
Distributed Link Scheduling for TDMA Mesh
Networks

Petar Djukic and Shahrokh Valaee
The Edward S. Rogers Sr. Department of Electrical and Computer Engineering

University of Toronto, 10 King’s College Road, Toronto, ON, M5S 3G4, Canada
e-mail:{djukic,valaee}@comm.utoronto.ca

Abstract— We present a distributed scheduling algorithm for
provisioning of guaranteed link bandwidths in ad hoc mesh
networks. The guaranteed link bandwidths are necessary to
provide deterministic end-to-end bandwidth guarantees. Using
Time Division Multiple Access (TDMA), links are assigned slots
in each frame and during each slot a number of non-conflicting
links can transmit simultaneously. The bandwidth of each link
is given by the number of slots assigned to it the frame and the
modulation used in the slots.

Our scheduling algorithm has two parts. The first part of
the algorithm is an iterative procedure that finds locally feasible
schedules by exchanging link scheduling information between
nodes. The iterative procedure is based on the distributed
Bellman-Ford algorithm running on the conflict graph, whose
partial view is available at every node. The second part of the
algorithm is a wave based termination procedure used to detect
when all nodes are locally scheduled and a new schedule should
be activated. We use analysis to show the worst case convergence
time of the algorithm and simulations to show performance of
the algorithm in practice.

Index Terms— Quality-of-Service, Distributed TDMA Schedul-
ing, Bellman-Ford

I. INTRODUCTION

Mesh networks provide a cost effective way to interconnect
wireless access points (WAPs) over a large geographical area.
The access points are used by wireless terminals as their first-
hop connection. In addition to allowing terminals to access
the network, each WAP also acts as a mesh router and
forwards data packets to the point-of-presence (POP), which
is connected to the Internet. Since the POP is the only node
connected to the Internet, the cost of providing wireless access
over a large area is significantly decreased [1]. Mesh networks
are “ad hoc” networks in the sense that once the network is
physically installed, the nodes will self-provision and create
and maintain a wireless backbone to the POP without any
action required by the operator.

Although mesh networks provide cost effective Internet
access, they are still expected to provide a high level of quality-
of-service (QoS) for applications such as voice over IP (VoIP)
[2]. New mesh protocols provide QoS with Time Division
Multiple Access (TDMA) technology. For example, IEEE has
ratified a TDMA based mesh medium access control (MAC)
protocol within the 802.16 MAC protocol, and has also started

This work was sponsored by the LG Electronics Corporation.

work on a mesh extension to 802.11, 802.11s, which has a
TDMA mode [3], [4].

In TDMA networks, QoS required by terminals is negotiated
in terms of end-to-end bandwidth reserved for each terminal
through the mesh network and enforced at each hop with
scheduled access to the wireless channel. Link bandwidth is
allocated over frames with a fixed number of slots. A schedule
assigns slots to links and during each slot a number of non-
conflicting links can transmit simultaneously. The bandwidth
of each link is given by the number of slots assigned to it in the
frame and the modulation used in the slots. In this paper we
provide a distributed algorithm that finds a common schedule
for all links in the network, given their durations.

The distributed TDMA scheduling algorithm consists of two
independent procedures. The first procedure is a distributed
version of the Bellman-Ford algorithm running on the conflict
graph for the network. In this procedure, each link finds locally
feasible schedules, by exchanging update messages with its
conflicting links, which are known from locally available two-
hop neighbourhood information. This extends our work in
[5], where we have proposed centralized TDMA scheduling
algorithms.

The second procedure, which works independently of the
first procedure, is used to find out when the locally feasible
schedules converge to a globally feasible schedule. This solves
the main difficulty with the distributed scheduling, which is
notifying all the nodes of the availability of a new schedule.
The procedure works in two phases, both of which are initiated
by the POP. The first phase is a version of a wave based
termination detection algorithm [6] in which the POP uses the
routing tree to query the nodes about their termination status.
The nodes respond to the query when they have a locally
feasible schedule and all of their children have responded
to their query. The second phase is initiated by the POP if
it detects a successful termination of the first phase. In this
phase, the POP sends a signal to activate the new schedule by
applying the last recorded locally feasible schedule.

