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Abstract— The advent of dedicated short range commu-
nication (DRSC) devices — which are designed to support
vehicle-to-vehicle and vehicle-to-infrastructure communication
— promises a wide set of new active safety applications (e.g. a
cooperative collision warning system based on vehicle-to-vehicle
communication). One of the fundamental challenges for realizing
these systems will be to accurately and reliably determine a
vehicle’s position with respect to its neighbours. We propose a
distributed algorithm using inter-vehicle distance estimates to
localize a vehicle among its neighbours. Given that the inter-
vehicle distance measurements contain noise, we will present a
robust min-max optimization algorithm that precisely predicts
the vehicle position within a cluster. Simulation studies show
that our algorithm outperforms previously proposed localization
schemes.

I. INTRODUCTION

The motivation for this work stems from the recent in-

troduction of dedicated short range communication (DSRC)

devices. DSRC is based on the 802.11p standard for Wireless

Access in Vehicular Environments (WAVE) and is designed to

support short range, low latency, high speed vehicle-to-vehicle

and vehicle-to-infrastructure wireless communication. In the

future, vehicles will likely be equipped with DSRC devices.

DSRC will support a variety of safety applications and other

ITS applications such as electronic toll collection, real-time

traffic advisories, and digital map updates [1].

One of the most promising vehicular safety applications

is the development of an advanced cooperative collision

warning system. It is envisioned that the advanced vehicle

collision warning system will use vehicle-to-vehicle radio

communications to create a cooperative collision warning

system, where vehicles — equipped with DSRC devices —

cooperatively share information (i.e. location, speed, heading,

acceleration, etc.) for collision anticipation. By sharing this

information between peers, each vehicle is able to predict

potential hazards. It was shown by Tatchikou et al. [2]

that sending safety warning messages containing position

information could substantially reduce the probability of

collision within a platoon. However, accurately and reliably

determining a vehicle’s relative position among its neighbours

still remains a fundamental challenge; as it is an essential

component in estimating the likelihood of collision.

Designing a solution for accurate localization of neighbour-

ing vehicles based on real-time exchange of position esti-

mates, using vehicle-to-vehicle communication, is a challeng-

ing task. Given the sub-second decision latency requirement

of cooperative collision warning systems, the solution must

be able to establish the relative position of all neighbours in

real-time and continuously track their motion to proactively

identify potential vehicle collision scenarios.

Currently, global positioning system (GPS) is used to

determine a vehicle’s location, which provides an accuracy

of approximately 10 meters [3]. In GPS, a vehicle locates

itself by comparing the signal received from four or more

GPS satellites. Although, GPS can create precise location

estimation where direct line-of-site to multiple satellites is

possible, GPS signals can often become blocked or degraded

when vehicles enter tunnels or are in downtown areas. Typi-

cally, during short-outages of GPS, vehicles can use a dead-

reckoning system to maintain an estimate for their position

[3]. However, dead-reckoning system are prone to error

accumulation. Even during short-outages (e.g. 30 seconds

or less) the position estimate can become inaccurate by as

much as 10-20 meters, if the vehicle is traveling at 100km/h.

Inaccuracies in position estimation may result in alerting a

driver when there is no danger of collision. Conversely, if

position information is unavailable or degraded the system

may fail to alert the driver when there is danger on the road

ahead.

Although, there has been GPS systems with improved

accuracy, such as differential GPS (DGPS) [3] and assisted

GPS (A-GPS) [4], which achieve accuracies between 3 and 7
meters, these systems still are prone to the same reliability

issues as regular GPS. It has been recently argued that a

combined solution using GPS — or one of its improved

variants — and the use of radio based ranging techniques

(such as the received signal strength indicator (RSSI)), to

determine distance estimates between vehicles in a cluster,

can be used to increase the reliability of the location estimator

[5].

The use of radio based ranging techniques also presents

a number of unique challenges. First, the distance measure-

ments are inherently noisy as a result of a number of factors

including: limitations of the measurement device, multipath

fading, shadowing and non-line-of-sight errors. Second, mo-

bility complicates the handling of noise, since outliers and

noisy measurements can be mistaken as observed motion and

the effects of fading becomes more prevalent. Therefore, it

is critical for a radio based position estimation algorithm to

attempt to mitigate these errors.

