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Abstract— We propose a distributed algorithm that uses inter-
vehicle distance estimates, made using a radio-based ranging
technology, to localize a vehicle among its neighbours. Given that
the inter-vehicle distance estimates contain noise, our algorithm
reduces the residuals of the Euclidean distance between the
vehicles and their measured distances, allowing it to accurately
estimate the position of a vehicle within a cluster. In this paper,
we show that our proposed algorithm outperforms previously
proposed algorithms and present its performance in a simulated
vehicular environment.

Index Terms— Localization, position estimation, wireless com-
munication, DSRC, vehicular networks.

I. INTRODUCTION

THE motivation for this work stems from recent advances
in the area of intelligent transportation systems (ITS) with

the advent of dedicated short range communication (DSRC),
which is designed to support high speed, low latency vehicle-
to-vehicle and vehicle-to-infrastructure communication using
the IEEE 802.11p and Wireless Access in Vehicular Environ-
ments (WAVE) standards [1]. In the future, vehicles will likely
be equipped with DSRC devices. DSRC will support critical
safety communications, such as collision avoidance and road
hazard warnings, and other ITS applications such as electronic
toll collection, real-time traffic advisories, and digital map
updates [2].

One of the most promising vehicular safety applications is
the development of an advanced cooperative collision warning
system. It is envisioned that this system will use vehicle-to-
vehicle radio communications to create a cooperative collision
warning system, where vehicles — equipped with DSRC
devices — cooperatively share information (i.e. location,
speed, heading, acceleration, etc.) for collision anticipation. By
sharing this information between peers, each vehicle is able
to predict potential hazards. For example, consider a vehicle
at the head of a platoon1, which encounters an emergency
event and is forced to stop suddenly. Typically, drivers rely on
the brake lights of the vehicle immediately ahead of them to
decide on their own braking action. However, if the emergency
event is triggered several cars ahead, by the time the car imme-
diately ahead brakes, it may be too late to safely stop in time.
The time for the driver to process the brake light ahead and
step on the brake (typically 0.75 to 1.5 seconds) compounds
the problem, potentially leading to a single emergency event
causing a multi-vehicle accident. However, if instead vehicle’s
use vehicle-to-vehicle communication to cooperatively share

1We define a platoon as a grouping of vehicles heading the same direction.

information (i.e. location, speed, heading, acceleration, etc.)
this type of collision can be reduced in severity or prevented
altogether. Tatchitkou et al. [3] showed that sending safety
warning messages with position information can substantially
reduce the probability of collision within a platoon.

Currently, the global position system (GPS) can be used to
estimate a vehicle’s position. In GPS, a mobile unit locates
itself by comparing the signal received from four or more
GPS satellites. GPS can generate relatively precise position
estimates in flat open areas where line-of-sight to multiple
satellites is possible. In flat open areas, regular GPS has an
average accuracy of approximately 10 meters [4] and some of
it’s improved variants such as differential GPS (DGPS)[4] and
assisted GPS (A-GPS) [5] can achieve an average accuracy
between 3-7 meters. However, since GPS requires line-of-
sight, between the satellites and the receiver, the GPS signal
can often become degraded or blocked when the vehicle is
traveling through tunnels, in downtown areas where skyscrap-
ers are present, in mountainous or canyon areas, in areas of
dense vegetation or foliage. Also, vehicles can suffer sustained
GPS outages during periods of high solar activity or due to
terrestrial interference. To combat some of the availability
issues with GPS, some vehicles are equipped with a dead
reckonings system, which uses a vehicles velocity, distance
and acceleration information to extrapolate the GPS position
estimate, during short GPS outages. However, dead-reckoning
is prone to error accumulation. Even during short-outages (e.g.
30 seconds or less) the position estimate can become inaccu-
rate by as much as 10-20 meters, if the vehicle is traveling at
100km/h [6]. Therefore, GPS can provide relatively accurate
position estimates for flat open areas, however it’s potential
lack of availability and degraded operation, where line-of-
sight to multiple satellites is not possible, means that GPS
— in its current state — alone cannot be used for vehicle
safety applications relying on position information. It has been
recently argued that a combined solution using GPS — or one
of its improved variants — and the use of radio based ranging
techniques (such as the received signal strength indicator
(RSSI)) to determine distance estimates between vehicles in a
cluster, can be used to increase the reliability and accuracy of
the location estimator [6].