We show analytically that the scheduling procedure con-
verges in at most 2m frames, where m is the total number
links in the network. However, we also show that in practice
the algorithm converges much more quickly. We show that
if scheduling messages are broadcast in the control part of
the frame, the worst case difference between the time the last

1-4244-0353-7/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

3823

change in link bandwidth happens to the time a new schedule
starts is 3n/κTf +2mTf , where n is the number mesh nodes
in the network, κ is the number of transmission opportunities
in the control part of the frame and Tf is frame duration. We
also show that, if the scheduling messages are transmitted in
the data part of the frame, the worst case difference between
the time a change in link bandwidth happens to the time a
new schedule starts is 1.5Dmax + 2mTf , where Dmax is the
maximum return path TDMA delay in the network [5].

A. Related Work

Research in TDMA scheduling was initiated by the seminal
paper [7], where the authors provide an algorithm to find a
set of link bandwidths and a feasible schedule for that set
of bandwidths. However, the results of that paper cannot be
applied in mesh networks since the algorithm is centralized
and the network model in the paper ignores secondary link
conflicts existing in mesh networks. In [8], the authors provide
a distributed TDMA scheduling algorithm and they assume
that secondary conflicts are removed with the use of multiple
orthogonal channels. In order to account for communication
difficulties with orthogonal channels, the authors propose an
asynchronous TDMA protocol, which is inconsistent with
the synchronized TDMA mesh protocols such as 802.16. In
[9], the authors propose a scheduling algorithm in which
secondary conflicts are resolved by reversing the direction of
link transmissions. However, the algorithm only allows for one
slot to be allocated to each link, which makes it impractical
for mesh networks, where links require multiple time-slots,
corresponding to QoS in the network.

In [10], authors provide a scheduling algorithm tightly
coupled with a schedule activation algorithm. The algorithm
uses a wave to allow an opportunity for every node to negotiate
a conflict free schedule with its two hop neighbourhood. Once
a new schedule is negotiated in the local neighbourhood,
the wave moves down the network tree. The scheduling
technique used in [10] allows multiple link transmissions in
the same frame, which is not appropriate for mesh networks;
for example, in 802.16 every transmission needs a guard
time of three TDMA slots, which at the highest modulation
means an overhead of 324 bytes per transmission. As we will
show later, coupling scheduling with schedule activation would
unnecessarily prolong iterative scheduling used in this paper.

II. TDMA NETWORK MODEL

The mesh network is using a time division multiple access
(TDMA) MAC protocol [3]. In TDMA MAC protocols, the
time is divided into slots of fixed duration, which are then
grouped into frames. As in 802.16, the number of the current
frame is known throughout the network. A fixed portion of
each frame is dedicated to control traffic, while the rest of
the slots are used for data traffic; we assume that T slots
are reserved for data traffic. The slots in the data frame are
assigned by the network layer, based on the demands from the
mesh routers. A scheduling algorithm establishes a common

transmission schedule, which repeats in every frame until new
traffic demands can be incorporated into the schedule.

We model the mesh network with a topology graph con-
necting the nodes in the wireless range of each other. We
assume that if two nodes are in the range of each other,
they establish symmetrical links in the MAC layer, so the
TDMA network can be represented with a connectivity graph
G(V,E, ft), where V = {v1, . . . , vn} is the set of nodes,
E = {e1, . . . , em} are directional links between neighbouring
nodes, and ft : E → V ×V assigns links to pairs of nodes. We
use the convention that v1 is the POP. All links are directional,
so for a link ek ∈ E, ft(ek) = (vi, vj) means that traffic on
the link is transmitted from vi to vj .

We assume that a protocol external to the MAC protocol
assigns bandwidth on each link in the topology, so that QoS
is satisfied for all nodes. Since all network traffic originates or
terminates at the point-of-presence (POP), the set of links with
positive bandwidths form two disjoint routing trees rooted at
the POP. One tree is for the uplink traffic and the other tree is
for the downlink traffic. The two trees may also coincide as
in 802.16 centralized scheduling protocol.

