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Abstract— Time division multiple access (TDMA) based
medium access control (MAC) protocols provide QoS with
guaranteed access to wireless channel. However, in multihop
wireless networks, these protocols may introduce delay when
packets are forwarded from an inbound link to an outbound
link on a node. Delay occurs if the outbound link is scheduled
to transmit before the inbound link. The total round trip delay
can be quite large since it accumulates at every hop in the path.
This paper presents a method that finds schedules with minimum
round trip scheduling delay.

We show that the scheduling delay can be interpreted as a
cost collected over a cycle on the conflict graph. We use this
observation to formulate a min-max program for the delay across
a set of multiple paths. The min-max delay program is NP-
complete since the transmission order of links is a vector of bi-
nary integer variables. We design heuristics to select appropriate
transmission orders. Once the transmission orders are known, a
modified Bellman-Ford algorithm is used to find the schedules.
The simulation results confirm that the proposed algorithm can
find effective min-max delay schedules.

Index Terms— TDMA Scheduling, Network Flows, Cycles in
Graphs

I. INTRODUCTION

New applications of wireless multihop networks, such as
commercial mesh networks, require guaranteed Quality-of-
Service (QoS) in the MAC layer. This has prompted develop-
ment of new multihop MAC protocols based on Time Division
Multiple Access (TDMA), such as 802.11s and 802.16 [?], [1],
[2]. These new protocols provide guaranteed link bandwidth
with scheduled access to wireless channel. The link bandwidth
is allocated over frames with a fixed number of slots. A
schedule assigns slots to links and during each slot, a number
of non-conflicting links can transmit together taking advantage
of spatial reuse. The bandwidth of each link is given by the
number of slots it is assigned in the frame.

Our paper answers the following important question: Given
an assignment of link bandwidths in the network, is there
a minimum delay schedule that can realize the assignment?
The delay in the network consists of queueing delay due to
traffic variations and TDMA scheduling delay accumulated
on missed inbound to outbound link packet handoffs. In this
paper, we minimize the TDMA scheduling delay.

The TDMA scheduling delay occurs when packets are
forwarded from an inbound link to the outbound link. The
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Fig. 1. TDMA Scheduling Delay

delay can be large if the outbound link is scheduled to transmit
before the inbound link in the same frame. In such cases,
arriving packets on an inbound link should wait for the sub-
sequent frame to be transmitted on the outbound link. TDMA
scheduling delay accumulates at every hop in the network, so
the total delay experienced on the return path can be large.
Consider the network in Fig. 1(a) and the transmission order
e1 � e2 � e3 � e4 � e5 � e6.1 With this transmission
order, round trip time (RTT) for a packet traveling between
v1 and v4 is more than two frames (Fig. 1(b)). Note that at
both node v3 and node v2, the packet is delayed one frame
while respectively waiting for links e4 and e2 to transmit in
the next frame. On the other hand, if the order of transmissions
is e1 � e3 � e5 � e6 � e4 � e2, RTT for all nodes is one
frame.

When the link bandwidths are known in advance, the goal is
to design schedules with minimum TDMA delay. Previously,
this was addressed by finding schedules with minimum frame
size [3]–[7], by reducing the problem to designing a minimum
edge colouring. However, this is not a practical solution in
networks using a protocol such as 802.16, where the whole
network has to be rebooted to change the frame length [?].
We will show later that minimum length scheduling does
not automatically guarantee minimum TDMA delay, so our
algorithm improves the performance in the network over that
achieved with minimum frame scheduling. This approach may
also be ineffective, especially if there are many link-to-link
handoffs. For example, in a mesh network all paths form a
routing tree with the point-of-presence (or base-station) as the

1We use ei � ej to mean link ei transmits before link ej .
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root. The point-of-presence is connected to the Internet, so
all packets in the network must cross the point-of-presence.
In this case, the schedule should ensure that the delay from
every node to the point-of-presence is small. In the present
paper, we find an ordering of link transmissions resulting in
TDMA schedules were the delay is minimized over a set of
paths. To the best of our knowledge, our paper is the first to
address the TDMA scheduling delay in the context discussed
above.

In this paper, we solve the minimum TDMA scheduling
problem in two parts. First, we formulate the scheduling
problem as a network flow problem in the conflict graph. This
formulation allows us to state the conditions on the existence
of a feasible schedule as a set of linear constraints, one for
each conflict in the network. The inequalities in the constraints
are defined in relation to the transmission duration of each link
in the conflict and the transmission order of the links. We then
use the constraints to formulate a {0, 1}-integer linear program
that finds a min-max delay for a subset of paths in the network.
The binary variables correspond to the transmission order of
links in the frame. The number of binary variables in the linear
program is equal to the number of active links in the network.

Second, since the {0, 1}-integer linear program is hard to
solve in on-line situations, we separate the TDMA scheduling
into finding transmission orders and finding a schedule with
a given transmission order. We show that if the transmission
order is fixed, the schedule can be found in polynomial time
by applying the Bellman-Ford algorithm on an augmented
version of the conflict graph. We then show that delay is
minimized if all links transmit in a sequence corresponding to
their return path, and extend this to tree topologies. However,
this transmission order ignores spatial reuse in the network, so
it may not result in a feasible schedule. We propose a heuristic
that adds spatial reuse to the transmission order so that the
maximum delay on any path bound by a parameter is passed
to the heuristic. We examine the performance of the heuristics
compared to the performance of the full scheduling algorithm
with numerical simulations.

