization is given as:

Maximize
m

: Psuccðm; K;qÞ ð13aÞ
Subject to : mT1 ¼ K þM ð13bÞ

0 �m �Mth; ð13cÞ
where 1 is a vector of all 1s, 0 is a vector of all 0s, Mth ¼
½MðthÞ

1 ;M
ðthÞ
2 ; . . . ;MðthÞ

n � is the maximum number of frag-
ments that can be transmitted on each path and � indicates
a memberwise comparison.

Constraint (13b) assures that the total number of
fragments on the paths is M þK. The second constraint
(13c) limits the number of fragments on each path. Note that
increasing the number of fragments transmitted on a path
also increases the delay and congestion on that path.
Therefore, we assume that the maximum number of
fragments transmitted on each path is limited, where the
limit is determined either through statistical properties of
the end-to-end delay determined with our probing mechan-
ism or by letting each node locally determine the number of
fragments it can transmit and then taking the minimum of
these numbers on every path. We also assume that Mth is
kept small to make the algorithm more robust to the
dependence of fragment losses on each path. The optimiza-
tion (13) can be solved with a “greedy” algorithm. We give a
proof for the correctness of this algorithm in [39].

In comparison to the solution with the greedy algorithm,
the Poisson approximation has the same optimum alloca-
tion vector. If we use the Poisson approximation for Psucc,
optimization (13) becomes:

Maximize
m

: Qðm; KÞ ð14aÞ
Subject to : mT1 ¼ K þM ð14bÞ

0 �m �Mth: ð14cÞ
It can easily be shown that Qð�ðmÞ; KÞ is a decreasing

function of �ðmÞ for a fixed K.4 This means that we can
maximize the probability of success by minimizing �ðmÞ.
The optimization then becomes:

Maximize
m

: mT lnðqÞ ð16aÞ
Subject to : mT1 ¼ K þM ð16bÞ

0 �m �Mth: ð16cÞ
Optimization (16) can be solved exactly for m 2 IRn with

the use of greedy algorithm since the sort of ln ðqÞ and q

result in the same ordering of paths in the network. So, the

Poisson approximation of Psucc and the exact optimization

of Psucc yield the same resource allocation.
In [25], the optimization of Psucc was performed by

approximating Psucc as the normal c.d.f with CLT. This

approximation is more appropriate with the complete

dependence of fragment losses on each path. With the

Normal approximation, one may also interpret the objective

function of [25] in terms of path failure. However, there are

still two problems with this approach. First, CLT approx-

imates Psucc only when there are a large number of paths.

Since Psucc in [25] is the c.d.f of a sum of n integer random

variables the approximation becomes increasingly better

with larger n. Second, it is difficult to know how good the

normal approximation is since the best known bound for it is

the Berry-Essen bound; this bound is loose for small n [40].
We use an example to further illustrate the differences

between our scheme and that of [24], [25]. Suppose, there

are three paths available to transmit fragments between the

source and the destination with q ¼ ½0:9; 0:8; 0:8� and M ¼ 2

and K ¼ 1. With the assumption of independent fragment

loss, we assign all three fragments to path 1 to get

Psucc ¼ 0:95. The algorithm in [25] assigns each fragment

on a separate path to get Psucc ¼ 0:928. On the other hand, if

the fragment losses on each path are fully dependent, as

assumed in [25], our allocation results in Psucc ¼ 0:9 and the

allocation with the algorithm from [25] results in

Psucc ¼ 0:928. The normal approximation evaluates Psucc

for the allocation with the algorithm in [25] as 0:999, for

both the independent fragment allocation and the depen-

dent fragment allocation. The normal approximation

calculates that our allocation evaluates Psucc as 0:9927,

which is also incorrect.