Link bandwith is assigned through the number of slots a
link can use in a frame d : E → Z[0,T]. The number of slots
required to achieve the bandwidth Bi on link ei can be found
with:

di =
⌈

BiTf

bi

⌉
, (1)

where �·� denotes the ceiling of a real number, bi is the number
of bits transmitted in each slot and Tf is frame duration. The
number of bits in each slot depends on the modulation chosen
during the transmission in the slot.

We assume that the signal-to-noise ratio of each link de-
pends on the wireless channel alone and not other links in the
network. This means that competing links do not transmit at
the same time. Under this model of transmission, in TDMA
networks, a receiver can only have one active link at any given
time. We can construct a conflict graph based on the conflicts
in the network; the vertices in the conflict graph correspond to
links in the topology and the edges correspond to the conflicts.
For example, for a four node network shown in Fig. 1a we
construct a conflict graph in Fig. 1b. In this example, the links
that do not interfere with each other are e1 and e6 and e2 and
e5.

The nodes keep track of link conflicts with topological
information about the two-hop neighbourhood of the node.
This information can be obtained, directly, from the routing
tables1 or from the MAC neighbour table.2 Given the two-hop
topology around node vi, the node can determine the set of
conflicting links for each of its links and so provide them with
a partial view of the conflict graph.

We use a ranking function R : E → Z to specify the order
of link transmissions. We use the convention that if Rj > Ri,
ei transmits before ej . We have shown in [5] that the ranking

1For example, OLSR keeps a two-hop neighbourhood [11].
2802.16 neighbour table keeps track of the two-hop neighbourhood.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

3824

v1

e1

v2

e2

e3

v3

e4

e5

v4

e6

(a) A four node chain

e1

c1

c5 c6

c12

e2

c3

c7

c13

e3

c2

c8 c9

e4

c4

c10

e5

c11

e6

(b) Conflict graph for the four node topology

Fig. 1.

function is directly related to TDMA delay. TDMA delay
occurs if the outbound link is scheduled to transmit before
the inbound link. In [5], we have given a method to find the
ranking with the minimum delay, as well as a heuristic to find
rankings with small delay. In particular, we have shown that if
for every return path P from the POP to a WAP, the ranking
is assigned with:

Rk = max{Rk, Rl + 1},∀ek, el ∈ P : el � ek, (2)

where el � ek means that el is the predecessor of ek on
the return path P , the return trip delay for all connections
in the network is one frame. However, this ranking does not
take advantage of spatial re-use. We have therefore suggested
a heuristic that takes spatial re-use into account and found the
heuristic ranking with:

RH
i = Ri (mod H), (3)

where H is the amount of spatial re-use introduced in the
network. With this heuristic, the maximum TDMA delay on
all return paths in the routing tree is bounded by:

Dmax = max
∀vi∈V

|Pi|
H

Tf =
2h

H
Tf , (4)

where |Pi| is the number of hops on the return path from v1 to
the mesh node vi, Tf is frame duration, and since the longest
path is also twice the height of the tree, h, we get the second
part of the equality. Since finding the rank in this way can
be easily distributed, we assume that the rank of each link is
known in the link’s two-hop neighbourhood.

A. TDMA Schedules

We define the TDMA schedule as the pair of vectors
S(π,d), where π = [π1, . . . , πm]T are the starting times of

di dj

timeωi ωi + Tωj

Fig. 2. Conflict-free Conditions

the links in the data part of the frame and d = [d1, . . . , dm]T

is the duration of each transmission. The TDMA scheduling
problem is to find a transmission schedule which is both valid
and conflict-free. A valid transmission schedule assigns the
number of slots allocated to the links due to QoS requirements,
so by definition a schedule is valid if d corresponds to the
assigned link durations. A conflict-free schedule ensures that
transmissions of conflicting links do not overlap.