We now review the related work. In [3] the authors provide
a polynomial time algorithm that finds a minimum length
TDMA schedule that can carry a given bandwidth allocation.
The authors assume the only conflicts in the network are
primary conflicts between links sharing a neighbour. In [4] the
authors also use the assumption that there are no secondary
conflicts in the network and find a TDMA schedule that
supports a set of bandwidths through an edge colouring on
a multi-edged version of the topology graph. Edge colouring
is used in [5], but with additional operation after the colour-
ing, which finds transmission directions with no secondary
conflicts. In [6] the authors include secondary conflicts by
adding interference edges to the topology graph and provide
heuristic edge colouring algorithms for the enhanced graph. In
[7] scheduling is reduced to finding a minimum node colouring
of the chain obtained by flattening the network topology
graph. [8] presents a distributed TDMA scheduling algorithm
that converges to the bandwidth requested by higher layers.

The algorithm controls the feasibility of link bandwidths by
enforcing a set of local conditions on a tree topology, and
assumes usage of an asynchronous TDMA scheme. In [9]
authors use the independent set polytope of the conflict graph
to state the existence of a schedule. We also use the conflict
graph, with the difference that in this paper a schedule is
explicitly stated in our feasibility conditions, and that we do
not require the set of all independent sets in the conflict graph,
which may be exponentially large.

II. NETWORK AND TRANSMISSION MODEL

We assume that the network is using Time Division Multiple
Access (TDMA) MAC protocol [?], [1], [2]. The time is
divided into slots of fixed duration, which are grouped into
frames. A fixed portion of the frame is dedicated to control
traffic, while the other slots are reserved for data traffic. The
slots in the data frame are assigned through the exchange of
messages in the control part of the frame, which establish a
common transmission schedule. The schedule repeats in every
frame until traffic demands in the network change.

The TDMA network can be modelled with a topology graph
connecting the nodes in the wireless range of each other. We
assume that if two nodes are in the range of each other,
they establish symmetrical links in the MAC layer, so the
TDMA network can be represented with a connectivity graph
G(V,E, ft), where V = {v1, . . . , vn} is the set of nodes,
E = {e1, . . . , em} are directional links between neighbouring
nodes, and ft : E → V × V assigns links to pairs of nodes.
The connectivity map ft is used to enforce the fact that all
links are directional, so for a link ek ∈ E, ft(ek) = (vi, vj)
means that the traffic on the link is transmitted from vi to vj .

Links are established between neighbours if they are in
the range of each other, however since all transmissions are
over the wireless channel, we associate a link bitrate to every
link to model channel quality. The bitrate depends on the
modulation, which is chosen based on signal-to-noise ratio
for the link. The signal-to-noise ratio is divided into several
discrete levels and each is associated with its maximum bitrate.
We define the link bitrate as the number of bits transmitted
in a TDMA slot, which is represented with the mapping
b : E → {B1, B2, . . . , Bmax}, where B1 is the number of
bits carried in a slot with the minimum modulation and Bmax

is the number of bits carried in a slot with the maximum
modulation.

We model the connections in the network with a multicom-
modity bandwidth assignment, so for a source node vi, gφ

i > 0
is the number of bits arriving for connection (commodity) φ
in one frame. On the other hand for the destination node vj ,
gφ

j < 0 is the number of bits leaving the network on connection
φ in one frame. For example, in a mesh network each node has
an uplink and a downlink connection to the point-of-presence.
The point-of-presence allows the nodes to reach the Internet,
so each mesh node establishes two connections to it, one for
the uplink and one for the downlink traffic.

Link bandwidth is defined as the number of bits the link
transmits in a frame. The link bandwidth is shared between
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Fig. 2. Joint Routing and Scheduling Algorithm

different commodities, so∑
ej∈{vi}+

fφ
j = gφ

i +
∑

ek∈{vi}−
fφ

k , (1)

where fφ
j is the bandwidth allocated to commodity φ on link

ej , and {vi}+ and {vi}− are respectively the set of outgoing
and incoming links of the node.

The assignment of link bandwidths and node bandwidths
so that flow conservation, (1), is satisfied is not the topic of
this paper. We assume that the links are assigned bandwidth
as a part of a joint routing and scheduling algorithm (Fig. 2).
The joint routing and scheduling algorithm finds an initial set
of link bandwidths satisfying a certain QoS and then checks
if there is a TDMA schedule that supports the bandwidth.
If a schedule exists and it’s delay is less than the maximum
delay tolerated in the network Dmax, the algorithm is done,
otherwise the algorithm iteratively adjusts the bandwidths until
a schedule is found.

