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Currently deployed wireless mesh networks are based on 802.11, WiFi, technology, which is not
efficient in multihop scenarios. We present a method, which emulates 802.16 mesh networks over
802.11 hardware. The method works by embedding 802.16 packets into 802.11 broadcast packets
and padding the 802.11 broadcast payload, so that the broadcasts are aligned to 802.16 TDMA
frame boundaries. The method requires only software changes on the nodes using 802.11a for mesh
communications. This means that the mesh networks installed with 802.11a hardware today can be
upgraded with a software patch to take advantage of Quality-of-Service available in 802.16.

We use ns2 simulations to show the performance of the 802.11 based mesh networks with the
embedded 802.16. We show that the hybrid system can achieve throughputs in multiples of what is
possible with 802.11 hardware alone. First, the efficiency of the new system is significantly higher
than the efficiency of 802.11 based systems, because we use broadcast packets. Second, the new
system eliminates unnecessary collisions in the wireless channel since it takes advantage of scheduled
wireless access with 802.16 mesh coordination function.

1 Introduction

Wireless mesh networks have proven to be a cost-effective way to interconnect
access points spread out over a large geographical area. Wireless terminals
connect to the access points on their first hop and their traffic is carried by the
wireless mesh to the Point-of-Presence (POP) where it can go to the Internet.
The POP is the only node in the network connected to the Internet and can
also act as a base-station, or the mesh coordinator. The wireless backbone
is made of mesh nodes designed to use inexpensive off-the-shelf parts such as
IEEE 802.11 wireless cards, which use the free, license-exempt, radio spectrum.

Currently deployed mesh networks use 802.11 wireless devices for wireless
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mesh connectivity [1, 2]. However, 802.11 medium access control is not ap-
propriate for commercial applications of mesh networks since the Distributed
Coordination Function (DCF), used to coordinate 802.11 transmissions, can-
not provide Quality of Service (QoS) [3]. IEEE is currently working on a new
mesh standard, 802.11s, which defines a Mesh Coordination Function (MCF),
designed specifically for multi-hop operation. The 802.11s MCF includes a
Time Division Multiple Access (TDMA) mode, needed to provide guaranteed
QoS in mesh networks [4]. Nevertheless, even when 802.11s standard is rati-
fied and 802.11s hardware becomes available, it will be difficult and costly to
upgrade the mesh networks installed today, since mesh networks are usually
built with a large number of nodes.

We propose upgrading the software on the existing nodes with an implemen-
tation of 802.16 MCF that can work with the existing 802.11a hardware. IEEE
802.16 has already been ratified and it also uses TDMA with its own MCF [5].
Our method requires only software changes on the nodes using 802.11a for
mesh communications. This means that the mesh networks installed with
802.11a hardware today can be upgraded with a software patch to take advan-
tage of 802.16 MCF and do not have to wait for hardware upgrades to 802.11s.
The importance of this approach is that it increases the operational lifetime
of current mesh networks by providing them with TDMA QoS MAC layer.

Our approach has several advantages, rooted at the ability to re-use the
802.16 standard. First, there is no need to specify a new mesh overlay MAC
protocol; the 802.16 standard gives a detailed description of the mesh protocol.
The 802.16 MCF specifies the synchronization mechanism used to align all
transmissions to frame boundaries, as well as the mechanism to negotiate
TDMA allocations in each frame. In addition to the MCF, the 802.16 standard
also specifies procedures for network entry and MAC layer encryption for mesh
nodes, which are missing in 802.11s.

The software upgrade is implemented as an overlay MAC layer on the mesh
nodes. We insert an 802.16 mesh driver between the network layer and the
802.11 driver. The 802.16 driver emulates the 802.16 MCF by packing packets
coming from the network layer into 802.16 PDUs, which are then passed to the
802.11 network interface for transmission. Each 802.16 packet is embedded into
an 802.11a broadcast packet, so that the resulting packets can be scheduled
with the 802.16 MCF. In order to achieve true TDMA, necessary for the
operation of 802.16 MCF, we force the 802.11 back-off procedure to use at
most one slot by setting the 802.11 QoS parameter CWmax=1. Incoming 802.16
packets are also padded so that the resulting 802.11 packets can be aligned on
TDMA boundaries.