The use of RSSI for distance estimation between vehicles
presents a number of challenges. First, the distance measure-
ments are inherently noisy as a result of a number of factors
including: limitations of the measurement device, multipath
fading, shadowing and non-line-of-sight errors. Second, mo-
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bility complicates the handling of noise, since outliers and
noisy measurements can be misconstrued as observed motion
and the effects of fading becomes more prevalent. Therefore,
it is critical for a position estimation algorithm to be robust
and to attempt to mitigate these errors.

In this paper, we present a distributed vehicle position
estimation algorithm that locates a vehicle by reducing the
residuals of the Euclidean distance between the vehicles and
their measured distances. At a high level, our localization
algorithm works as follows. Each node estimates the distances
to the neighbouring vehicles, using a radio ranging technology
(e.g. RSSI), then shares this information with its one-hop
neighbours. Based on this one-hop information, each vehicle
runs our algorithm to create a map of the relative position of
its neighbours2.

The remainder of this paper will present how accurate
vehicle position estimates can be made using the inter-vehicle
distance estimates. First, we will provide a review of related
radio based localization algorithms and the techniques. Then,
we will provide a detailed description of how our algorithm
works and present its performance characteristics.

II. BACKGROUND AND RELATED WORK

The majority of existing research using radio ranging tech-
nologies for position estimation has been done for wireless
sensor network applications, since having GPS on all sensor
nodes is not feasible (see [7] for a survey). Generally, previ-
ously proposed localization schemes fall into two categories:
course grain and fine grain. Within each of these schemes
there are distributed and centralized approaches. Course grain
localization typically uses mere connectivity radio between
nodes and requires a central node in the network to establish
position estimates for the nodes and works well when only a
rough estimate of a node’s position is sufficient (e.g. [8], [9]).
Conversely, fine grain localization schemes provide a relatively
accurate node position estimates — typically operating in
either a distributed or centralized approach. The distributed
fine grain localization approaches are most closely related to
our work, so the remainder of this section will focus on a
review of the existing approaches.

In [10], a GPS-free positioning algorithm for mobile ad-
hoc networks was proposed where each node runs a self-
positioning algorithm that computes the angles between the
one-hop neighbours using the inter-node distance measure-
ments to establish a local coordinate system. Once the local
coordinate systems are established, the nodes orient their
coordinate system to a common coordinate system such that all
nodes’ x, y coordinates point in the same direction. However,
as pointed out by Iyengar and Sikdar [11] the GPS-free
algorithm [10] is expensive in terms of the number of messages
that need to be exchanged between nodes — resulting in the
algorithm not scaling well. Iyengar and Sikdar [11] derived an

2We define a node’s neighbours as those nodes that have direct bidirectional
communication and ranging capabilities, and a cluster as a node and its
neighbours.

improved version of [10], to tackle these issues, by creating
an algorithm that improves scalability and convergence times.

Kukshya et al. [6] made use of the results from [11] to
create a scheme for localizing neighbouring vehicles based
on radio range measurements. Their goal was to establish
an accurate map of the relative positions of all neighbouring
vehicles. Under the assumption that vehicle did not have
access information from GPS or dead-reckoning system (e.g.
operating in conditions where GPS did not have line of
sight). They use trilateration for estimating a vehicles position,
however noise in the range measurements can quickly cause
error to propagate as the coordinate systems are aligned to a
common coordinate system.