Given the assignment of link bandwidths for the commodi-
ties, the number of timeslots the link should be active in the
frame can be found from:

dj =

⌈∑
φ fφ

j

bj

⌉
=

⌈
fj

bj

⌉
, (2)

where fj =
∑

φ fφ
j is the total number of bits transmitted

by all commodities using the link, bj is the modulation on the
link and dj is the number of slots link ej transmits in a frame.

A link may interfere (conflict) with other links, so they
should not transmit at the same time. There are four types
of transmission conflicts that need to be considered in TDMA
networks (Fig. 3). The first three types are between the con-
nections that share a neighbour. In the case of the transmitter-
transmitter (t-t) conflict the parallel transmissions garble each
other at the common receiver, and in the case of the receiver-
receiver (r-r) conflict a single transmitter cannot separate
packets for the two receivers. The transmitter-receiver (t-r)
conflict happens because the nodes cannot transmit and receive
at the same time.

In addition to the three direct neighbour conflicts, TDMA
mesh networks also have a restriction on their second hop
neighbour connections. We show this as the transmitter-
receiver-transmitter (t-r-t) conflict. In the t-r-t conflict, the two
conflicting connections are shown with a solid line. They
cannot transmit at the same time because the transmitter
and the receiver share a neighbour, which can hear both

Fig. 3. Conflicts in TDMA Wireless Networks
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Fig. 4. Conflict Graph

transmissions, shown with the dashed line for the overheard
transmission.

We keep track of conflicts between the links with con-
flict graphs. Conflict graphs can be defined with a triplet
Gc(E,C, fc), where E is the set of links, C = {c1, . . . cr}
is the set of TDMA conflicts, one for each of the r conflicting
pairs of links, and fc : C → {{ei, ej}, for all ei, ej ∈ E}
associates the conflicts with pairs of links. We use the notation
{·} for unordered sets and (·) for ordered sets, so fc defines
an undirected graph. The graph is undirected since conflicts
are symmetrical.

In this paper, we use a conflict graph with an arbitrary
assignment of directions to the arcs,

−→
G c(E,C,

−→
f c), where−→

f c : C → E × E. The directed conflict graph simplifies the
derivation of formulas, however the arbitrary orientation of
arcs does not cause any loss of generality. We use the four
node example from Fig. 1 to demonstrate how the arcs in the
conflict graph are created. The vertices in the conflict graph
are the six links from the connectivity graph. All of the links
conflict with each other, except for pairs e1 and e6 and e2 and
e5, so they are not connected (Fig. 4). The graph in the figure
also has an arbitrary orientation.

III. TDMA SCHEDULING PROBLEM

A TDMA schedule assigns each slot in a frame to a link.
Since the schedule repeats from frame to frame, it is sufficient
to represent this assignment with a map I : E ×M → {0, 1},
where E is the set of links and M = {0, . . . , T − 1} is
the index of T slots in the frame [3], [10]. Once a schedule
is decided, the map is repeated in every frame until a new
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di

timeωi − T ωi = πi + ziT ωi + T

dj
time

ωj − T ωj = πj + zjT ωj + T

Fig. 5. Series of Activation Times

schedule is determined. The meaning of the scheduling map
is that a link ei transmits in slot t if I(ei, t) = 1. Since the
schedule repeats in every frame, if I(ei, t) = 1, link ej is
active at all times in the set {t + ziT, zi ∈ Z}.

A map I defines a valid schedule if every link is allocated
the number of slots required to transmit all of its data,

T−1∑
t=0

I(ei, t) = di, ∀ei ∈ E (3)

where di is given by (2). A map I defines a conflict-free
schedule if conflicting links do not transmit at the same time,

I(ei, t) + I(ej , t) ≤ 1, ∀t ∈ M,∀ck ∈ C, (4)

where fc(ck) = {ei, ej}. In general, the TDMA scheduling
problem is to find a scheduling map I that represents a valid
and a conflict free schedule.

The problem with using the assignment matrix I to represent
TDMA schedules is that it does not allow an easy way to
limit the number of times a link transmits in a frame. The
importance of limiting the number of link transmissions is
twofold. First, this is consistent with the 802.11s and 802.16
mesh protocols, i.e. links are only allowed to transmit once in a
frame. Second, limiting the number of times a link transmits in
a frame decreases the total network overhead. For example, in
802.16 every transmission needs a guard time of three TDMA
slots, which at the highest modulation means an overhead of
324 bytes per transmission. In this paper, we will assume
that the number of transmissions is limited to one per frame.
Later we will show how we can implement schedulers with
an arbitrary number of transmissions per frame.

Limiting each link to transmit at most once in a frame, is
equivalent to limiting the set of possible scheduling maps I to
matrices with rows of consecutive ones [11]. The first column
where the sequence of ones starts is the link activation time,
and the length of the sequence is the duration of the link
transmission.

The consecutive one property of the scheduling matrix
allows us compress it into a pair of maps S(π,d), where π =
[π1, . . . , πm]T is the vector of start time offsets corresponding
to each link and d = [d1, . . . , dm]T is the vector corresponding
to the duration of link transmissions, found in (2). The vector
of start times π is restricted to be positive and less than T ,
π ∈ Z

m
[0,T ). The schedule S(π,d) corresponds to a scheduling

matrix IS in which a row corresponding to link ei has the first
πi columns set to zero, and the columns {πi, . . . , πi +di −1}
set to one. The TDMA scheduling problem, in this paper, is
to find the schedule S(π,d) whose corresponding scheduling

matrix IS is valid and conflict free and also results in minimum
TDMA delay.