We have implemented the 802.16 MCF and the 802.16 physical layer, as well
as the 802.16 embedding scheme over 802.11 in the ns2 simulator [6]. To the
best of our knowledge, this paper presents the first 802.16 mesh simulation
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with the full TCP/IP protocol stack; the only other simulation with 802.16
that we are aware of is limited to the simulation of the 802.16 scheduling
protocol [7]. Our simulations show that the embedded system can provide
guaranteed link bandwidths despite the fact that it is running on top of 802.11
hardware.

We show that despite the embedding and the padding, our scheme is signifi-
cantly more efficient than 802.11 DCF. The reason for the increased efficiency
is that we eliminate RTS-CTS-ACK exchanges, used in 802.11 unicast trans-
missions, and replace them with 802.11 broadcasts, coordinated with 802.16
MCF. With 802.16 MCF, our embedding scheme also eliminates collisions from
the wireless channel, adding further efficiency to 802.11 mesh networks. Our
simulations show that with collisions eliminated, the throughput of the em-
bedding scheme can be multiples of what is possible with 802.11 DCF alone.
So, with a simple software upgrade the same 802.11 mesh network can support
many times more users.

This work extends our prior work on the topic [8,9] with deeper analysis of
the embedding scheme and further simulations with ns2. The new simulations
examine the performance of the embedded scheme with 802.16 scheduling
algorithms proposed in literature [10,11].

The rest of this paper is organized as follows. Section 2 describes 802.11
DCF and shows that 802.11 DCF has low efficiency due to the overhead of
RTS-CTS-ACK exchanges. Section 3 describes 802.16 MCF and shows why
it is appropriate for mesh networks. Section 4 shows how 802.16 MCF can
be used with 802.11a hardware to achieve the performance of 802.16 MCF in
802.11 based mesh networks. Section 5 compares the performance of embedded
802.16 mesh networks with 802.11 mesh networks. Section 6 discusses practical
issues in implementing the embedded scheme.

1.1 Related Work

In [12], the authors propose an overlay MAC layer for 802.11 mesh networks.
The overlay uses admission control to ensure that real-time flows receive good
quality of service, however the overlay itself does not improve the performance
of the underlying 802.11 hardware. A different MAC overlay layer is proposed
in [13]. This overlay improves the performance of 802.11 with loose TDMA
synchronization. Even though the overlay MAC in [13] uses TDMA-like access
to the wireless channel, it still only provides best effort service. In contrast, our
approach uses small frame size and synchronization from the 802.16 protocol
to provide guaranteed access to the channel.

The embedded 802.16 used in this paper can be used with software based
MAC platforms like [14]. In that software platform, 802.11 operation is mod-
ified as far as the network driver will allow it, so that the network cards
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behave almost as a software TDMA radio transceiver. On the other hand,
our approach is appropriate even in the more general case, where the specific
hardware used in [14] is not available, since our embedding does not make
any assumptions about 802.11 hardware beyond what is specified in the stan-
dard [15].

2 802.11 Distributed Coordination Function

Current wireless mesh networks use IEEE 802.11a protocol to implement node-
to-node connectivity [2, 15]. 802.11a achieves high raw bit rates by using an
Orthogonal Frequency Division Multiplexing (OFDM) based physical layer
in the 5GHz license-exempt band. However, even with the high bit rates,
802.11a is not the most appropriate protocol for mesh networks because of
high overhead and the unfairness that can affect end-to-end flows. We first
describe the 802.11 DCF and then show the efficiency of 802.11 DCF.

802.11 DCF uses collision avoidance to decrease the number of packet col-
lisions in the network. Collision avoidance is based on the use of the ba-
sic procedure. In the basic procedure, the transmitter senses the channel
until it becomes free. Once the channel is free, the transmitter waits for
a duration of TDIFS = 34µs [15] and then calculates an additional “back-
off” waiting time. The back off time is chosen randomly in the interval of
[CWmin, CWmax] × TaSlotTime seconds (CWmin and CWmax are QoS parameters
that can be specified by the user, while TaSlotTime = 9µs [15]). After waiting
for the end of the back-off time the transmitter sends a packet.

In addition to the basic procedure, the nodes also have the option of using
RTS-CTS-ACK exchanges to coordinate their transmissions. The RTS and
CTS are exchanged after the transmitter has performed the basic procedure.
The exchange is used to announce to neighbouring nodes that a transmission
will take place. As a part of the exchange, the transmitter announces how long
the transmission will last, so that the neighbouring nodes can set their virtual
sensing timers. After a successful packet reception, the receiver sends the ACK
packet so that the sender knows the transmission was successful. Using the
values for timing constants listed in the 802.11a standard [15], we find that
the overhead of the full RTS-CTS-ACK exchanges is 318µs per packet.