4.3 Maximization of Efficiency (�)

In this section, we show how the efficiency � can be

maximized. As we explained earlier in Section 2, � is

important since it is directly related to the amount of

overhead introduced by the scheme. We perform the

optimization with a constraint on the minimum network

reliability Psucc � �, where � is a QoS parameter supplied by

the connection. The efficiency should be maximized to

decrease the cost of the connection; however, the packet loss

should be bounded to guarantee QoS to the connection.
The optimization problem is given by:

Maximize
m;K

: �ðm; KÞ ¼ M

M þK
ð17aÞ

Subject to : Psuccðm; K;qÞ � � ð17bÞ
mT1 ¼M þK ð17cÞ
0 �m �Mth: ð17dÞ

554 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 5, MAY 2006

4. Since �ðmÞ is a positive function, taking the derivative of Qð�ðmÞ; KÞ
with respect to each mi gives:

@Q

@mi
¼ � @�ðmÞ

@mi
e��ðmÞ

�ðmÞ½ �K
K!

< 0: ð15Þ
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We first note that �ðm; KÞ is a monotonically decreasing
function of K since M is constant. So, �ðm; KÞ is maximized
when K is minimized and the equivalent optimization is:

Minimize
K

: K ð18aÞ
Subject to : Psuccðm; K;qÞ � � ð18bÞ

mT1 ¼M þK ð18cÞ
0 �m �Mth: ð18dÞ

We assume that �ðm; KÞ � �, where � is a parameter used
to put a bound on the complexity of the optimization. So, the
maximum number of parity checks that can be used is

Kmax ¼ 1� �

�
M: ð19Þ

We can perform the optimization (18) with a simple linear
search over at most Kmax items. Algorithm 1 shows how to
perform the linear search. At every step, if the solution is not
found, the algorithm adds one more parity packet and
assigns it to a path with the lowest probability of failure with
available resources. The algorithm ensures that the search
finds the optimal number of extra parity packets K since it
assigns the packets in the most optimal way. The algorithm
uses the function MAXIMIZE-PSUCC (not shown here in the
interest of space) to allocate the fragments formaximumPsucc

with the optimization (13). The algorithm may not find a
solution for K in 0 � K � Kmax. In such a case, we declare
that the packet cannot be transmitted in the network. This
case corresponds to the probability of blocking.

The algorithm checks the validity of the solution by
evaluating Psucc using the methods proposed in Section 4.
Here, we note that more efficient implementations of
Algorithm 1 can be obtained if we use the recursive
relationship (9). We will not discuss these techniques here.
We show the correctness of the algorithm in [39].

Algorithm 1. OPTIMIZE-UTILIZATIONðMth;q; �; �).

Require: 8i > j; qi � qj
Ensure: mT1 �MT

th1, i � n

1: Mtotal ¼ 0, m ¼ 0

2: m MAXIMIZE-PSUCCðq;M; 0;MthÞ
3: i minf8j : 1 � j � n;Mj 6¼ 0g � 1

4: Kmax  b1��� Mc
5: repeat

6: if i < n ^K � Kmax ^Mi < M
ðthÞ
i then

7: K  K þ 1

8: Mi  Mi þ 1

9: else

10: i iþ 1

11: end if

12: until Psuccðm; K;qÞ < �}

13: if i > n _K > Kmax then

14: return m ;
15: else

16: return m fM1;M2; ::;Mng
17: end if

5 NUMERICAL RESULTS

We created several simulation scenarios to examine the
performance of path diversification. First, we show the
results for unconstrained optimization, which gives the
optimal performance for independent fragment losses.
Second, we limit the maximum number of fragments that
can be transmitted on each path Mth to account for the
delay and dependence between fragments. We examine the
impact of the constraints on the efficiency of the load
balancing algorithm. Third, we show that the robustness of
the algorithm when qi are not accurate. Fourth, we give
results for the maximization of efficiency.

5.1 Unconstrained Maximization of Psucc

We evaluate the unconstrained maximization of Psucc. In the
unconstrained optimization (13), constraint (13c) is not taken
into account (i.e., Mth ¼ 1). We simulate 200 packet trans-
missions for n ¼ 5 paths. The qis are selected before each
transmission from the uniform distribution ½�qq � 0:1; �qq þ 0:1�,
where the average probability of fragment success (PFS) is
�qq ¼ 0:5; 0:7; 0:8; 0:9. Fig. 5a shows � on the horizontal axis and
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the average value for Psucc on the vertical axis. Path
diversification is an efficient way to ensure network
reliability. For example, for �qq ¼ 0:8, we can achieve the
reliability of 0.999 with the efficiency of 57 percent.