Since the activation times are periodic, the start time πi for
link ei actually represents a series of activation times, which
can be derived from πi by adding multiples of T slots. So,
Πi = {πi + ziT, zi ∈ Z} is the series of activation times for
link ei, generated with πi (Fig. 5). The normalized activation
time πi can be found from any activation time ωi ∈ Πi with
the modulo operator:

πi = ωi (mod T ). (5)

The schedules defined by S(π,d) are valid by construction
since every link ei is allocated di columns in the scheduling
matrix IS . In order for the schedule to be conflict free, it must
ensure that if a link starts transmitting, all of its conflicting
links remain silent until the link’s transmission is over. For two
conflicting links ei and ej , this conflict free condition should
be true for all time points ωi ∈ Πi and ωj ∈ Πj that occur in
the same one frame interval.

Take any activation time ωi ∈ Πi for link ei and choose the
next activation point for a conflicting link ej , ωj = min{ω ∈
Πj : ω ≥ ωi} (Fig. 5). In this case, ej should not transmit
before ei finishes its transmission

ωj ≥ ωi + di ⇔ ωj − ωi ≥ di, (6)

and ej should stop transmitting before ei transmits again

ωj + dj ≤ ωi + T ⇔ ωj − ωi ≤ T − dj . (7)

The equations can be combined to arrive at the following
conflict free condition:

di ≤ ωj − ωi ≤ T − dj , and 0 < ωj − ωi < T. (8)

In the above example, we assume that ei transmits first in each
frame. If we change the order of transmissions we have:

dj ≤ ωi − ωj ≤ T − di, and 0 < ωi − ωj < T. (9)

We can combine the two conflict free conditions further
since their ranges of ωj − ωi are mutually exclusive:

di − pkT ≤ ωj − ωi ≤ T − dj − pkT, (10)

where pk = 0 if ωj − ωi > 0 and pk = 1 if ωj − ωi < 0. The
extra variable pk specifies a relative order of transmissions,
which prompts us to refer to it as the “transmission order” in
the rest of the paper.

A subset of activation times ωi ∈ Πi, ∀ei ∈ E, can be
interpreted as a “potential” on the conflict graph, if we take
ω = [ω1, . . . , ωm] to be a function on the vertices of the
conflict graph: ω : E → Z. In this case, the conflict-free
conditions for a schedule can be stated in terms of potentials
in the conflict graph, thus formulating the scheduling problem
as a network flow problem:

Proposition 1 (Conflict-Free Schedules): Schedule S(π,d)
is conflict-free if and only if there exists a potential ω : E →
Z, such that for every arc ck ∈ C and its corresponding pair of
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conflicting links
−→
f c(ck) = (ei, ej) the conflict-free condition,

(10), is satisfied.
The importance of potentials becomes clear from the “only

if” part of the proposition, which gives a strategy to find fea-
sible conflict-free schedules. The strategy is to simultaneously
look for an ordering vector p and a potential ω, satisfying the
conflict free conditions (10) for every pair of conflicting links.
This search problem was shown to be NP-complete in [12], by
reduction to Graph K-Colourability. A more general version
of the problem, where p is allowed to take any integer value,
is known as the Periodic Event Scheduling Problem (PESP)
[13].

The proposition defines a polyhedron of feasible schedules
defined by p and ω. We will use this fact in the next section
to define constraints in the optimization of minimum delay.
However, the proposition also gives a natural way to split the
TDMA scheduling problem into two parts: finding p and then
finding ω. We will show that ω can be found with the Bellman-
Ford algorithm if p is fixed. So, we will tackle the scheduling
problem by finding good heuristics for p.

IV. MINIMUM DELAY TDMA SCHEDULING

In this section we formulate an optimization that the joint
routing and scheduling algorithm can use to find schedules
with maximum delay less than the QoS constraint Dmax. The
optimization minimizes the maximum delay among a set of
paths. The optimization can result in one of two outcomes.
First, there may not be a schedule that support the link
bandwidths in which case the joint routing and scheduling
algorithm needs to adjust the link bandwidths. Second, there
may be a schedule whose maximum delay on any path is given
by the objective function of the optimization. In this case, the
joint routing and scheduling algorithm can decide if the delay
is larger than Dmax and adjust the link bandwidths if needed.

We consider a scenario in which the TDMA delay should
be minimized on some set of paths. For example, in mesh
networks, there are q = n−1 paths forming a tree rooted at the
point-of-presence and leading to each one of the n− 1 nodes
in the mesh. In this case, a schedule should ensure that none
of the paths have a very large delay. We first find the delay on
return paths and then use this delay as an objective function
to a linear program that minimizes the maximum among the
path delays in a set of paths.