In recent years, localizing nodes using the inter-nodal radio

ranging distance measurements has been an active area of

research. Radio based distance measurement based algorithms

have been mainly used in wireless sensor networks, where

it is not feasible for all the sensor nodes to have GPS.
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Unfortunately, the majority of the earlier algorithms fail to

consider that the range measurements contain noise or node

mobility. Moore et al. [6] propose a robust quads algorithm,

which seems to show promise for use in vehicular networks;

so we will compare our algorithm to this one.

In [7], we have proposed a new localization algorithm

for vehicular networks. In that algorithm, we minimize the

mean square error of the measured distance between any two

vehicles and their parametric distance model in a rectangular

coordinate system. For a Gaussian error, the algorithm is

optimal and produces Maximum Likelihood estimates. Since

the cost function in [7] reduces the average error, single terms

may have large error. In the present paper, we introduce a new

robust min-max estimator that minimizes the maximum error.

At a high level, our localization algorithm works as follows.

Each node measures distances to its neighbouring nodes and

shares this information with its neighbours. Based on this

one-hop information, each node solves a min-max problem

to create a map of the relative position of its neighbours in

the same cluster. Also, if a subset of these nodes (i.e. at least

3) has prior information about its position with respect to a

global coordinate system, then all the nodes within the cluster

can determine their global position.

The remainder of this paper will show how accurate

position estimates for vehicles can be made using inter-

vehicle distance estimates. We will first provide an overview

of related radio based localization algorithms and techniques

used. Then, give a detailed explanation of how our algorithm

works and show how its performance compares to other

localization schemes.

II. RELATED WORK

In recent years, localizing a node using inter-nodal radio

range based distance measurements has been an active area of

research (see [8] for survey). In general, localization schemes

can be separated into two classes: course grain and fine

grain. Within each of these schemes there are distributed and

centralized approaches. Typically, course grain localization

uses mere connectivity radio between nodes and requires a

central node in the network to establish position estimates

for the nodes (e.g. [9]) and are generally used when a rough

estimate of a node’s position is sufficient. Conversely, the

goal of fine grain localization is to provide very accurate

node position estimates using either centralized or distributed

approach. We will mainly focus on reviewing the distributed

fine grain approaches, as these are most applicable for vehicle

networks and most closely related to our work.

An algorithm, which is successfully used in a vehicu-

lar network environment, must meet the following criteria:

(i) be able to handle node mobility; (ii) produce accurate

position estimates, given there is noise in the inter-vehicle

distance measurements; (iii) operate in a distributed fashion.

So, we will now examine some of the existing localization

approaches and evaluate them against the fore-mentioned

criteria to determine their feasibility for application in vehicle

networks.

In [10] a GPS-free positioning algorithm for mobile ad-

hoc networks was proposed where each node runs a self-

positioning algorithm that computes the angles between the

one-hop neighbours — based on the inter-node distance

measurements — to establish a local coordinate system. Once

the local coordinate systems are formed, the nodes orient their

coordinate system to a common coordinate system where

all nodes’ x, y coordinates point in the same direction.

Unfortunately, the GPS-free positioning algorithm [10] is

expensive in terms of the number of messages that need

to be exchanged between nodes. As a result, this procedure

does not scale well and is not well suited for high mobility

environments, where nodes are frequently entering and exiting

clusters. Iyengar and Sikdar [11] derived an improved version

of [10], to tackle these issues, by creating an algorithm that

improves scalability and convergence times.

Kukshya et al. [5] made use of the results from [11] to

create a scheme for localizing neighbouring vehicles based

on radio range measurements. Their goal was to establish

an accurate map of the relative positions of all neighbouring

vehicles. Under the assumption that vehicle did not have

access information from GPS or dead-reckoning system (e.g.

operating in conditions where GPS did not have line of sight).