We have defined conditions for conflict-free scheduling in
[5]; we briefly summarize those results here. First, we note that
for each link ei, it is sufficient to limit πi ∈ [0, T). Second,
since the schedule repeats every T slots, it is really a series
of activation times Πi = {πi + ziT, zi ∈ Z}. The conflict-free
conditions for a schedule can be expressed in terms of points
in the sequences Πi, ∀ei ∈ E. We have shown in [5] that a
schedule is conflict-free if for any two conflicting links ei and
ej , such that Rj > Ri:

di ≤ ωj − ωi ≤ T − dj , 0 ≤ ωj − ωi ≤ T, (5)

where ωi ∈ Πi and ωj ∈ Πj .
Fig. 2 shows why (5) is necessary for the schedule to be

conflict-free. Full proof of necessity and sufficiency of (5)
can be found in [5]. Since Rj > Ri, we assume that we
are comparing the timing of ei’s transmission to the first
transmission of ej that follows it. Clearly, it is necessary that
ωj ≥ ωi + di since ej cannot start its transmission before ei

finishes. Also, the next transmission of ei should be after ej

has finished its transmission, so ωi + T ≥ ωj + dj . The two
cases can be combined into (5).

III. DISTRIBUTED TDMA SCHEDULING

In this section, we present a distributed TDMA scheduling
procedure that finds schedules if nodes use local neighbour-
hood information only. First, we show that the scheduling
problem is equivalent to finding shortest paths on an aug-
mented conflict graph for the network. Second, we show how
to implement the procedure with a distributed version of the
Bellman-Ford algorithm.

A key observation, which allows us to find feasible sched-
ules with minimum distance algorithms is that the set of
feasible conditions (5) is a set of difference inequalities defined
on the conflict graph for the network. This type of differ-
ence inequalities can be solved with any minimum distance
algorithm [12]. Given a solution to the difference inequalities
ω = [ω1, . . . , ωm], a feasible schedule, π = [π1, . . . , πm], can
be found by applying πi = ωi (mod T) for each ei ∈ E,
since we have ωi = πi + ziT for some zi ∈ Z. This leads us
to a procedure that finds TDMA schedules.

First, create a weighted and directed symmetrical conflict
graph for the network Gc(E,C, fc), where the set of vertices

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

3825

ei

−di

T − dj

ej

(a) Weights Rj > Ri

ei

−di T − dj

ej

s

0

0

(b) Arcs to s

Fig. 3. Scheduling Graph Construction

is the set of all active links E, C is the set of symmetrical arcs
between the vertices in the graph, and fc : E → C associates
arcs with the vertices. The arcs in the graph correspond to
conflicts between links, so each pair of conflicting links has
two arcs (Fig. 3a). The cost of each arc is defined by the limits
in the inequality (5) associated with the conflict, so for arc ck,
with fc(ck) = (ei, ej):

l(ck) =

{
−di, if Ri < Rj

T − di, if Ri > Rj .
(6)

This assignment of arc costs is shown in Fig. 3a for Rj > Ri.
Second, the conflict graph is a amended with an additional

vertex s, which acts as a destination vertex for all the other
vertices in the graph (Fig. 3b). The new vertex is connected
to the original vertices in the conflict graph with zero length
arcs pointing to it. If there are r conflicts in the network, we
denote each new arc with cr+i indicating that it points from ei

to s. The addition of the new vertex and the new arcs create
the scheduling graph Gs(Es, Cs, fs), where Es = E ∪ {s},
Cs = C ∪ {cr+1, . . . , cr+m}, and

fs(ck) =

{
fc(ck) if k ≤ r

(ei, s) if k > r, k − r = i
(7)

Third, a TDMA schedule is found from the minimum
distance from every vertex in the scheduling graph to s. This
can be easily verified by noting that if ωi and ωj are the
minimum distance from ei and ej and they are connected as
in Fig. 3b. First, ωj ≤ wi + T − dj since either ei is on
the minimum path to s in which case there is an equality, or
there is an alternate path which has smaller minimum distance
than the path through ei. By a similar argument it can be
shown that ωi ≤ wj − di. Since the minimum distances in
the scheduling graph have the conflict-free property, they can
be used to derive a conflict free schedule with the modulo
operation.

We note that the necessary and sufficient condition that
shortest paths exist, and so a feasible schedule exists, is that
there are no negative cycles in the scheduling graph [12]. We
will assume in the rest of the paper that the bandwidth allo-
cation algorithm has ensured that the bandwidth assignment
is feasible, i.e. there are no negative cycles in the scheduling
graph. Due to space restrictions, we do not include a negative
cycle detection algorithm. However, we note that this is a well
studied problem with both centralized [12] and distributed [13]
solutions.