In [12], a “DV-hop” method is proposed where each node
uses the average number of hops to anchors with known
locations. Then, anchors calculate the average number of
hops between them, so the number of hops can be converted
distances and trilateration can be preformed. This method
works well for dense topologies, but degrades significantly for
sparse and hard network topologies (i.e. cases where whole
or parts of the network can be rotated or flipped given the
same set of distance measurements.) Savarese et al. [13]
use a method similar to [12], but the author’s propose a
heuristic to detect networks with hard network topologies.
They consider a node uniquely localizable only if a node
has three disjoint paths to three distinct beacons and suggest
using a least-squares optimization to reduce the effects of
measurement errors. However, [14] disprove this heuristic and
derive a theoretical framework for determining nodes that have
a unique localization in terms of graph rigidity theory.

Moore et al. [15] use this theoretical framework to derive
a robust quads algorithm to determine the nodes positions in
the presence of noisy range measurements. They identify two
scenarios which prevent a localization from being unique: (i)
a flip ambiguity where all the distance measurements are the
same but parts of the graph can become mirror reflections;
or (ii) flex ambiguities where the distance constraints remain
the same, but the graph is sheared. They derive a heuristic
to detect nodes which have a high probability of having
a unique position, given a set of distance constraints. The
objective of their algorithm is to only localize those nodes
with unique realization, therefore minimizing the propagation
of localization error when coordinate systems are aligned to a
common orientation.

In [15], the majority of results discussed the case of
stationary nodes however, in one experiment they showed
if a single node had mobility, it could be tracked within
the network. Of the algorithms surveyed, the robust quads
algorithm [15] shows the most promise for use in vehicular
networks. Therefore, we will compare our method to it.

III. PROBLEM DEFINITION

Consider a cluster of n vehicles labeled 1, 2,...n at dis-
tinct unknown locations in some physical region. Distance
measurements are made between all vehicles within a cluster
— using a radio ranging technology (such as received signal
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strength indictor (RSSI)) — and shared with all vehicles within
that cluster. Our objective is for each vehicle to establish
relative Euclidean positions for each of neighbours, such that
the estimated Euclidean position of each neighbour closely
resembles the actual (or ground truth) Euclidean position of
each vehicle up to a global translation and rotation.

IV. APPROACH

Each vehicle builds its own local coordinate system. Setting
itself as the centre of its own coordinate system with position
(0,0). Then its objective is to estimate the relative (x,y)
coordinates of all its neighbours. Once the location of all
vehicles is estimated, a mapping of the vehicular network
is known to that vehicle. Our distributed vehicle localization
algorithm can be broken down into three phases, as follows.

Phase 1: Initialization
• Each vehicle measures the distance to all its neighbours,

then exchanges this information with them. Allowing
each vehicle to establish a matrix of distance measure-
ments for its one hop neighbours.

• Rough initial estimates of the relative (x, y) coordinates
of the vehicle’s neighbours are made.

These initial estimates can come from a number of possible
sources: GPS; or GPS used in combination with a dead
reckoning system; or GPS used in combination with a road
mapping module, which places vehicles on map within the
confines of the road; or making use of the inter-vehicle
distance estimates to perform trilateration.

If trilateration is used, there is the possibility of a flip
ambiguity. To prevent this ambiguity, trilateration can be
preformed multiple times, each time using a new set of inter-
vehicle distance estimates, then taking the most probable
location estimates. Since, the vehicles are moving it is unlikely
two consecutive iterations will yield the same flip ambiguity.

Phase 2: Refinement:
Each vehicle refines the initial estimates to provide a

final estimate of its neighbours location. The objective is to
minimize the residuals of the Euclidean distance between the
vehicles and the measured distance. Let fi,j be defined as:

fi,j = ˆdi,j −
√

(xi − xj)2 + (yi − yj)2. (1)

where (xi, yi) and (xj , yj) are the location estimates of nodes
i and j, respectively, and ˆdi,j is the measured distance between
vehicle i and vehicle j. Using (1), each vehicle can create an
n×n matrix (where n is the number of nodes in the cluster),
which takes the form:⎡

⎢⎢⎢⎢⎢⎣

0 f1,2 f1,3 . . . f1,n

f2,1 0 f2,3 . . . f2,n
...