The overhead of RTS-CTS-ACK exchanges significantly decreases the ef-
ficiency of 802.11a (Fig. 1). The efficiency is defined as the amount of time
needed to transmit a packed on its own divided by the amount of time it takes
to transmit the packet with the RTS-CTS-ACK exchange with no collisions
(and no back-off). Later, we show that RTS-CTS-ACK exchanges are also
not a good way to eliminate collisions in the wireless channel, which is the
reason why a new coordination mechanism is necessary for multi-hop 802.11
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Figure 1. Efficiency of 802.11 DCF

mesh networks. Fig. 1 shows the efficiency as a function of packet size for
BPSK-1/2,QPSK-3/4 and 16QAM-3/4 rates, corresponding to raw data rates
of 6.0Mbps, 18.0Mbps, and 36.0Mbps, respectively. We see that the efficiency
increases with the packet size and the efficiency decreases as the raw data rate
increases. The low efficiency of RTS-CTS-ACK exchanges is the main reason
that the 802.16 packet embedding described in Section 4 uses 802.11 broadcast
packets, which do not use the RTS-CTS-ACK exchanges.

3 802.16 Mesh Coordination Function

IEEE 802.16 specifies a TDMA based MAC protocol [5] for mesh networks
(802.16 MCF). In TDMA, the time is divided into slots of equal length and
during each slot a block of bytes is broadcast. The slots are grouped into frames
of equal length and the frames are then repeated over time. IEEE 802.16 MCF
specifies how the slots in each frame are assigned to nodes.

First, we describe the physical layer used in 802.16 and compare it to the
physical layer used in 802.11a. Both 802.16 and 802.11a use OFDM to achieve
high data rates. However, 802.16 also uses TDMA to provide QoS. Second, we
describe the 802.16 MCF and show its efficiency.
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Table 1. Comparison of 802.11a and 802.16 Raw Data Rates

Data Bits
Symbol

Bitrate Mbits
second

Modulation 802.11a 802.16 802.11a 802.16 802.16
20MHz 10MHz 20MHz

BPSK-1/2 24 96 6.0 3.84 7.68
BPSK-3/4 36 X 9.0 X X
QPSK-1/2 48 192 12.0 7.68 15.36
QPSK-3/4 72 288 18.0 11.52 23.04

16QAM-1/2 96 384 24.0 15.36 30.72
16QAM-3/4 144 576 36.0 23.04 46.08
64QAM-2/3 192 768 48.0 30.72 61.44
64QAM-3/4 216 864 54.0 34.56 69.12

3.1 802.16 Physical Layer

IEEE 802.16 uses OFDM in the licensed and license-exempt 5GHz frequency
bands. OFDM transforms blocks of bits into constant duration symbols car-
ried on a set of frequency orthogonal carriers. Since each OFDM symbol has
the same duration, 802.16 uses them as TDMA slots. The raw data rate of
802.16 depends on the duration of each symbol (slot), which depends on the
bandwidth, and the number of bits carried in each slot. The number of bits car-
ried in a slot depends on the modulation scheme used during its transmission.
Table 1 compares 802.16 with 10MHz and 20MHz bandwidths to 802.11a.1

3.2 802.16 Frame Structure

IEEE 802.16 organizes slots into frames for two reasons. First, the frame
boundaries are used to synchronize the mesh nodes. Second, the frame struc-
ture allows the division of control and data traffic into sub-frames. In both
data and control sub-frames, slots are grouped into transmission opportuni-

ties. The 802.16 MCF controls the transmission schedules in the control and
data sub-frames. The control sub-frame is logically represented by a single
channel, so a transmission schedule for the control sub-frame maps transmis-
sion opportunities to nodes. On the other hand, the data sub-frame has many
logical channels each representing a link between two mesh nodes, so a trans-
mission schedule in the data sub-frame maps transmission opportunities to
links.

