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Abstract—The problem of multiple target tracking using a pas-
sive direction-finding system is addressed when the number of tar-
gets is not known a priori. A new method is proposed that is suitable
for systems operating in low signal-to-noise ratio and high clutter.
Such conditions cause unpredictable variations of stochastic char-
acteristics of noise and signals (especially for wideband frequency
ones) and create ambiguity in the output of direction-finding al-
gorithms. In this paper, we use the predictive description length
(PDL) technique, which is an information theoretic approach, and
by suitable modeling, we minimize the predictive codelength for
statistical data description of position measurements. The PDL-dy-
namic programming (DP) method is also presented, which employs
the DP algorithm to reduce the computational load of the PDL
technique. The concept of tracking time-varying number of targets
makes PDL-DP a suitable technique for target tracking in practical
systems.

Index Terms—Enumeration, localization, multiple target
tracking, predictive description length (PDL).

I. INTRODUCTION

DIRECTION finding and target tracking have been the
focus of active research for the last four decades. Tracking

involves estimating trajectories and predicting the location of
sources. Most target tracking algorithms use an estimator—as
a preprocessor—to acquire raw estimates of target movement
attributes such as location, velocity, and acceleration. The
estimator output at each time instant is a set of entities treated
as the candidates for the true attributes of the targets. A tracker
is then employed to draw a temporal relationship among the
candidates and to select appropriate trajectories.

In this paper, we focus on the problem of enumeration and
tracking of multiple moving sources using an information the-
oretic approach. The information theoretic criteria, such as the
Akaike information criterion (AIC), the minimum description
length (MDL), and the predictive description length (PDL) [1]
have been applied to signal enumeration and direction-of-arrival
(DOA) estimation in array signal processing, [2]–[6].

Here, we derive a target tracking algorithm using the PDL
principle. We consider an environment obscured by a high den-
sity of clutter and noise. In such an environment, the SNR might
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be well below the ambiguity threshold, resulting in a high prob-
ability of error in estimating the number of signals and their mo-
tion attributes. The description length is defined as the length of
an encoded stream of data based on a prescribed model with
some unknown parameters. Using the description length as a
means of modeling resides on the algorithmic definition of com-
plexity [1]. Due to this principle, the best model for the descrip-
tion of observed data is the one with the smallest codelength.
The PDL information theoretic method is consistent and—due
to its recursive structure—suits well to online applications and
time varying environments.

The proposed PDL algorithm comprises two distinct parts:
one part describes the estimate of the source DOAs and the
other part describes the spurious observations induced by clutter
and noise. We use Kalman filtering to model the kinematics of
sources and formulate the multiple target tracking as a multi-
dimensional minimization problem. In the proposed approach,
the PDL cost is determined for a number of tentative models and
then the true model is estimated by minimizing the description
length over all tentative models. We also formulate the PDL al-
gorithm using the dynamic programming approach to lower the
computational cost. We call this method predictive description
length with dynamic programming (PDL-DP) and show that it
can also resolve a time-varying number of targets.

A. Related Literature

Several algorithms, such as joint probabilistic data asso-
ciation (JPDA), multiple hypotheses tracking (MHT), and
joint maximum likelihood (ML) have been proposed for target
tracking, (see [7]–[9] for excellent reviews). Several other
methods exist for joint DOA estimation, data association, and
tracking [10], [11]. To solve the multitarget data association,
the Viterbi algorithm, dynamic programming (DP), and hidden
Markov models have been proposed [12]–[14].

Recent technological developments in computational capa-
bilities encourage the use of approaches like MHT and DP, to
obtain near optimal data association in ill-posed multitarget
tracking applications encountered with decision ambiguities. In
MHT, all tentative observation-to-track association hypotheses
are propagated in time, and the decision is delayed with the
hope that future data can resolve the uncertainty. This results
in exponential growth in the number of hypotheses or tentative
track sets and, hence, in computational load versus time, [7].
The PDL-DP approach, proposed in this paper, also considers
nearly all data association possibilities, but in a dynamic pro-
gramming framework which is more practical.

The MDL principle is used in target tracking applications
in [15]–[17]. A pioneer work was [15], where two-term MDL
criterion is used for track file registration (or data fusion) in a
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system of two platforms (sensors). It is assumed that the tracks
reported by each platform consist of a set of sequences of in-
dependent measurements (state vectors) with the Gaussian es-
timation error and known associated error covariance matrices.
Then, using these data sets, the MDL criterion is employed to
find the number of targets. In [16], the MDL criterion with a
modified penalty term (in place of the classical second term
of MDL) has been used for multitarget enumeration. The tech-
nique employs an arbitrary constant factor in the penalty term
to prevent over-parameterization. However, the constant factor
has been determined in an ad hoc manner to obtain an unbiased
estimate of the number of targets. In [17], a three-term MDL
criterion [18] is used for detection and initiation of tracks using
a batch of data. The MDL cost is used as the test statistics to
detect multiple targets one-by-one in a multiple composite hy-
pothesis testing framework.