They use trilateration for estimating a vehicles position,

however noise in the range measurements can quickly cause

error to propagate as the coordinate systems are aligned to a

common coordinate system.

In [12] a ”DV-hop” method is proposed where a node is

localized based on considering a set of distances to anchor

nodes. The method works as follows: each anchor node floods

its location to all nodes in the network. Each node with

unknown location records the position and the number of hops

to at least 3 anchors. Whenever anchor a1 infers the position

of another anchor a2, it calculates the distance between them,

divides by the number of hops and floods the network with the

average hop distance. Each node next uses this average hop

distance to convert hop counts to distances. Then, the node

uses these distances to perform triangulation to three or more

distant anchors to establish an estimate of its position. This

method works well for dense topologies, but degrades signif-

icantly for sparse and ”hard” network topologies (i.e. cases

where whole or parts of the network can be rotated or flipped

given the same set of distance measurements.) Savarese et al.

[13] use a similar method to [12], but the author’s propose a

heuristic to detect networks with “hard” network topologies.

They consider a node uniquely localizable only if a node

has three disjoint paths to three distinct beacons and suggest

using a least-squares optimization to reduce the effects of

measurement errors. However, [14] disprove this heuristic

and derive a theoretical framework for determining nodes that

have a unique localization in terms of graph rigidity theory.

Moore et al. [6] use this theoretical framework to derive

a robust quads algorithm to determine the nodes positions in

the presence of noisy range measurements. They identify two

scenarios which prevent a localization from being unique: (i)
a flip ambiguity where all the distance measurements are the
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(i) Flip ambiguity (ii) Flex ambiguity

A’

Fig. 1. (i) Flip ambiguity Node A can be either A or A’ and the distance
constraints are still satisfied (ii) Flex ambiguity the distance constraints are
the same except the graph is sheared

same but parts of the graph can become mirror reflections; or

(ii) flex ambiguities where the distance constraints remain the

same, but the graph is sheared. Moore et al. [6] proved that

flex ambiguities do not pose a problem for fully connected

graphs. They derived a heuristic to detect nodes which have

a high probability of having a unique realization (i.e. a

unique position, given a set of distance constraints). The

objective of their algorithm was to only localize those nodes

with unique realization. With the goal that the propagation

of localization error would be minimized as the coordinate

systems are aligned to a common orientation. The robust
quads algorithm [6] shows promise for use in vehicular

networks. The algorithm was deployed in a sensor network

and had one experiment where a single node had mobility and

rest of the nodes remained stationary, showing that a mobile

node could accurately be tracked within the network. Of the

algorithm’s surveyed the robust quads seems to show the most

promise for use in vehicular networks, so we will compare

our method to it.

III. ALGORITHM FRAMEWORK

In this section, we will give a formal definition of the

problem and then present our algorithm.

A. Problem definition

Consider a network with n vehicles labeled 1,2,...n at un-

known distinct locations in some physical region. By using a

radio-based ranging technology (e.g. received signal strength

indicator (RSSI)) each vehicle estimates the distance to its

neighbours. We denote the distance measured between vehicle

i, and vehicle j as d̂i,j . So, given the network of n vehicles,

our objective is to produce a set of coordinate points, (xi, yi),
for each vehicle i (where i ∈ {1, 2, ...n}) such that after

running our algorithm, the estimated Euclidean position of

each node closely resembles (ideally identical to) the actual

(or the ground truth) Euclidean position of each vehicle up

to a global translation and rotation.

B. Algorithm

Our algorithm works as follows, each vehicle builds its

own local coordinate system, setting itself as the center of its

own coordinate system with position (0,0), with the objective

to estimate the (x,y) coordinates of all its neighbours. The

distributed vehicle localization algorithm can be broken

down into three phases, as follows.

Phase 1: Create Initial Position Estimates
Rough initial estimates for unknown vehicle positions

are obtained, using GPS or trilateration. Specifically, each

vehicle measures inter-vehicle distance and exchanges this

information with its neighbours to establish a matrix of inter-

vehicle distance estimates for its one hop neighbours. Using

this distance information, trilateration can be preformed to

establish initial position estimates. Note that in trilateration,

vehicles position may be ambiguous. It is possible to have

flip or flex ambiguities (see Figure 1). To attempt to mitigate

these ambiguities, one possibility is to leverage vehicle

mobility and make multiple iterations of the trilateration and

use the position estimate with the maximum likelihood as an

initial position estimate.