The size of the 802.16 control sub-frame is 7×MSH-CTRL-LEN slots,
where each control sub-frame transmission opportunity is 7 slots long and

1IEEE 802.16 can use hardware with 10MHz, in the licensed 5GHz frequency band, or 20MHz, in
the license-exempt 5GHz frequency band, while 802.11a uses 20MHz in the license-exempt 5GHz
frequency band.
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MSH-CTRL-LEN is a parameter left up to the network operator. Each of the
MSH-CTRL-LEN transmission opportunities is occupied by a single control
packet. Three slots are used to guard the packet, while the other four carry the
payload. The packets in the control frame are sent at the lowest modulation,
making the largest possible size for a control packet 48 bytes.

The data sub-frame is also divided into transmission opportunities with a
fixed length. The length of data transmission opportunities is determined by
dividing the number of OFDM symbols in the data sub-frame by 256.1 The
timing structure of data packets is similar to the structure of control packets,
except that the data portion is variable. For example, if each transmission
opportunity was 4 slots, the smallest data packet size at the lowest modulation,
would be 12 bytes, where 3 slots are used for guard and only one slot is used
for data. The next size for a data packet is 60 bytes for two transmission
opportunities, and then 108 bytes for three transmission opportunities.

The control sub-frame transmission scheduling is specified by the standard.
However, the standard leaves open how transmission schedules in the data sub-
frame are determined and only specifies the mechanisms by which transmission
schedules in the data sub-frame are announced. In the centralized scheduling
protocol, nodes monitor the traffic demand from their subscribers and use this
information to request bandwidth from the base-station. The base-station uses
the requests to calculate the schedule for each link in the network. The sched-
ule is then transmitted as a tree of links that the nodes should use to send
packets to the base-station, together with the length of time each node should
transmit in a frame. The schedule is flooded through the network, so that
all mesh nodes know the entire transmission schedule. On the other hand, in
the decentralized scheduling protocol nodes negotiate the starting transmis-
sion opportunity and duration for each link. This protocol uses handshakes to
ensure all neighbouring nodes are aware of the transmission schedules.

Fig. 2 shows the efficiency of 802.16 operating at 20MHz. The efficiency
is defined as the packet transmission time divided by the amount of time it
takes to transfer the packet between two nodes (including MAC headers and
guard times). We plot the efficiency as a function of packet size for BPSK-
1/2, QPSK-3/4 and 16QAM-3/4 rates (Table 1). We see that the efficiency
of 802.16 is much higher than the efficiency of 802.11a DCF (Fig. 1). As the
packet size increases, the efficiency of all three rates converge to maximum
much more quickly than in the case of 802.11a. The reason for this is that
the overhead time is only 37.5µs (three 12.5µs slots) in the case of 802.16,
whereas the overhead time for 802.11a is 318µs. Also the size of the 802.16
header is only 8 bytes compared to 22 bytes of the 802.11 header. IEEE 802.16

1The standard restricts the number of transmission opportunities in the data sub-frame to at most
256 because the duration fields in the scheduling control packets are 8 bits long.
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Figure 2. Efficiency of 802.16 MCF

has the smaller header because it does not transmit MAC addresses in each
transmission. All that is needed to identify the transmitter and the receiver is
the link identifier which is 2 bytes long.

4 802.16 Embedded over 802.11 Hardware

We proposed embedding 802.16 MAC packet data units (PDUs) into 802.11a
MAC broadcast packets in [8, 9]. In that work, we have shown that the RTS-
CTS-ACK exchanges are not necessary since 802.16 MCF coordinates the
nodes, and acknowledgments are a part of the 802.16 protocol. We have shown
in Section 2 that the RTS-CTS-ACK exchanges decrease the efficiency of the
802.11a protocol, so removing them actually makes our protocol more efficient
than the 802.11a DCF.

Fig. 3 shows the embedding of the 802.16 packets into the 802.11a broadcast
packets.1 The embedding assumes that the back-off time is always one. For
this to be true, we need to set CWmin = CWmax = 1.2 The length of the PLCP
preamble includes 12 training symbols as well as one OFDM symbol that
carries the PLCP header, for a total of 13 symbols each with the duration

1It is possible to embed the packets in conjution with the sub-network access protocol (SNAP) [16].
However, this is not necessary under Linux because the kernel allows the definition of custom ethernet
types, so we opted to use an embedding with a smaller size, i.e. without the SNAP sub-header.
2For real implementations, this assumptiondepends on the firmware support. For example, the Intel
PRO/Wireless 2900bg cards allow this change [17].
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Figure 3. Embedding 802.16 PDU over 802.11a

of 4µs [18]. 802.11 headers include 2 bytes for the symbol field (specific to
802.11a), as well as 24 bytes for 802.11 MAC headers [15, 18].