The PDL principle relates to the Bayesian inference. Both
techniques are based on probabilistic model selection. In other
words, the PDL principle shares the view with the Bayesian
inference that uncertainty can be modelled with some un-
known probability distribution. However, unlike the Bayesian
approach, the PDL does not require a priori knowledge of the
parameter distribution. Indeed, the PDL does not necessitate
that a “true” model should even exist [6]. Instead, the PDL
simply encodes the data using a probabilistic predictor. If the
predictor uses a probability model that closely reflects the
intrinsic properties of the observed data, the compression gain
is maximal. The PDL principle uses the length of such encoded
data to select the “best-fit” model [1].

II. PROBLEM FORMULATION

Assume an array of sensors receiving the wavefronts of
point sources, where is the time index. We have as-

sumed that the number of sources can vary in time. The obser-
vation interval is decomposed into consecutive snapshots, with
each snapshot containing a segment of duration of the ob-
served data. At the end of each snapshot, an array signal pro-
cessing algorithm—so-called preprocessor—is applied to as-
certain candidates for the DOA of each source. It is assumed
that the preprocessor operates under low signal-to-noise ratios
(SNR), short window size, and high clutter. Due to these as-
sumptions, the output of the array processor contains rough es-
timates of the angular location of signals along with some spu-
rious angles.

Assume that the state of each source is evolved with the fol-
lowing linear recursion:

(1)

(2)

with , the state of the th source, defined as
, where is the angular location,

is the velocity, is the acceleration, the superscript
denotes transposition, and is the state transition matrix

given by

(3)

is the state space (process) noise, is a zero-mean
Gaussian white stochastic process with unknown variance ,
and . The correlation matrix of the noise
vector is given by

(4)

for and , where is the number of
sources at the th snapshot, is the Kronecker delta function,

, and is the variance of process noise. The
kinematic of sources is formulated as the piecewise constant
Wiener process acceleration model.

The output of the DOA estimator for each source is repre-
sented by

(5)

where is a vector associating the state of the
source to its DOA, and —the observation noise—is a
zero-mean Gaussian stochastic process with the cross correla-
tion

(6)

where is an unknown scalar representing the variance of
the DOA estimation error.

The set of measurements at the output of preprocessor, up to
time , is represented by

(7)

where is the vector of DOA estimates at the th snapshot.
Note that is a collection of two types of estimates: the esti-
mates associated to the source DOAs, denoted by , and the
spurious estimates resulted from noise and clutter, .

The source DOAs estimate can be written as

(8)

where , a unknown association matrix, is defined
as

if is associated with source
otherwise

(9)

for and , where is the number of
DOAs detected by the preprocessor at the th snapshot.

A track for a source is a smoothed version of a collection
of DOA estimates associated to the th target, such that the th
element in the set is selected from . We represent the track
for source up to time by

(10)

where is the th row of , and is an observation
associated to the th target. We indicate the number of possible
associations at time step by . We assume that there is only
one entity with value “1” in each row of , and the rest of
the entities are zero. Similarly, there is at most one entity with
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value “1” in each column, with the rest of the entities equal to
zero.

Assuming sources at the th snap-
shot, the total number of possible tracks is

(11)

where , and

for

for
(12)

A tracker should be able to allocate an appropriate trajectory
to each detected source among all tentative tracks. As seen, the
number of tracks grows exponentially in time. We will show in
Section IV that dynamic programming can be used to implement
the multitarget trajectory estimator.

III. PREDICTIVE DESCRIPTION LENGTH

We use the PDL [1] as an information theoretic criterion for
target tracking. The PDL for a stream of data is defined as the
smallest number of bits required to encode the data using a pre-
selected generating model. The presumed model can be param-
eterized with some unknown parameters. The true model is then
estimated by minimizing the PDL cost over all tentative models.

For a stream of data, indicated by , the PDL
cost is defined as

(13)

where is the parameterized probability density func-
tion (the prospective generating model) and is the causal
maximum likelihood (ML) estimate of the unknown parameter
vector based on data history (observations up to time ).
It has been shown in [1] that PDL generalizes the Shannon in-
formation to cases where the inherent data generating model is
unknown. In the present section, we formulate the PDL criterion
for our target tracking problem.