Phase 2: Refine the Position Estimates:

Each node refines the initial estimates to provide a final

estimate of its neighbours location. We formulate the objective

function as min-max optimization problem, let fi,j be defined

as

fi,j(t) = d̂i,j(t)−
√

(xi(t) − xj(t))2 + (yi(t) − yj(t))2. (1)

where (xi(t), yi(t)) and (xj(t), yj(t)) are the location esti-

mates of nodes i and j, respectively, at time t and d̂i,j(t) is

the measured distance between the vehicle i and vehicle j at

time t. Using (1), each vehicle can create an n × n matrix

(where n is the number of nodes in the cluster), which takes

the form:
⎡
⎢⎢⎢⎢⎢⎣

0 f1,2 f1,3 . . . f1,n

f2,1 0 f2,3 . . . f2,n

...
...

. . .
...

...

fn-1,1 fn-1,2 . . . fn-1,n-1 fn-1,n

fn,1 fn,2 . . . fn,n-1 0

⎤
⎥⎥⎥⎥⎥⎦

.

Then location estimates (xi(t), yi(t)) are selected accord-

ing to:

min maxi,j wi,j(t) |fi,j(t)| (2)

where wi,j(t) is a weight based on the magnitude of the

distance measured between vehicle i and j; because it is

important that vehicles at close range be localized more

accurately for cooperative collision based warning system.

With knowledge that vehicles are confined to road boundaries,

we can reduce the search space of (2); thus, reducing the

complexity and potentially improving the accuracy of our al-

gorithm. Also, using final position estimates from the previous

iterations, the current position estimate can be compared to

ensure the change in a vehicle’s position is consistent with

velocity constraints. Performing this check would also allow

us to smooth out any irregularities that exist from one round

of position estimation to the next and reduce the probability

of incorrect localization. Taking these constraints into account
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we can reformulate the optimization problem as:

min maxi,j wi,j(t) |fi,j(t)|

s.t. (xi(t), yi(t)) ∈ Road Constraints ∀i

(xi(t), yi(t)) ∈ Velocity Constraints ∀i.
(3)

where Road Constraints are found from the road geometry and

Velocity Constraints are found by predicting the location of

the vehicles using location estimates from the previous times-

lots and vehicle kinematics. Examples of Road Constraints

can be suggested by enforcing road geometry. For example,

each vehicle on the road should have a xi(t) position that

satisfies:

ax ≤ xi(t) ≤ bx

where ax and bx are found from road width. An example for

Velocity Constraints may be suggested as:

|yi(t) − yi(t − 1) − Δy(t)| ≤ δy

where yi(t − 1) is the estimated location of the vehicle at

the previous timeslot, Δy(t) is the predicted movement of

the vehicle in the current timeslot, and δy is an error term

that presents the uncertainty in the velocity and location

estimates. The optimization problem (3) can then be solved

using iterative algorithms, as outlined in [15], [16], which

exhibit a quadratic rate of convergence to a solution.

Phase 3: Iterate
Phases 1 and 2 are repeated every T seconds, constituting

a new round of the algorithm. In general, the T seconds be-

tween inter-vehicle distance exchanges is dictated by whether

or not a vehicle can make use of neighbouring vehicles

velocity to update their position estimate.

IV. SIMULATION RESULTS

We study the performance of our algorithm under two

scenarios. First, we compare our algorithm to the robust quads
proposed by Moore et al. [6]. The robust quads algorithm is

designed for sensor networks it does not take advantage of

some of the unique information available in vehicle networks,

therefore to make a fair comparison we have chosen to com-

pare it to the generalized version of our algorithm (2). Second,

we study the performance of our algorithm on a simulated

highway using CORSIM (CORridor SIMulator), which has

been developed by the US Federal Highway Administration

to model vehicle movements.