...
. . .

...
...

fn-1,1 fn-1,2 . . . fn-1,n-1 fn-1,n

fn,1 fn,2 . . . fn,n-1 0

⎤
⎥⎥⎥⎥⎥⎦

Then location estimates (xi, yi) are selected to minimize:

min

n∑
i=1

n∑
j=1

f2
i,j. (2)

This equation is of the form of a non-linear least-squares
problem and can be solved using gradient descent methods
[16].

Using the knowledge that vehicles generally travel within
the confines of roads, and in general within lanes, we can
reduce the search space of (2); thus, reducing the complexity
and improving the accuracy of our algorithm. We can also
compare the final position estimates from the previous itera-
tions to the current position estimate to ensure the change in a
vehicle’s position is consistent with velocity and acceleration
constraints. This also provides the benefit of being able to
smooth out any irregularities that exist from one round of po-
sition estimation to the next, therefore reducing the probability
of error in a vehicle position estimate.

Phase 3: Iteration
In a mobile environment phases 1 and 2 are repeated every

T seconds. The final estimated position from phase 2 plus a
correction based on how far the vehicles and what direction
the vehicle would have traveled in the last T second can act
as the initial position estimate of the subsequent interval.

V. SIMULATION RESULTS

We have evaluated the performance of our algorithm under
three scenarios. First, we examined the theoretical accuracy
gains of our algorithm over traditional GPS based positioning
approaches. Second, we examined how error in the initial
position estimate affects the resulting final position estimate
at the output of our algorithm. Third, we studied the effects of
noise in the inter-vehicle distance measurements and its impact
on the final position estimate. Also, we have compared our
algorithm to the robust quad algorithm proposed by Moore et
al. [15].

The robust quads algorithm implemented by Moore et
al. [15] works as follows. Each node estimates the relative
location of its neighbours that have a low probability of being
subject to a flex or flip ambiguity (i.e. nodes that can be
unambiguously localizable with high probability), where the
chance of a node being subject to an ambiguity is determined
by heuristics derived in [15]. With the set of unambiguously
localized nodes, robust quadrilaterals within a cluster are
identified and formed. Then node position estimates within
a cluster are incrementally computed by trilateration and
chaining the quadrilaterals with 3 or more nodes in common.
Finally, all nodes coordinate systems are aligned to a common
orientation.

A. Performance Metrics

To measure the accuracy of the initial position estimates,
made in phase 1 of our algorithm, we compare the initial
vehicle position estimate to the actual position. We define the
root-mean-square error (RMSE) in the initial position estimate
as:

σinitial =

√√√√
n∑

i=1

(xint. est. i − xactual i)2 + (yint. est. i − yactual i)2

n

(3)
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Fig. 1. Setup for simulated roadway

where (xint. est. i , yint. est. i) iis the initial position estimate of
vehicle i and (xactual i, yactual i) represents the true position of
vehicle i. This can be thought of as the average distance the
initial position estimate deviates from the true position.

Similarly, we have defined the RMSE of the final position
estimate as:

σfinal =

√√√√
n∑

i=1

(xfinal est. i − xactual i)2 + (yfinal est. i − yactual i)2

n

(4)
where (xfinal est. i , yfinal est. i) are the final position estimate of
vehicle i.

To examine the amount of noise present in the distance, we
define the RMSE in the distance measurements as:

σd =

√√√√ M∑
i=1

(d̂i − di)2

M
(5)

where M is the number of inter-vehicle distance measure-
ments, d̂i is the measured distance to vehicle i, and di is the
actual distance to vehicle i.

B. Accuracy Study: GPS versus our algorithm

In this experiment, we studied the accuracy of GPS ver-
sus our algorithm in a simulated vehicular environment. We
have used a microscopic transportation simulator CORSIM
(CORridor SIMulator) developed in the United States by the
Federal Highway Administration to model vehicle movement.
We modeled a 2.5 mile (4 km) road with 3 east bound and
3 west bound lanes with vehicles entering into the east and
west end of system at the rate of 1200 vehicles per hour (see
Figure 1). The speed limit for the road was set to 60 mph (97
km/h).