Let and be, respectively, the set of all estimates for
the source DOAs and the spurious estimates over the interval of
length , that is

(14)

(15)

Here, we assume that , the number of sources, is constant over
the observation interval, and all sources have been detected by
the preprocessor. In Section V, we will present the PDL algo-
rithm for time-varying number of sources.

Since and are generated by two independent
phenomena, we can assume that and are inde-
pendent. Therefore, the total PDL is the summation of the
description length of each of the vectors when encoded sep-
arately. We assume that, at most targets can exist where

. The PDL cost is calculated for all
and the smallest is selected as the description

length; the corresponding will indicate the estimated number
of targets.

Assuming a model with targets, the PDL terms for
and are denoted, respectively, by and

, where indicates the parameter set for a
model of order . We will shortly discuss what the elements
of can be. For the moment, we assume that all unknown
parameters of model are reflected in the vector . The
independence of and results in

(16)

Each term in this summation is computed separately and the
results are added to get the total description length.

First, we calculate the description length for the spurious es-
timates. Using the definition of the PDL algorithm in (13), we
get

(17)

Generally, the spurious estimates are independent of
and . We model the spurious estimates by a random vari-
able with uniform probability density function , where
is the angular extent of the region at which the sources can exist.
Therefore, the PDL term for the spurious angles will be

(18)

where .
The PDL term for the DOA estimates is

(19)

Let be partitioned into tracks . If we assume
that the track of each source is independent of tracks of other
sources, then

(20)

where , the predictive description length of the
th track, is given by

(21)

We use the Kalman filter for state estimation in noisy mea-
surements. In particular

(22)

(23)

(24)
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and

(25)

where, for time step and target , is the predicted
state vector, is the updated state estimate, is the
Kalman filter gain, and is the filter innovation (see [7] and
[9] for further details).

The innovation covariance, , is

(26)

where is the expectation operator, and is the co-
variance matrix of the state estimate updated by

(27)

(28)

(29)

Using a Gaussian model for the estimation error, we have

(30)

where represents the Gaussian distribution with mean
and variance . With this modeling, the predictive descrip-

tion length of source DOAs is

(31)

where and are given in (25) and (26), respectively.
The estimated number of targets is found by minimizing the

PDL cost over all models, that is

(32)

The PDL criterion in (32) depends on the parameter set ,
defined as

(33)

where denotes the set of initial state vectors.
For any fixed , a parameter estimator should be used to get
all other elements of . In this paper, the 1-point, 2-point
or 3-point initialization methods [9] can be used to estimate

. We use a short window size of snapshots to
estimate and . We have observed that the
detector is not very sensitive to the estimated values of these pa-
rameters. Therefore, for simplicity, we find the PDL cost for all

and selected on a grid of discrete values

in a window of size and choose the ones corresponding to
the minimum PDL. These estimated values are then used in the
subsequent snapshots. Another option is to use an interacting
multiple model (IMM) filter instead of a single fixed Kalman
filter (see [7]).

IV. DYNAMIC PROGRAMMING

In this section, we present a DP formulation of the PDL al-
gorithm. We first assume that the number of targets is constant
over a window of snapshots. In Section V, we will extend the
results to time varying number of sources.

We apply the dynamic programming method based on the ex-
tended trellis approach [19] for multitarget association. Assume
that the preprocessor has produced the set of prospective DOAs
over a window of snapshots. At each time , with ,
assuming targets over the window of snapshots, we make

new ordered extended states, and
then apply the DP algorithm to the extended trellis. We denote
the th possible extended state at time step by , which
is defined as

(34)

where is an association matrix and

. Note that is equivalent to intro-
duced in the previous sections for a model with targets. The
PDL-DP algorithm for all can be written as

(35)

where denotes the PDL cost for the state variable

, and

(36)

is the cost function (description length) of transition from state
to state . The PDL-DP algorithm (35) is

performed for all and the PDL cost at time instant
for the th model is obtained from

(37)

At time instant , the best model is selected from

(38)

Assuming , and for each
, the Kalman filter equations are

(39)

(40)

(41)
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where is found from (28), and is the updated
state estimate of target (among ordered ones) at time instant

and the association index .
For each state , and for each model of order
, the following parameters should be stored in memory:

, and
where

(42)

represents the index of the previous node that corresponds to
the smallest cost. Note that and can be easily cal-
culated from using (26)–(28).

Based on the data up to and including time , we can find the
DOAs that correspond to the best model. To achieve this goal,
we define as the index of the state in trellis that gives
the smallest PDL at time . Therefore, the index of the state for
the minimum cost trellis at time is given by

(43)

where is estimated from (38). The values of for
are found by back-tracing

(44)

We will drop the subscript in in next section, for con-
venience. Note also that some simple track maintenance rules
can be used to avoid divergence from acceptable kinematic data
model (and avoid fitting an unacceptable one); for example,
simply limiting the maximum velocity and acceleration varia-
tion at each time step can create a smooth track for each target.