A. Iterative Schedule Construction

In order to distribute schedule construction, we associate
an independent scheduler with each link in the network. We
denote a scheduler associated with link ei with Si. Each sched-
uler resides on the node where its associated link originates.
Since each scheduler corresponds to a vertex in the scheduling
graph, they can find the shortest route to s with the distributed
Bellman-Ford algorithm as independent routers would. The
scheduler’s owner node facilitates the iterative algorithm by
providing it procedures for communication to other schedulers
and a table of its conflicting schedulers (schedulers it is
directly connected to in the scheduling graph).

The communication between the schedulers is facilitated
with the use of a reliable transmission protocol such as TCP.
When a node receives a message request from one of its
schedulers, it uses the two-hop neighbour table to find the node
where the receiving scheduler resides and then forwards the
message to that node using the reliable transmission protocol.
Conversely, when a node receives a message for one of it’s
schedulers it forwards the message to that scheduler. We note
that it takes at most two TDMA frames for any message to
reach a peer scheduler.

The conflict table for a scheduler contains an entry for the
scheduler and one entry for each of its conflicting schedulers.
An entry in the conflict table corresponding to scheduler Sj

contains the rank of the link Rj and the current distance to s
in the scheduling graph via that scheduler, ωj . The conflict
table is initiated by the scheduler’s owner node with the
information available about the two-hop neighbourhood of the
node. Initially, each conflicting entry Sj in the conflict table
for Si is initialized with ωj = ∞, while the entry for the
scheduler is initialized to ωi = 0 to indicate that it is directly
connected to s.

Each scheduler finds the shortest route to the vertex s in
the scheduling graph independently, using a modified version
of the distributed Bellman-Ford algorithm [14]. Unlike, the
original Bellman-Ford algorithm, which only uses one update
message type, the version we present uses three types of mes-
sages. The UPD messages are sent by conflicting schedulers
when their schedule changes, i.e. distance to s is changed.
Upon receiving the update message, the scheduler updates it’s
distance estimate to s with the information in the message. If
the estimated distance has changed, the scheduler sends the
UPD+ACK message to the scheduler that initiated the update
and a UPD message to other neighbouring schedulers; other-
wise the scheduler sends an ACK message to the originator of
the update. A scheduler is said to be locally scheduled if it has
no unacknowledged updates. The network is scheduled when
all schedulers are locally scheduled.

We introduce synchronization in the Bellman-Ford iteration
with a rule that UPD and UPD+ACK messages are sent during
even numbered frames. In the odd number frames, the only
messages are the messages forwarded to schedulers two hops
away in the mesh topology. Since this transmission schedule
for the update messages is equivalent to performing all updates

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

3826

0 0.5 1 1.5
0

100

200

300

Algorithm Convergence

Time (sec)

π
(s

lo
ts

)

Schedule Valid
Local π1

Local π2

Local π3

Local π4

Local π5

Local π6

Fig. 4. Example Algorithm Convergence

and computations at the begining of even numbered frames,
the algorithm is equivalent to the synchronized version of the
Belman-Ford algorithm [14].

We implement the scheduling procedure with the OM-
NeT++ discrete time simulator [15]. We show an example of
algorithm convergence in Fig. 4, where we used the topology
from Fig. 1a and ranks assigned with H = 4. In the scenario,
we use frame length of Tf = 10ms, T = 365 data slots per
frame and slot duration of 25μs long, corresponding to a subset
of parameters specified in 802.16. The link change times are
a Poisson arrival process with an average interarrival time of
25ms and link durations are picked from a uniform distribution
with the mean of 50 slots. Before a link change is requested,
we check if that link duration will result in a feasible schedule
with a centralized negative cycle detection algorithm [12]. If
a link duration is infeasible we decrease it until it becomes
feasible. Fig. 4 shows the locally converged schedule times
for each of the links and it also shows when the algorithm is
globally converged.

In general, a scheduling algorithm based on the asyn-
chronous distributed Bellman-Ford algorithm convergence af-
ter a finite and possibly exponential number of steps [14].
However, the iterative scheduling procedure in this paper con-
verges in a linear number steps since we take advantage of the
synchronization in TDMA networks. We note the scheduling
procedure is equivalent to the synchronized Bellman-Ford
algorithm because all updates are received before calculations
are done in even numbered frames. The scheduling procedure
therefore converges in the number of steps equal to the longest
path in the scheduling graph. Since there are m + 1 vertices
in the scheduling graph, the scheduling algorithm converges
in 2m frames.