In Fig. 5b, we show the same plot of Psucc as in Fig. 5a in
the log-odd scale. The values in the log-odd scale are
plotted as logð�=ð1� �ÞÞ in place of �. The log-odd scale
allows us to map the set ½0; 1� uniformly to the set ½�1;1�,
so that we can observe the asymptotic effect of Psucc ! 0 or
Psucc ! 1. For example, a value of Psucc ¼ 0:999, would
translate to a value of 3 in the log-odd scale. We show some
other mappings to the log-odd scale in Table 1.

Our work differs from [25] in two aspects. First, our
load balancing algorithm is different from the load
balancing algorithm in [25] and, second, we calculate
Psucc differently from [25], giving us a more accurate way
to validate the performance of either load balancing
algorithm. Here, we compare our work with [25]. In our
simulations, the source transmits 200 packets each decom-
posed into M ¼ 100 fragments over n ¼ 5 paths, with the
average PFS of �qq ¼ 0:8.

We show the results of the simulations in Fig. 6. The
“Optimum Solution” and the “Optimum Poisson” curves
show the performance of our load balancing algorithm. We
used the exact algorithm to calculate Psucc for the “Optimum
Solution” curve and the Poisson approximation (10) to
calculatePsucc for the “OptimumPoisson” curve. The Poisson
approximation gives a very good estimate of Psucc. So, the

Poisson approximation is a good candidate to replace the
exact algorithm since very good values of Psucc can be
obtained in relatively small number of steps. For example,
with just 10 iterations, we can calculate Qð�ðmÞ; KÞ with
precision of less than 10�6.

In Fig. 6, the “Normal Approximation” curve shows the
performance of the load balancing scheme in [25] evaluated
with the normal c.d.f., which was used in [25] to evaluate
Psucc. We can see that the approximated values of Psucc in the
“Normal Approximation” curve are inaccurate. The “Opti-
mum Normal” curve shows the performance of the load
balancing scheme in [25] evaluated with the exact algorithm
for the evaluation of Psucc that was proposed in this paper.
We see that the transmission of packets using our load
balancing scheme outperforms the load balancing in [25].

5.2 Constrained Optimization of Psucc

Ideally, the source should distribute all the fragments on the
path with the highest PFS. However, this is only possible
without the constraint (13c) in optimization (13), that is
Mth ¼ 1. In this section, we assume that Mth on each path
is limited.

We perform a simulation with 1,000 packets transmitted
onn ¼ 5pathswitha fixedPFSoneachpathandMth givenby
a Poisson distribution with the parameter �. The PFS was
fixed to q ¼ ½0:85; 0:7; 0:7; 0:7; 0:7�; these are the same values
used in [23]. Without the upper bound onMth, the optimum
strategy is to distribute all the fragments on path 1 with
qi ¼ 0:85.However, theupperboundonMth forces the source
to distribute the fragments on more than one path.

Fig. 7 demonstrates the effect of the upper bound Mth on
Psucc. We plot Psucc for different values of the Poisson
parameter �. We see, from the figure, that limiting the
number of fragments on each path makes the load
balancing algorithm less efficient. For example, for
Psucc ¼ 0:999, the efficiency decreases 18 percent when the
source uses three paths on average, �=M ¼ 0:3, and
15 percent when the source uses two paths on average,
�=M ¼ 0:5. However, this also means that if the transmis-
sion must be distributed among many paths due to
constraints on each path, the source can still increase
reliability by increasing K.
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Fig. 6. Comparison to the normal and poisson approximation n ¼ 5,

�qq ¼ 0:8.

Fig. 7. QoS constrained reliability versus efficiency.
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5.3 Robustness of the Optimization of Psucc

Previously, we assumed that the system can accurately
estimate the current PFS on each path. In order to test the
effect of inaccurate PFS on the optimization (13), we
implemented an estimator for the fragment loss on each
path using the Exponentially Weighted Moving Average
(EWMA) estimator [41]. The EWMA estimator uses the
following relation to calculate the current estimate q̂qnewi ,
from the previous estimate q̂qoldi :

q̂qnewi ¼ q̂qoldi þ �ðqi � q̂qoldi Þ; ð20Þ
where qi is the latest estimate received from the network.
Coefficient � dictates the influence of old samples on the
current estimate; a smaller � means that the old samples
have a larger impact on the current estimate.