For the experiment, have assumed that the position esti-
mated by GPS differs from the true position according by a
Gaussian distributed random variable with standard deviation
of 6 meters, which is consistent with real GPS error levels of
3 − 10 meters [4].

Figure 2 shows the results of how well a single vehicle was
able to localize its neighbours at each time step as it traveled
through the system. We have assumed that each vehicle has a
communication range of 150 meters, so throughout the course
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Fig. 2. Our algorithm is shown as the lower curve, indicating the accuracy
of the location estimate has the potential to be improved using inter-vehicle
distance constraints.

of the simulation, vehicles will often enter and exit a vehicles
communication range. In general, for this simulation between
8 and 14 vehicles were within communication range of a
vehicle at each time step.

The upper curve, in Figure 2, shows the error in the position
estimates of a vehicle’s neighbours when GPS is used in com-
bination with a mapping module and dead-reckoning system.
The mapping module is used to correct the GPS position
estimate, to ensure a vehicle’s position estimate is within the
confines of the road. The dead reckoning system is used to
verify, that two consecutive GPS position estimates obey a
vehicles velocity and acceleration constraints. The lower curve
is the implementation of our algorithm, we have used the same
road and velocity constraints as we did for the GPS case and
assumed the inter-vehicle distances have Gaussian error with a
6 meter standard deviation. Also, we have assumed that during
phase 1 of our algorithm (the initialization phase) GPS was
used to make an initial estimate, and in subsequent localization
rounds the previously estimated position plus a correction for
the expected distance traveled was used. Note that on average,
our algorithm yields a 3 meter improvement in the position
estimate.

C. Inaccurate initial position estimate study

In this study, we examined the effects of poor initial
estimates at the initialization phase of our algorithm. We
considered a cluster of 9 vehicles randomly distributed over
a 200 × 200 square-meter section of road, at a single time
instant to determine the effects of error in the initial position
estimates on the final position estimate (see Figure 3 for the
results). Each of the data points shown in Figure 3 is the
average result after 30 runs of our algorithm; each run has a
different vehicle positions, to average out the effects of poor
network topologies, and the distance measurement error is set
to 1 meter.

Our algorithm is shown to preform well even if the initial
position estimate has RMSE of 9.5 meters, on average our
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Fig. 4. Implementation of our algorithm showing the accuracy of the final
position estimates given noise in the distance measurement

algorithm can reduce the RMSE to approximately 3 meters.

D. The effects of noisy range measurements study

In this set of experiments, we consider a cluster of 9
vehicles randomly distributed over a 200 × 200 square-meter
section of road. The RMSE in the distance measurements were
varied leaving the other parameters constant. We set the (x,y)
coordinates of the initial position estimate to deviate from
the actual position according to a Gaussian distribution with
standard deviation of 5 meters. The results of this experiment
are shown in Figure 4 (our algorithm shown as the lower line).
From this figure, it can be seen that the plot of the root-mean-
squared error in the final position versus the RMSE in the
distance has a second-order exponential distribution.

Also in Figure 4, we have compared our algorithm to
the robust quads algorithm [15] through a set of identical
scenarios, using the same input data set. Notice how our
algorithm, yields a better accuracy average position estimate
as the noise in the distance measurement increases.

VI. CONCLUSION

We have presented a novel distributed solution for localiza-
tion in vehicular networks that can be used as a complement to
GPS. We have shown through simulations that estimating the
inter-vehicle distances, using a radio based ranging technology
(such as RSSI), and feeding these inter-vehicle distances into
our optimization algorithm we can improve upon the accuracy
of GPS. We have shown that even with high levels of error
in initial vehicle position estimates (e.g. if GPS provides a
poor position estimate) that our algorithm converges toward
the actual position, with relatively high accuracy. Therefore,
GPS combined with our algorithm can provide an accurate
and reliable means of determining a vehicles — as is required
for future applications in vehicular networks.
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