The transmission time required to transfer L bits of the 802.16 embedded
packet (Fig. 3) is given by :

T 802.11
tran = 95µs +

⌈

214 + L

r802.11
mod

⌉

× 4µs, (1)

where 95µs is the total time required for the DIFS and aSlotTime times and
the time required for 13 symbols of PLCP preamble, 214 bits of overhead
comes from 802.11a headers (208 bits) and the minimum of 6-bit pad, and the
r802.11
mod is the number of data bits in an 802.11 OFDM symbol.
The bottom part of Fig. 3 shows how 802.16 MAC interprets the embedded

transmission. We set the slot duration TMS = 16µs, so each slot corresponds
to four 802.11a OFDM symbols. This slot duration maps one 802.16 slot to
TMS. We modify the settings for the 802.16 MAC protocol to make the front
guard time 9 slots and the back guard time one slot. We choose the value of 9
for the front guard because that is longer than the time required to transmit
all of 802.11a overhead with any modulation rate. The number of back guard
slots is the minimum required to transmit 802.11a padding.

The 802.16 overlay MAC layer transmission time is:

T 802.16
tran =

[⌈

P + 64

r802.16
mod

⌉

+ 10

]

× 16µs > T 802.11
tran , (2)

where r802.16
mod is the number of data bits in an 802.16 symbol, P is the size of

the network layer packet in bits and 64 bits of overhead come from the 802.16
MAC headers. Because of the number of guard slots, the transmission time
seen by the 802.16 overlay MAC is strictly greater than the time required to
transmit the packet over 802.11a, ensuring 802.11a collisions do not occur.
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Efficiency  vs. Packet Size
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Figure 4. Efficiency of embedded 802.16 MCF

If a corrupted packet is received by a node, the DCF on the receiver node
selects a timeout of TEIFS = 658µs before the basic procedure can start on that
node. This timer is cancelled if another packet is received correctly before the
timer expires. The embedding module always checks if the previous transmis-
sion was successful before transmitting a new packet, and it cancels all packets
requested by the 802.16 module during active transmissions. This procedure
makes sure that if an EIFS timer is on at a transmitter node, the packets
from that node do not get delayed past the start time of the next transmit-
ting node. At most one packet from any transmitter will colide with packets
from another node. If a collision happens, the DCF back-off mechanism cannot
increase CWmax more than 1 so (2) will still hold.

Fig. 4 shows the efficiency of the embedded 802.16. We plot the efficiency
as a function of packet size for BPSK-1/2, QPSK-3/4 and 16QAM-3/4 rates
(Table 1). We see that the efficiency of 802.16 is higher than the efficiency of
802.11a DCF (Fig. 1), however it is lower than the efficiency of 802.16 (Fig. 2).
This supplements our observations from the previous section. The efficiency
of the embedded scheme is smaller than 802.16 because the overhead of trans-
mitting the packet is higher, e.g. 10 symbols compared to three symbols for
802.16. The efficiency of the embedded scheme is smaller than 802.11 because
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the duration of the 10 extra symbols is shorter than the 318µs added in each
transmission using RTS-CTS-ACK exchanges.

4.1 Bandwidth of the embedded 802.16

Fig. 5 compares the bandwidth of the embedded transmissions to the band-
widths that can be achieved using 802.16 and 802.11a when the modulation
is QPSK-3/4. The bandwidth is defined as the number of bits divided by the
actual time required to transmit those bits. The bandwidth for 802.11a DCF
is found by assuming that there are no collisions in the channel and the sender
and receiver use RTS-CTS-ACK exchanges. This is a very optimistic view of
the 802.11 bandwidth.

First, we observe that the achievable bandwidth of the embedded scheme
(“802.16 (embedded)”) is comparable to the bandwidth that can be achieved
using 802.16 hardware. The achievable bandwidth of the embedded scheme
is always less than what can be achieved with 802.16 hardware operating at
20MHz (“802.16 (20Mhz)”), and more than the bandwidth of 802.16 hardware
operating at 10MHz (“802.16 (10Mhz)”). This corresponds to the fact that the
actual symbol duration is 16µs in the embedded scheme compared to 12.5µs
and 25µs for 802.16 hardware operating at 20MHz and 10MHz, respectively.