Here, we simulate the fragment losses as a Markov chain,
where the states correspond to the probability of successful
fragment transmission qi. For simplicity, we assume that the
state changes at every packet transmission. We ran the
simulation for N ¼ 5; 000 packets.

Fig. 8a shows Psucc when an EWMA estimator is used
over a two state Markov chain, where qi goes through the
states ½0:7; 0:9� to give an average PFS of �qq ¼ 0:8. We perform
the experiment for � ¼ 0:2 and � ¼ 0:6. The performance of
the estimator for � ¼ 0:6 is very close to that of the optimum
since the estimates of qiðjÞ are more accurate. However, the
estimator does not perform as well with � ¼ 0:2 since it
emphasizes the old values of qiðjÞ on the fast varying
channel. Fig. 8b shows Psucc for a five state Markov chain
where qi goes through the states ½0:7; 0:75; 0:8; 0:85; 0:9�. In
this case, both estimators have similar performance, but
they are not as accurate as in the case of the two state
Markov chain.

The performance of the load balancing is not sensitive to
inaccurate estimates of qi. For example, for the two state
Markov chain scenario, the estimate with � ¼ 0:2 is only
2 percent less efficient than the optimum solution for
Psucc ¼ 0:999. The reduction in efficiency for the same value
of Psucc in the five state Markov chain scenario scenario is
5 percent.

Fig. 8 also shows the performance of the blind load
balancing algorithm and the single path solution. We note
that the load balancing performs better than the single path
solution, regardless of the accuracy of qis. The load
balancing algorithm also performs better than the blind
load balancing algorithm for moderate values of Psucc. For
example, for the five state Markov chain scenario, blind
path diversification performs better than the load balancing
algorithm for Psucc > 0:99999. However, for more practical
values of reliability 0:99 � Psucc � 0:999 the load balancing
algorithm outperforms the blind load balancing algorithm,
even with inaccurate values of qi.

5.4 Optimization of Efficiency

In this section,weexamine the efficiencyof the loadbalancing

algorithm when the source uses optimization (17). We

perform simulations for a scenario with n ¼ 5 paths where

we have setM ¼ 100. The source transmits 40,000 packets in

which we fix the PFS of each path for 200 transmissions and

then we choose another set of PFSs for the next 200 transmis-

sions and so on; the average PFS for all transmissions is
�qq ¼ 0:8. We perform 200 sets of 200 packet transmissions. For

each set of 200 packet transmissions, we select the upper

bound on the number of fragments on each path from a

Poisson distribution with the parameter �.
Fig. 9 shows the maximum efficiency that can be

achieved for different values of minimum reliability �. The
“Optimum” curve is obtained by examining the uncon-
strained optimization (17), i.e., Mth ¼ 1. This case corre-
sponds to the maximum efficiency that can be achieved
with path diversification. We note that for the minimum
reliability � ¼ 0:999 the efficiency is � ¼ 0:76. This means
that the overhead of path diversification with optimization
(17) is 59 percent lower than the overhead of the
optimization (13).5

We also see that the effect of using multiple paths is
mitigated with the optimization. For example, if the source
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is forced to use two paths on average (�=M ¼ 0:2) the
efficiency decreases 4 percent; this is better than the
optimization (13) where the reduction in efficiency was
15 percent. We also see from the figure that it will be
reasonable to expect the efficiency in the network to be � >

0:70 if the source does not need to use more than three paths.

6 CONCLUSIONS

In this paper, we have proposed a new approach to increase
reliability in wireless networks. The proposed technique
uses multipath routing complemented with erasure codes.
The technique can achieve high reliability when no informa-
tion is known about the network performance. However, we
have shown that by collecting information about network
behavior, we can achieve high reliability efficiently and
without using a high number of paths in the network.