A. TDMA Delay

TDMA delay may occur during any link-by-link packet for-
warding along a path between the source and the destination.
A path P = (ei, . . . , ej) is an ordered sequence of links
connecting two vertices in the topology graph. Links adjacent
to each other in the path share a common node, which forwards
packets. For example, if link ej follows another link ei in the
path, their common node forwards packets received on link ei

to link ej . TDMA delay occurs if, in the same frame, link ej

is scheduled before link ei.
Each path P in the topology graph corresponds to a path

θP in the conflict graph. The path in the conflict graph

can be obtained by finding the conflicts needed to visit the
vertices of the conflict graph

−→
Gc(V,E,

−→
f c) listed in P . For

example, the return path P = (e1, e3, e5, e6, e4, e2) in the
four node topology shown in Fig. 1, corresponds to the path
θP = {c6, c9, c11, c10, c7} in Fig. 4.

We find the total TDMA delay for a path P by finding
the delay incurred while traversing the corresponding path θP
in the scheduling graph. For each packet forwarded from an
inbound link to an outbound link on a node, there is a conflict
connecting the two links in the conflict graph. Therefore, the
total delay for traversing a path P in the topology graph is
identical to the total delay for the corresponding path θP in
the conflict graph. So, we first we find the hop-by-hop delay
by examining how packets are delayed at each conflict and
then we sum them up over θP .

Consider a fixed schedule S(π,d) with a corresponding
potential ω. The potential also has an ordering vector p, such
that the conflict free conditions (10) are true. Suppose that link
ei transmits at time ωi and the next link on the path is ej , that
is ei � ej , and we have

−→
f c(ck) = (ei, ej). If pk = 0, the

delay on the conflict is Δk = ωj − ωi since ωj > ωi by the
conflict-free conditions. However, if pk = 1, Δk = ωj−ωi+T
since ωj < ωi and the next transmission of ej is at time
ωj + T . So, for a conflict ck, with the corresponding vertices−→
f c(ck) = (ei, ej), time between successive transmissions is:

Δk = ωj − ωi + pkT = τk + pkT, (11)

where τk = ωj −ωi is the tension for the conflict ck with the
end vertices ej and ei in the conflict graph. On the other hand
if
−→
f c(ck) = (ej , ei), and the link is traversed in the opposite

direction (i.e. ei � ej) it can be shown by a similar argument
that:

Δk = ωj − ωi + (1 − pk)T = −τk + (1 − pk)T, (12)

where the tension for this conflict is defined as τk = ωi −ωj .
Using the single hop delay, we can find the delay on path

θP as:

D(θP) =
∑

ck∈{θP}
Δk

=
∑

ck∈{θP}+

(
τk + pkT

)
−

∑
ck∈{θP}−

(
τk + pkT − T

)
,

(13)

where {θP}+ is the set of conflicts where the packets are
forwarded in the direction of the conflict, and {θP}− is the
set of conflicts passed in their opposite directions.

We can also represent the delay as a linear combination of
vectors, if we define a vector for a path in the conflict graph
with θ = [θ1, . . . , θr]T , where:

∀ck ∈ C, θk =

⎧⎪⎨
⎪⎩

1, if ck ∈ {θ}+

−1, if ck ∈ {θ}−
0, otherwise,

(14)

{θ}+ is the set of arcs in the positive direction of θ and {θ}−
is the set of arcs in the negative direction of θ. For example, the
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cycle (path) emphasized in Fig. 4, corresponds to the vector
θ = [0, 0, 0, 0,−1, 1,−1, 0, 1,−1, 1, 0, 0]T .

With the vector notation, the delay is a linear combination
of the path θP , tension and the transmission order:

D(θP) = θT
P [τ + pT ] + DP (15)

where DP =
∑

ck∈{θP}− T is a constant for the path and
τ = [τ1, . . . , τr]T , and p = [p1, . . . , pr]T . Note that if path
P starts with link ei and ends with link ej , θT

Pτ = ωj − ωi

since the terms in the middle cancel out.
In the rest of this section, we will concentrate on return

paths in the topology graph. The return path delay is important
for applications that use TCP as the transport protocol since the
throughput of TCP is inversely proportional to the return path
delay [14]. A return path in the topology graph corresponds to
a cycle in the conflict graph. For example, the return path P =
(e1, e3, e5, e6, e4, e2, e1) in the four node topology shown in
Fig. 1, corresponds to the path θP = {c6, c9, c11, c10, c7, c5},
marked in Fig. 4. Note that for return paths, θT

Pτ = 0, so the
delay does not include the tension variables:

D(θP) = θT
PpT + DP . (16)

B. Min-Max TDMA Delay

We design our scheduler to minimize the total delay on
some set of paths θ1, . . . , θq. An objective that achieves this
goal is the min-max delay defined as min maxP=1...q D(θP).
The constraints in the optimization can be obtained by the
application of the conflict-free proposition. Note that the
inequalities in the proposition can be stacked horizontally, so
that we can express them as:

l ≤ CT ω − pT ≤ u, (17)

where l = [l1, . . . , lm]T , u = [u1, . . . , um]T , and for an arc ck

with corresponding vertices
−→
f c(ck) = (ei, ej), uk = T − dj

and lk = di and C is the m×r incidence matrix of the conflict
graph defined as

Cik =

⎧⎪⎨
⎪⎩

1, if
−→
f c(ck) = (ei, ej)

−1, if
−→
f c(ck) = (ej , ei)

0, otherwise.