Second, we observe that the achievable bandwidth is higher than the achiev-
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able bandwidth of 802.11a DCF (“802.11 (RTS-CTS-ACK)”). This is because
the embedded scheme has less overhead even with the added padding. In fact,
the 802.11a bandwidth shown in the figure is a very optimistic view of 802.11a
bandwidth since it does not take into account collisions, nor regular back-offs.
In practice, the throughput of 802.11a is much lower, especially with multiple
active connections.

Third, the achievable bandwidth of the embedded 802.16 is lower than the
bandwidth that could be achieved by using broadcasts only (“802.11 (broad-
cast)”). This is due to the padding of 802.11a broadcast packets. Again, the
bandwidth shown for the 802.11a broadcast is optimistic since we are not
accounting for back-off time.

5 Simulation Results

In this section we examine the performance of the MAC layers discussed in the
previous sections with ns2 [6] simulations. We have changed the ns2 simulator
to include 802.11a physical layer, 802.16 with its physical layer and 802.16
embedded over 802.11a. For the simulations using 802.16 MCF, we have also
implemented 802.16 scheduling algorithms proposed in [10,11].

In all of our scenarios, the traffic is setup the way it would be in a typical
mesh network with the mesh nodes connecting to the base-station (point-of-
presence). Each node sets up an FTP connection to the base-station and the
base-station sets up an FTP connection to each each mesh node. Each FTP
connection is used to transfer a large file (10Mb). Since the network is static
it does not make sense to use any ad-hoc network routing protocols such as
AODV [19] or DSR [20], rather the routes are chosen with a simple minimum-
hop distance criterion. This is in-line with the current implementations of mesh
networks, which use OSPF [2,4].

In our simulations, we use the 802.16 physical layer operating at 20MHz
since the standard mandates this for the license-exempt 5GHz band, which
is also used by 802.11a. We use 20ms frame size. With this frame duration,
802.16 operating at 20MHz has 1600, 12.5µs, long slots in each frame, while
802.16 embedded in 802.11a has has 1250, 16µs slots. The first, 35 slots of the
frame are allocated for the control sub-frame (5 control sub-frame transmission
opportunities). The rest of the slots are allocated for the data sub-frame, in
terms of 7 slot long transmission opportunities for 802.16 operating at 20MHz
and 5 slot long transmission opportunities for 802.16 embedded over 802.11a
hardware. For simplicity, we use centralized scheduling only, so the entire data
sub-frame is allocated with the centralized scheduling protocol.
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5.1 Example 1: Simple Topology

Fig. 10 shows a small mesh network we use to examine the performance of
our embedding scheme. Node v1 acts as the base-station. All links use the
modulation of QPSK-3/4. We use the Bellman-Ford TDMA scheduler [11]
to find the TDMA schedule for links in the network (Fig. 7). Full descrip-
tion of the the scheduler when applied to 802.16 is available in our survey
of 802.16 scheduling algorithms [10]. The scheduler finds the TDMA schedule
that maximizes the end-to-end bandwidth, while also minimizing end-to-end
TDMA delay of packets traversing the network. TDMA scheduling delay oc-
curs when packets arriving on an inbound link must wait for the subsequent
frame to be transmitted on the outbound link [10]. In the case of the network
in Fig. 10, the scheduler is able to allocate uplink and downlink bandwidths
384kbytes/second for each node in the case of 802.16 embedded over 802.11a
hardware and 484kbytes/second for 802.16 operating at 20MHz. In both cases,
the round trip TDMA scheduling delay is 20ms for each node.

We compare the total accumulated traffic of 802.16 operating at 20MHz, our
embedding scheme and 802.11a for the first 100 seconds of the simulation in
Fig. 8. We also compare total throughput of each node (uplink and downlink)
during the first 100 seconds of the simulation in Fig. 9. We use the same
naming scheme as in Fig. 5. We see that 802.16 performs better than our
embedding scheme. This is because our embedding technology is limited by
the overhead of 802.11a. All simulations use maximum transmission unit size
of 512 bytes, which results in 802.16 operating at 20Mhz to be about 70%
more efficient than 802.16 embedded over 802.11a (Fig. 5). We see from Fig. 9
that throughput of 802.16 802.16 operating at 20Mhz is 68% higher than the
throughput of 802.16 embedded over 802.11a consistent with our observations
in Fig. 5. However, our embedding scheme still performs significantly better
than 802.11a, because it does not waste bandwidth on unnecessary collisions.
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Figure 7. 802.16 Schedule used for the topology in Fig. 10

In addition to increasing total throughput by 33%, our scheme also ensures
that the wireless channel is used more fairly than in 802.11a. For example,
with our embedding scheme throughput of node 4 improves more than 3 times
(Fig. 9).