We use the the chain topology to further show the conver-
gence properties of the scheduling algorithm. We have used
the same setup as in the previous experiment, except that
the link times are Poisson with an average of 100ms. In the
chain topology the number of links in the network grows
linearly with the number of nodes and so does the worst
case convergence time of the algorithm (Fig. 5) . However,
as we show in Fig. 5, as the number of nodes grows the
average time for the schedule to converge does not increase
with the number of nodes. The reason for this is that very few
of the link changes result in schedule changes for the entire
network. This behaviour is due to the nature of shortest path
tree in constructed by the Bellman-Ford algorithm; only links
downstream of the change need to update their schedules. We

3 4 5 6 7 8 9 10 11 12
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22
Convergence vs. Chain Length

Number of Nodes

C
on

ve
rg

en
ce

T
im

e
(s

ec
on

ds
)

H = 4
H = 5
H = 6
H = 7

Worst Case

Fig. 5. Average Convergence Time

also observe that the H heuristic does not significantly affect
the convergence properties of the algorithm.

IV. FEASIBLE SCHEDULE DETECTION

In the previous section, we have shown that a feasible
schedule can be found with a distributed iterative procedure.
However, in order for the scheduling algorithm to be practical,
the network needs a mechanism to detect when a schedule has
converged and a new schedule should take place. We use a
wave based termination detection procedure for this purpose
[6].

The schedule detection procedure is initiated by the POP
after a previous detection procedure has terminated. The POP
starts the procedure by multicasting a SDA-DOWN message
through the routing tree for the network.3 As the wave of
SDA-DOWN messages traverses the network it resets the state
of each node as done. When a leaf node is reached, the wave
reverses and the leaf node sends a SDA-UP message back
to the POP. As the nodes transmit the SDA-UP messages,
they also record their schedule, so that it is not lost if there
are further link changes. The SDA-UP messages collect the
state of the nodes in the tree, so when the POP receives
SDA-UP from all of its children, it can decide if the scheduling
algorithm has converged.

The validity of the algorithm depends on the transmission
rules used to forward the SDA-UP messages and the payload
of the messages. Each node in the tree transmits a SDA-UP

3The termination detection procedures requires that the uplink and downlink
trees coincide.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

3827

message to its parent when it has received a SDA-UP message
from each of its children and it has detected that all of its
schedulers are locally scheduled. The payload of the SDA-UP
messages indicates the combined state of the node and all other
nodes in the subtree rooted at the node. A node transmits
a SDA-UP message with the payload done only if it is in
the done state and all the tokens it has collected carried
done. Otherwise, the node transmits a SDA-UP message
with the payload working. In order for the algorithm to
work correctly, a node must change its state to working if
it transmits a UPD or UPD+ACK message while waiting for
tokens from its children. If a node enters the working state,
it remains in it even when it becomes locally scheduled.

The POP detects that the distributed scheduling has finished
when it receives SDA-UP messages with the payload done
from all of its children. If the POP receives one or more
messages with the payload working, the POP restarts the
algorithm with the SDA-DOWN messages. The validity of this
termination algorithm is shown in [6].

After detecting that a schedule has converged, the POP
sends a SDA-DONE message to indicate that the schedule has
converged and the new schedule should start. The SDA-DONE
message carries the time when the new schedule should
become valid. The validity time of the schedule depends on the
broadcast mechanism used to transmit SDA-DONE messages.
If SDA-DONE messages are carried with the regular traffic
in the data sub-frame, the schedule becomes valid after h/H
frames, where h is the height of the routing tree and H is
used in the scheduling heuristic. On the other hand, if the
messages are broadcast in the control part of the frame, the
schedule becomes valid in n/κ frames, where n is the number
of mesh nodes and κ is the number of distinct nodes that can
broadcast in the control part of each frame.4

The difference between the detection time and the time
when the schedule is globally converged depends on the way
SDA-UP and SDA-DOWN messages are transmitted. The worst
case delay in detection happens when the last node to locally
schedule itself is the POP. So, if the messages are transmitted
in the data sub-frame, the worst case detection delay is given
by Dmax, (4), since Dmax is the longest time it takes to get a
response from all the nodes. On the other hand, if the messages
are carried in the control part of the frame, the schedule
becomes valid in 2n/κ frames.