(18)

We combine the polyhedron of feasible transmission orders
with the formula for the delay to formulate an integer program
that finds a schedule with the min-max delay:

min
ω,p,t

t (19a)

s.t θT
PpT + DP ≤ t, P = 1, . . . , q (19b)

l ≤ CT ω − pT ≤ u (19c)

ω ∈ Z
m,p ∈ {0, 1}r, t ∈ R, (19d)

The first q constraints (19b) ensure that no path has a delay
larger than t, while t is minimized; this achieves the goal
of finding the min-max optimum. The other constraints (19c)
define the polyhedron of conflict-free schedules.

The optimum solution is a vector of feasible potentials
ω∗ and a vector of optimum transmission order p∗. The
optimum schedule can be obtained from ω∗ with the modulo
operation, so π∗

i = ω∗
i (mod T ). The potential π has its

own transmission order p(π), which may be different from p.
The two orders may be different because ω is related to the
normalized activation time with ωi = πi + ziT and for an arc
ck, with the endpoints

−→
f c(ck) = (ei, ej), zi may be different

from zj while the feasibility conditions, (10), are still satisfied.
If we substitute ωi = πi +ziT into (10), we get the following:

di−(zj−zi+pk)T ≤ πj−πi ≤ T−dj−(zj−zi+pk)T, (20)

which shows that the change in the relative transmission order
may happen if pk = 0 and zj − zi = 1, or if pk = 1 and
zj − zi = −1. The inequality also shows that the absolute
transmission order in the frame, p(π), is related to the relative
transmission order with:

p
(π)
k = zj − zi + pk. (21)

Even though the order of transmissions is changed, the delay
remains the same because the single hop delay is unchanged.
The single hop delay in the positive direction of a conflict ck,
with

−→
f c = (ei, ej) is:

Δ(π)
k = π∗

j − π∗
i + p

(π)∗
k T

= π∗
j − π∗

i + (zj − zi + p∗k)T = ω∗
j − ω∗

i + p∗kT,
(22)

which is the same as (11). Similarly the single hop delay in
the opposite direction of the conflict is also valid:

Δ(π)
k = π∗

i −π∗
j +(1−p

(π∗)
k )T = ω∗

i −ω∗
j +(1−p∗k)T (23)

the same as (12).

V. HEURISTICS FOR MINIMUM DELAY SCHEDULING

The min-max formulation (19) is hard to solve due to the
transmission ordering variables p. The optimization requires
a search for p over the space of all {0, 1}r vectors of p.
This search may be done with a standard branch-and-bound
technique [15] or with a customized cutting plane algorithm
[16]. We are interested in finding a method that allows us to
use heuristics to find the schedule.

We split the scheduling problem into two parts. First, a
search for a transmission order p is performed and then for
the fixed p the corresponding potential ω is sought. If the
transmission order p is fixed, the potential ω can be found
with a modified Bellman-Ford algorithm. We therefore limit
heuristics to finding good transmission orders.

Separating the search for the transmission order from
finding a feasible schedule is also well suited for use with
the 802.16 centralized scheduling protocol. In the 802.16
centralized scheduling protocol, the base-station finds a routing
tree and calculates the link assignments, and disseminates both
throughout the network. The mesh nodes use the routing tree
and the assignments to find schedules. The routing tree can
also identify the transmission order, and therefore the proposed
solution can indeed be applied in the 802.16 centralized
protocol.
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A. Scheduling with a Fixed Transmission Order

In general, the scheduling problem is NP-complete. How-
ever, if the transmission order p is fixed, the scheduling prob-
lem becomes that of finding a solution to a set of difference
equations. The solution to these difference equations can be
found efficiently using the Bellman-Ford algorithm [17]. Here,
we describe the scheduling algorithm for a fixed p.

First, we transform the conflict graph Gc(Ec, Cc,
−→
f c) so

that the cost of traversing the arcs is taken from the upper and
lower bounds in the difference equations. The upper bound is
treated as the cost of traversing an arc in the positive direction,
while the lower bound is treated as the cost of traversing the
arc in the negative direction. This situation is illustrated in
Fig. 6, where an edge in the scheduling graph is replaced
with a set of two edges. If the original edge is traversed in the
positive direction, ei � ej in Fig. 6(a), this is equivalent to
traversing the upper edge with cost T −dj −pkT in Fig. 6(b).
Similarly, if the original edge is traversed in the negative
direction, ej � ei in Fig. 6(a), this is equivalent to traversing
the lower edge with cost −di + pkT in Fig. 6(b).

Second, we add a new vertex s to the transformed schedul-
ing graph and connect it to each of the original vertices in
the graph with an arc of cost 0 and an arc pointing out of s
(Fig. 7). The feasible potential is the minimum distance from s
to every node in the graph. This is easily seen by the optimality
of the minimum paths from s to each ei ∈ E, [17], where for
all conflicts incident to ei, ∀ck ∈ C :

−→
f c(ck) = (ei, ej):

ωj ≤ ωi + T − dj − pkT, (24a)

ωi ≤ ωj − di + pkT, (24b)

where ωj is the total cost of reaching ei from s. The two
conditions correspond to traversing an edge in the positive
and negative directions, and when they are combined, we get
the feasibility condition (10).