5.2 Example 2: Chains

In this section, we examine performance of scheduling algorithms on chain
topologies. In each scenario, we create a chain of mesh nodes where one of
the end nodes is the base-station and all other nodes in the topology are
regular mesh nodes. We use the Bellman-Ford scheduler to find all transmission
schedules for 802.16 MCF simulations. We plot total throughput, achieved by
all nodes, in Fig. 10. We see that our embedding scheme performs at least
almost 3 times better than 802.11a for the 3 node chain and almost 5 times
better than 802.11a for the 6 node chain. The performance gain is significantly
higher than what is shown in Fig. 5 because 802.16 MCF eliminates collisions
that would normally exist if 802.11a hardware was used on its own.
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Figure 10. Throughput for Chain Topology

6 Implementation under Linux OS

In this section, we show how we implement the embedded 802.16 transmis-
sion described in Section 4. The 802.16 module used in the ns2 simulations
was made in a way that makes it easily portable to Linux. We are currently
integrating the module to the Linux kernel [21].

Fig. 11 shows the architecture of the Linux kernel implementation. We are
adding a Linux kernel module, that behaves like a network card (“802.16
Driver”). The module binds itself to a real wireless card, and acts as a proxy
on behalf of that card. The module is also linked in with the 802.16 module
(“802.16 implementation”), which we have already tested with ns2. Packets
coming from the network layer are first accepted by the 802.16 driver, and
then passed to the 802.16 implementation. The 802.16 implementation queues
up the packets until they should be transmitted according to the schedule
for connection that the packets are traversing. When packets come from the
wireless card, Linux kernel transfers them to the 802.16 module where they
are filtered out, stripped of 802.16 header data, and passed on to the network
layer. The kernel module also interacts with the OSPF routing program on
the node. Since the 802.16 protocol is connection oriented, the OSPF should
be notified when a new node joins the network, and the connection to that
node is created. The kernel module sends a message to OSPF to indicate the
presence of a new link to a neighbour.
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Figure 11. Linux Implementation

In addition to the kernel module, we are develop a CLI interface program
that resides in user space and that forwards management Service Access Point
primitives to the 802.16 implementation. The CLI interface supports the com-
mands necessary to manage the 802.16 module. This interface is very similar
to the scripting commands used in ns2.

The Linux implementation has presented us with several challenges not
present when we integrated our 802.16 module into ns2. First, the Linux ker-
nel does not provide memory allocation functions available in user space. This
meant that the whole 802.16 module had to be ported into C from C++,
with its own memory management, and re-tested again in ns2. Second, the
Linux kernel default timer support is in the order of milliseconds and we need
microsecond support for our 802.16 module. This means that we have to use
Linux distributions with real-time support and microsecond clock precission,
and divert from the mainstream Linux kernel distribution. Third, we have
the requirement that the wireless card should support changing of CWmin and
CWmax. We have found that the linux driver for the Intel PRO/Wireless 2200BG
card has a QoS interface, which allows setting of CWmin and CWmax [17].

7 Conclusion

We have presented a method that allows 802.16 MCF to be used for TDMA
data transmissions in 802.11a mesh networks. The method works by embed-
ding 802.16 packets into 802.11a broadcast packets with padding so that all
transmissions can be aligned on 802.16 frame boundaries. Our method signif-
icantly decreases the overhead inherent in RTS-CTS-ACK exchanges, which
are a part of the 802.11 DCF. At the same time, our method removes collisions
from the channel because the nodes are communicating in 802.16 TDMA fash-
ion. We have used ns2 simulations to show that if our method is used in 802.11a
based mesh networks, the resulting hybrid MAC can achieve throughput in
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multiples of what is possible with 802.11a hardware alone.
Our method requires only software changes on the nodes using 802.11a

for mesh communications. This means that the mesh networks installed with
802.11a hardware today can be upgraded with a software patch to take ad-
vantage of 802.16 MCF and do not have to wait for hardware upgrades to
802.11s.
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