Combining the results for the detection of a feasible sched-
ule and the validity time of the schedule, we conclude that the
schedule becomes valid 3h/H frames after it converges and
the detection messages are carried in the data sub-frame, or
the schedule becomes valid in 3n/κ frames if the messages
are carried in the control sub-frame.

Another way to activate a new schedule is to combine our
scheduling algorithm with the schedule activation method. In
this case, schedulers transmit updates to their conflicting links
as the wave moves down the tree and perform calculations

4This is the case in the 802.16 centralized scheduling protocol, where the
order of scheduling message broadcasts in the control sub-frames is defined
by the routing tree.

as the wave moves up the tree. This is also equivalent to the
synchronized Bellman-Ford algorithm, so in the worst case the
schedule converges after mDmax seconds. With this method,
the new schedule can always be activated mDmax seconds
after the last change in link bandwidths, but this is much longer
than with the method proposed in this paper.

V. CONCLUSION

We have presented a distributed scheduling algorithm that
can be used in TDMA based mesh networks using protocols
such as 802.16 and 802.11s. In our algorithm, each link uses
its partial view of the conflict graph to run a the distributed
Bellman-Ford independently of other links in the network.
The algorithm includes an independent wave based termination
procedure that detects when the scheduling has converged for
all links. The termination procedure also provides a mecha-
nism to notify all nodes when the new schedule should be
activated. We have used analysis and simulations to show
that the scheduling algorithm converges quickly. This paper
extends our work in [5] where we have presented centralized
scheduling algorithms for mesh networks.

REFERENCES

[1] M. Chee, “The business case for wireless mesh networks,”
www.nortelnetworks.com, December 2003. [Online]. Available:
http://www.nortelnetworks.com

[2] S. Briedenbach, “Building boom for Wi-Fi networks,” http://www.
networkworld.com/research/2006/030606-municipal-wi-fi.html, March
2006.

[3] “IEEE standard for local and metropolitan area networks part 16: Air
interface for fixed broadband wireless access systems,” 2004.

[4] IEEE, “802.11 TGs MAC enhacement proposal,” IEEE, Protocol Pro-
posal IEEE 802.11-05/0575r3, September 2005.

[5] P. Djukic and S. Valaee, “Link scheduling for minimum delay in spatial
re-use TDMA,” in Proceedings of INFOCOM, 2007.

[6] R. W. Topor, “Termination detection for distributed computations,”
Information Processing Letters, vol. 18, no. 1, pp. 33–36, January 1984.

[7] B. Hajek and G. Sasaki, “Link scheduling in polynomial time,” IEEE
Trans. Inform. Theory, vol. 34, no. 5, pp. 910–917, September 1988.

[8] T. Salonidis and L. Tassiulas, “Distributed dynamic scheduling for end-
to-end rate guarantees in wireless ad hoc networks,” in Proceedings of
MobiHoc, 2005, pp. 145–156.

[9] S. Gandham, M. Dawande, and R. Prakash, “Link scheduling in sen-
sor networks: Distributed edge coloring revisited,” in Proceedings of
INFOCOM, 2005.

[10] J. Shen, I. Nikolaidis, and J. J. Harms, “A DAG-based approach to
wireless scheduling,” in ICC, 2005, pp. 3142–3148.

[11] T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol
(OLSR),” RFC 3626 (Experimental), Oct. 2003. [Online]. Available:
http://www.ietf.org/rfc/rfc3626.txt

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT Press, 2001.

[13] K. Chandy and J. Misra, “Distributed computation on graphs: Shortest
path algorithms,” Communications of the ACM, vol. 25, no. 11, pp. 833–
827, 1982.

[14] D. Bersekas and R. Gallager, Data Networks. Prentice Hall, 1992.
[15] A. Vargas, “OMNeT++ Discrete Event Simulation System User Man-

ual,” March 2005.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

3828