The robust quads algorithm can be described as follows.

Each node becomes the center of a cluster and estimates the

relative location of its neighbours that can be unambiguously

localized. Next, all the robust quadrilaterals within the cluster

are identified. Then nodal position estimates within the cluster

are incrementally computed by trilateration and chaining the

quadrilaterals with 3 or more nodes in common. Finally, a

set of transformations are performed between neighbouring

clusters to align them to a common orientation.

A. Performance Metrics

To measure the accuracy of the initial position estimates,

made in phase 1 of our algorithm, we compare the initial

vehicle position estimate to the actual position. We define the

root-mean-square error (RMSE) in the initial position estimate

as:

σinitial =

√√√√
n∑

i=1

(xint. est. i − xactual i)2 + (yint. est. i − yactual i)2

n

(4)

where xint. est. i , yint. est. i is defined as the initial position

estimate of vehicle i and xactual i, yactual i represent the actual

position of vehicle i. This metric can be thought of as the

average distance the initial position estimate is from the actual

position.

Similarly, we define the RMSE of the final position esti-

mate as:

σfinal =

√√√√
n∑

i=1

(xfinal est. i − xactual i)2 + (yfinal est. i − yactual i)2

n

(5)

where xfinal est. i , yfinal est. i is the position estimate of vehicle

i after running phase 2 of our algorithm.

It is also important to consider the worst possible estimate

where the distance between a vehicle’s final position estimate

and the actual position is a maximum. We have defined the

following metric to capture this:

σmax = max
i

√
(xfin. est. i − xactual i )2 + (yfin. est. i − yactual i)2

(6)

We also examined the amount of noise present in the inter-

vehicle distance measurements, defining the RMSE in the

distance measurements as:

σd =

√√√√ M∑
i=1

(d̂i − di)2

M
(7)

where M is the number of inter-vehicle distance measure-

ments, d̂i is the measured distance to vehicle i, and di is the

actual distance to vehicle i.

B. Comparison Study

In this study, we examined the effects of error in the

inter-vehicle distance estimates on the final position estimate.

We considered a cluster of 9 vehicles randomly distributed

over a 200 × 200 square-meter section of road, at a single

time instant. The RMSE in the distance measurements were

varied leaving the other parameters constant. We set the (x,y)

coordinates of the initial position estimate to deviate from

the actual position according to a Gaussian distribution with

standard deviation of 5 meters. The results of this experiment

are shown in Figure 2. Each of the data points shown in

Figure 2 is the average result of 30 runs of our algorithm;

each run has different vehicle positions, to average out the

effects of poor network topologies. From this figure, it can

be seen that the plot of the root-mean-squared error in the

1003

Authorized licensed use limited to: The University of Toronto. Downloaded on December 23, 2009 at 17:48 from IEEE Xplore.  Restrictions apply. 



0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8

distance RMSE, σd (m)

fi
n

al
 p

o
si

ti
o

n
 e

st
im

at
e 

R
M

S
E

, σ
fi

n
al
 (

m
) 

Our Algorithm Robust Quads Linear (Robust Quads) Linear (Our Algorithm)

Fig. 2. Shows the average performance of our algorithm versus the robust
quad algorithm
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Fig. 3. Shows the worst case scenario performance of our algorithm versus
the robust quad algorithm

final position versus the RMSE in the distance has a linear

relationship for both [6] and our algorithm and that our

algorithm yields more accurate results as the error in the

distance estimates is increased.

Under the same scenario we have also examined the worst

case performance of each algorithm — that is the maximum

distance between the final position estimate and the actual

position (see Figure 3). This can be thought of as an upper-

bound on the error levels for the algorithms. So, for example

if the RMSE in the distance is 3 meters on average, we

can expect an accuracy of our algorithm of 3.4 meters with

the worst case performance of 6 meters. Whereas, the robust
quads algorithm yields an average and maximum error of 4.2
meters and 7 meters respectively.