It is possible that the shortest path algorithm may not find
distances to all of the vertices in the scheduling graph. This

can happen if the conflict graph contains directed cycles with
negative cost [17]. In this case, the transmission order specified
by p does not have a valid schedule and a new transmission
order should be found.

We modify the Bellman-Ford algorithm to find the minimum
distance from s to all other vertices. One way to implement
the Bellman-Ford algorithm that takes the dual cost into
account is to transform the augmented scheduling graph into a
symmetrical graph with the costs as shown in Fig. 6b and then
directly apply the Bellman-Ford algorithm. However, this may
be costly if the scheduling graph has many arcs. An equivalent
way of accomplishing the same goal is to change the relaxation
in the Bellman-Ford algorithm [17]. The relaxation examines
every arc for violations of the optimality conditions and adjusts
the cost of reaching a vertex if the optimality is violated. We
modify the relaxation in our algorithm to examine both the
cost of traversing the edge in the positive direction and cost
of traversing the edge in the negative direction, in effect doing
the same thing that the Bellman-Ford algorithm would do on
the graph with the symmetrical edges.

The last step in the algorithm is to find a schedule in the
time period [0, T ). Since the minimum distance ωi is also
one of the activation points in the series of activation points
Πi, we can use the modulo rule to find the schedule π with
πi = ωi ( mod T ), for the link ei.

The algorithm can easily be extended to allow links to
transmit more than once in a frame. In general, a link has
a number of vertices in the conflict graph that is equal to the
number of times it transmits in the frame. For example, if
a link transmits twice in the frame, we add an extra vertex
for it to the conflict graph. The new vertex conflicts with
the same links as the old vertex associated with the link. In
addition, we also add a conflict between the new vertex and
the original vertex and take into account the restriction on
their transmissions with (10). The solution for the scheduling
problem identified with the new graph will schedule the node
with two vertices in the conflicting graph to transmit twice in
the frame.

B. Transmission Order Heuristic

In this subsection, we propose an algorithm that can be
used to find a transmission order whose maximum delay on
any path is T . The algorithm defines a ranking function R :
E → Z, which indicates the preferred order of transmissions
of the links, and then uses the ranking function to find the
transmission order p.

Initially, the algorithm sets the rank of all the nodes to zero.
The algorithm then examines each of the q return paths to the
point-of-presence, link-by-link, and assigns a rank to each link
as a function of the distance from the root of the routing tree.
We assume that the point-of-presence is v1 ∈ V . For links in
a return path P = {ei, . . . , ek, el, . . . ej}, where ei ∈ {v1}+

and ej ∈ {v1}−, the rank is assigned as follows:

Rk = max{Rk, Rl + 1},∀ek, el ∈ P : el � ek. (25)
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We note that the distance of the link is defined as it’s placement
on the return path and not it’s topological distance from the
root of the tree. For the example in Fig. 1(a), we have R1 =
0, R3 = 1, R5 = 2, R6 = 3, R4 = 4, and R2 = 5.

Given the ranking, the transmission order p is assigned with
the following rule: ∀ck ∈ C, with

−→
f c(ck) = (ei, ej),

pk =

{
0, if Rj ≥ Ri

1, otherwise
(26)

Proposition 2: If the ordering p, derived from the ranking
R : E → Z, has a feasible schedule, then for any path P ,

D(θP) = T. (27)
Proof: Consider a return path P = {ei, . . . ej}, where

ei ∈ {v1}+ and ej ∈ {v1}−, and its corresponding cycle θP
in the conflict graph. Assume that cl is the last conflict in θP ,
connecting ej and ei in the conflict graph. By construction
of p, pk = 0 if ck ∈ {θP}+ \ {cl} and pk = 1 if ck ∈
{θP}− \ {cl}. For conflict cl, pl = 1 if cl ∈ {θP}+ and
pl = 0 if ck ∈ {θP}−. The delay can be found as:

DP = θPpT +
∑

ck∈{θP}−
T

= − ∣∣{θP}− \ {cl}
∣∣ T + plT +

∣∣{θP}−∣∣ T = T,

(28)

where | · | is the cardinality of a set.
The problem solved above cannot handle spatial reuse since

all links will be scheduled sequentially. In the sequel, we
propose a heuristic that modifies the ranking to introduce
spatial reuse on the paths. The proposed solution allocates
new ranks found from

RH
i = Ri (mod H), (29)

where H is a constant usually larger than three.2

The new ranking function introduces spatial reuse because
it allows links, far enough on the same path, to transmit at
the same time. The new ranking function RH

i is reset every
H hops. Suppose link ej follows link ei on the path, such
that Ri < Rj . Then, in the proposed transmission ordering, ei

will transmit before ej . However, if in the modified scheme
RH

i > RH
j , then ej will be scheduled to transmit before ei,

possibly at the same time as some of the other links preceding
ei in the path, thus increasing spatial reuse. This scheme is
sub-optimal because it does not maximize spatial reuse in the
network.