First, we have given a polynomial time algorithm to find
the path allocation that minimizes PPL. We have used
numerical simulations to illustrate the effectiveness of this
technique. The simulations have shown that the algorithm
is robust to delay constraints on the paths and inaccurate
information about the network performance. We have also
compared the performance of our algorithm with the load
balancing algorithm in [25]. We have shown that our
algorithm performs better than the algorithm in [25].

Second, we have given a polynomial time algorithm to
find the maximum efficiency of the scheme for a given
maximum allowed PPL. This algorithm is necessary to
allow for provisioning of QoS in the network. We have
shown through simulations that this algorithm achieves
better efficiency than the first algorithm.

APPENDIX

LOWER BOUND WITH DEPENDENT PACKET LOSSES

(PROOF OF (12))

We examine the impact of fragment loss dependence on the
lower bound for reliability in (10). We use the indicator
random variables I	i ðjÞ to represent the true loss on the path
including the arbitrary dependence between consecutive

losses.Note that I	i ðjÞ is a randomvariable indicating the loss

of segment j on path i and Pr½I	i ðjÞ ¼ 1� ¼ p	i ðjÞ ¼ 1� q	i ðjÞ.
This is analogous to the random variables I iðjÞ in (1). The

difference is that I iðjÞ random variables approximate the

losses as independent. In the rest of this section, we will find

the error in approximating the sum of I	i ðjÞswith I iðjÞs and
show the change that this approximation introduces in (10).

We define the dependence of fragment loss on path i

with a sequence of random variables 	iðjÞ:
	ið1Þ ¼ Pr½I	i ð1Þ ¼ 1� ¼ p	i ð1Þ
	iðjÞ ¼ Pr½I	i ðjÞ ¼ 1jF iðj� 1Þ�; ð21Þ

where F iðj� 1Þ is a 
-algebra on the set

�iðj� 1Þ ¼ fI	i ð1Þ; ::; I	i ðj� 1Þg:
This makes 	iðjÞ a random variable on the probability space

ð�iðj� 1Þ;F iðj� 1Þ; P	iðjÞÞ, where P	iðjÞ gives the probability
that a specific sequence of losses and successes precedes the

jth transmission.
The random variables 	iðjÞ allows us to use the results of

[38] and change the lower bound on Psucc in (10) to include
the dependence of fragment losses as follows:

Qð�ðmÞ; KÞ �
Xn
i¼1

Xmi

j¼1
Ej	iðjÞ � piðjÞj � Psucc: ð22Þ

The extra term is the error from approximating the
dependent random variables I	i ðjÞ with arbitrary indepen-
dent random variables I iðjÞ. It is shown in [38] that piðjÞ ¼
Pr½I iðjÞ ¼ 1� can be chosen arbitrarily. We approximated
these values with the average value of p	i ðjÞ over all
transmissions, pi, as follows:

pi ¼ 1

mi

Xmi

j¼1
Ep	i ðjÞ: ð23Þ

The optimum value in terms of dependence would be to use
the median of each 	iðjÞ. However, this is not important for
this discussion.

In order to give a better idea of what the lower bound
may actually be, we now calculate the expected value on the
summation in (22), conditional on a fixed value of p	i ðjÞ.
Recall that p	i ðjÞ is a random process, so this means that we
are only looking at a single realization of the process. We can
calculate the expected value of Ej	iðjÞ � pij, for mi > 1with:

Ej	iðjÞ � pij ¼
Z
�iðj�1Þ

	iðjÞ � pij jdP	iðjÞ

�
Z
�iðj�1Þ

	iðjÞdP	iðjÞ þ
Z
�iðj�1Þ

pidP	iðjÞ

¼ Pr½I	i ðjÞ ¼ 1� þ pi

¼ p	i ðjÞ þ pi:

ð24Þ

Note that, for mi ¼ 1, Ej	iðjÞ � pij ¼ 0.
If we take the expected value of Ej	iðjÞ � piðjÞj over

p	i ðjÞ, sum up the results for all the fragments on all the
paths, and combine this with (23), (22) becomes:

Qð�ðmÞ; KÞ � 2
Xn
i¼1

Xmi

j¼2
pi � Psucc: ð25Þ
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