C. Vehicular Environment Study

In this experiment, we study the performance of our algo-

rithm in a simulated highway. We have used a microscopic

transportation simulator CORSIM (CORridor SIMulator) de-

veloped by the US Federal Highway Administration to model

vehicle movement. We modeled a 4 km road with 3 east

3 km

2 km 2 km

Fig. 4. Roadway for simulated vehicular environment

bound and 3 west bound lanes with vehicles entering into

the east and west end of system at the rate of 1200 vehicles

per hour depicted in Figure 4. The speed limit for the road

was set to 60 mph (97 km/h).

For the experiment, we have used GPS to act as an initial

position estimate for phase 1 of our algorithm, then in subse-

quent iterations the final position estimate from the previous

time slot, plus a correction for the vehicle’s movement was

used. The GPS position was set to differ from the true position

by a Gaussian distributed random variable with standard

deviation of 6 meters, for consistency with real GPS error

levels of 3 to 10 meters [3].

Figure 5 shows the results of how well a single vehicle was

able to localize its neighbours at each time step as it traveled

through the system. We have assumed that each vehicle has a

communication range of 150 meters; resulting in each vehicle

having between 8 and 14 neighbours at each time step of

the simulation. The inter-vehicle distance estimates were set

to deviate from the actual values according to a Gaussian

distribution with the standard deviation of 3 meters. Also, we

have used the optimization outlined in (3) to take advantage of

road and velocity constraints. In Figure 5, the median error

in the final position of 2.7 meters is also shown, which is

a relatively large improvement over the initial GPS estimates

that were set to have an average error of 6 meters. Examining

Figure 5 notice that there are a few spikes in the error levels.

These spikes are mainly due to the poor estimate of a single

vehicle within the cluster. The poor estimate is the result

of two factors: the vehicle just entered the communication

range and it had a very poor initial position estimate of its

position; this problem was then compounded by the topology

of the other vehicle’s within the same cluster, at that time

instant, (i.e. a large set of the vehicles in the cluster were

collinear making them difficult to mitigate the error in the

initial position estimate). However, notice that because our

algorithm makes use of the past position estimates and the

velocity constraints it quickly recovers from these temporary

inaccurate position estimates.

In general, the effect of poor initial estimates alone does

not yield a poor final position estimates. We considered a

cluster of 9 vehicles where the inter-vehicle distance estimate

noise was considered to be Gaussian distributed with different
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Fig. 6. The average error in the final position estimate as a function of the
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standard deviations. Figure 6, shows the results of this exper-

iment. Each data point represents the average results of 30
runs of the experiment to remove the effects of poor network

topologies. From Figure 6 note that regardless of the error in

the initial position estimates, the error in the final position is

still relatively low.

V. CONCLUSION

In the future, it is envisioned that vehicles will be equipped

with dedicated short range communication (DSRC) devices

— allowing vehicle-to-vehicle and vehicle-to-infrastructure

communication. Equipping vehicles with DSRC devices will

offer a wide array of new safety and ITS applications.

One of the promising new safety applications will be a

cooperative vehicle collision warning system; where vehicles

cooperatively share information (i.e. location, speed, heading,

acceleration, etc.) with their peers and distribute warnings of

potential hazards that lie on the road ahead. However, the

ultimate success of this system will be dependent on how

accurately the relative positioning of neighbouring vehicles

can be predicted.

We have presented a novel distributed solution for localiza-

tion in vehicular networks. We found the majority of existing

localization approaches were unfit for vehicle networks, for

one or more of the following reasons: they do not account for

noise that is present in the inter-node distance measurements;

or the node localization cannot be preformed in a distributed

fashion; or fail with node mobility. However, the robust quads
algorithm showed promise for use in vehicular networks. So,

we used it as a basis for comparison. We proposed a robust

min-max localization scheme and showed that our algorithm

provides a high level of accuracy in predicting a vehicle po-

sition and outperforms the robust quads algorithm [6]. Also,

that even with high levels of error in initial node position

estimates our algorithm converges toward the actual position.

Therefore, our algorithm can be made to complement GPS for

providing a reliable and accurate vehicle localization system

— as is required for future applications in vehicular networks.
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