The transmission ordering function found with RH
i in-

creases the set of links in the opposite direction of a path. It
reverses every Hth link on a path. So, on the longest path with
nmax hops, the new ranking function introduces the delay:

Dmax =
⌊nmax

H

⌋
T. (30)

It can be easily seen that the delay is less than Dmax on all
paths with less than nmax hops as well, i.e.

max
P=1,...,q

D(θP) ≤
⌊nmax

H

⌋
T. (31)

2On a long chain, links that are at least 2 hops apart can transmit
simultaneously.

VI. NUMERICAL RESULTS

We perform two types of simulations. First, we examine
TDMA delay scheduling algorithms on a chain topology.
Second, we compare the minimum delay integer program with
the heuristic on a mesh topology.

We create a scenario where the network has a chain topol-
ogy with n nodes. The two nodes at the opposite sides of
the chain establish an uplink and a downlink connection with
symmetrical bandwidths gup

n = gdn
n = gn. We call gn the load.

We fix the frame length to T = 100 slots and slot size to 1ms,
making the frame duration 100ms. We assume that each link
transmits for 10 slots in the frame and that each slot carries
10 bits, making the bitrate on all links, as well as the load,
1000bps.

Using the chain topology, we first compare the minimum
frame length scheduling with minimum delay scheduling. The
minimum frame length, Tmin, is found as the minimum num-
ber of colours needed to schedule the links without conflicts.
We found that since every link is on for 10 slots in the frame,
Tmin = 40 slots are needed to schedule all links for chain
lengths longer than three nodes. The reason for this frame
size is that the chain topology allows spatial reuse every four
hops. Since we are comparing the TDMA delay, we keep slot
sizes the same, making the minimum frame duration 40ms and
we set the number of bits in every slot to 4 to maintain the
same load.

We find the minimum delay schedule for Tmin and plot
it in Fig. 8 as “Min Len”. We note that minimum length
scheduling does not always produce minimum delay. In fact,
the minimum length schedule has a smaller delay only when
the number of hops is small. When the number of hops is large,
the feasible set of schedules is restricted so that only schedules
with a large delay are possible. Fig. 8 also compares the H-
heuristic with the optimum scheduling. The figure shows that,
as expected, the delay decreases when H is increased. We
also plot the results of the LP-relaxation of the {0, 1}-integer
optimization as “LP-Rel” in Fig. 8. The LP-relaxation finds a
minimum delay schedule with a few iterations since it does not
do branch-and-bound exhaustive search over the whole space
of p. The LP-relaxation performs well for a small number of
nodes in the chain.

We also performed a Monte-Carlo simulation on a five
by five mesh topology. We have repeated the Monte-Carlo
simulation 100 times, and each time a set of sources has been
chosen at random from the mesh and then connected to the
point-of-presence in the corner of the topology. We then find
a spanning tree in the network and allocate the bandwidth on
the links so that the uplink and the downlink bandwidth of all
sources is the same. We set the duration of all links to 10 slots,
making the load of end-to-end connections 333bps, 250bps,
200bps for T = 300, 400, 500 slots in a frame, respectively.

We compare the performance of the heuristic by finding the
probability a schedule exists to the probability that a schedule
is found with the heuristic (Fig. 9). The probability of finding
a schedule decreases as the frame size is decreased, since the
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load increases. For frame size T = 500, the full optimization
finds a feasible schedule 96% of the time when there are
10 active sources in the mesh, while when the frame size
is T = 400, the full optimization finds a feasible schedule
78% of the time. The proposed heuristic performs well when
the total load in the network is moderate. For frame size of
T = 500 the heuristic with H = 6 performs almost as well
as the full optimization for up to 10 active sources. However,
when T = 400 the load relative to the frame size increases
and the heuristic performs worse than the optimal scheduling.

VII. CONCLUSION

This paper introduces a TDMA scheduling technique for
application in multihop mesh networks. We have shown that
the TDMA scheduling problem can be framed as a network
flow problem on the conflict graph of the network. This
formulation of the TDMA problem allows us to formulate the
existence criteria for a feasible schedule as a set of linear
constraints with the number of variables and the number of
constraints in the order of the number of active conflicts in
the network. This is a significant simplification of the TDMA

scheduling problem. We use this network flow formulation
of the TDMA scheduling problem to formulate a linear min-
max delay optimization for TDMA networks. Our technique
minimizes the maximum delay on a routing tree rooted at the
point-of-presence (base-station).

We have also shown that the TDMA scheduling problem
can be decomposed into two parts. In the first part, a relative
transmission order of the links (precedence) is found. The
relative transmission order is found by assigning ranks to
links on each round trip path originated and terminated at
the point-of-presence. The links are scheduled to minimize
the maximum delay along the longest path in the tree. In the
second part, the relative transmission order is used together
with the conflict graph as the input to a modified Bellman-Ford
algorithm, which can find a feasible schedule in polynomial
time. This separation of the scheduling problem has allowed
us to limit the scope of heuristics necessary for min-max
schedules to relative transmission orders.
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