V. TRACKING TIME-VARYING NUMBER OF TARGETS

In this section, we use an extended trellis method to detect
time varying number of sources. In the previous section, we
formed trellises and used DP to compute the PDL cost on
each trellis. Since we assumed that the number of targets was
constant, there was no link connecting two states in two dif-
ferent trellises. In this section, we allow the number of targets
to change in the observation window. Using the same approach
as the previous section, we create base trellises formed by
collecting the DOAs obtained by the preprocessor. Each base
trellis is identified by its corresponding parameter that rep-
resents the number of targets (the dimensionality of each state
vector in that trellis). By extending edges to connect states in
two different base trellises, we indeed permit a variable number
of the signals over the observation window.

Using the same state definition as (34), the PDL cost for state
at time instant , is given by

(45)

where is the PDL cost for transition

between states and . We will show shortly

how can be calculated. The total PDL
cost can be obtained as

(46)

We define the following parameters:

(47)

(48)

where represents the best previous model order in
the trellis, and denotes the index of the best previous
extended state in model . For each state ,

we need to store the following parameters:

, and . Assume that the PDL
cost is calculated over the window . The best model
at time instant is selected from

(49)

(50)

The number of targets at time instants is ob-
tained by back tracing

(51)

(52)

In this section, we assume that the dynamic characteristics
of tracks (i.e., and ) are identical. Therefore, the Kalman
filter parameters only depend on time duration or time index.
This assumption is only for the simplification of the notations.
The proposed approach is, however, general and can be applied
to tracks with unequal parameters.

To compute , first note that if ,
the two states belong to the same base trellis and the PDL cost
can be found from (36). We differentiate two other cases.

• Case 1: (deleting tracks): In this case, we will
need to terminate tracks. In other words, we
have to choose elements of as the candi-
date DOAs, and apply the Kalman filtering on those ele-
ments. Let us represent the transition cost for this case by

. Since, we have assumed
that the states comprise all ordered estimated DOAs, it suf-
fices to assume that

(53)
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where is the vector of the first elements
of . Note that since all permutations of the
DOA candidates are reflected in the extended states in the
trellis, choosing the first elements of suf-
fices to guarantee that all mappings between
and are considered.

• Case 2: (introducing new tracks): We use the spu-
rious DOAs in step to initiate new tracks.
Here, we choose a very simple method to initialize the
tracks; more sophisticated track initialization schemes may
also be suggested.
Let us represent , where

is the first elements of , and the rest of the

elements are indicated by . The transition cost
for new tracks is estimated as follows:

(54)

where represents the vector of spu-

rious observations corresponding to , and
is the PDL cost of the

new tracks and is given by

(55)

where is found from

(56)

where is the th element of the state vector
, and is the th spurious DOA at

time step corresponding to the association index
. Note that in (55), we have assumed that the newly

generated tracks only depend on . Therefore,
we use that corresponds to a track of size 1.

VI. COMPUTATIONAL COST

In PDL-DP, the computational cost grows linearly with
time. However, since the algorithm is based on dynamic
programming, parallel processors can be efficiently used to
implement the proposed technique. Note that the complexity of
the PDL-DP technique is in the same order of the Viterbi al-
gorithm, which has been successfully implemented in chipsets
presently being used in various wireless terminals and cell
phones.

Here, we find an approximate value for the computational
cost of the PDL-DP algorithm. Computing the association
matrix in (45) for each value of needs about opera-
tions,1 which results in a total of operations.

1By one operation, we mean one flop (floating point operation).

Then, for each , we have to construct the association
matrix (with operations) and compute the transition func-
tion (with about operations). This results in a total of

operations. Then, for each

, we have to find the minimum over values. Calculating
the predicted state parameters using the best path needs about

operations. We must also find the minimum over the
resulting PDL values. We assume that finding the minimum
over values uses about operations.2 So, this part requires
about operations.
Therefore, the total computational cost from time step 1 up to

will be approximately

(57)

VII. AFTERTHOUGHTS

In this section, we present some afterthoughts that should be
considered when the PDL-DP algorithm is employed in prac-
tice.

First, in the proposed technique, for each in (45),
only one best history with the lowest PDL is saved. This is a
limitation of the dynamic programming method. One method to
deal with this problem is to sort the PDL cost in (45), and store
the lowest description lengths, instead of just the minimum
one. So, at any time , when making a decision, we will have

best tracks that may be used by the postprocessing (and data
fusion) subsystem to make a better final decision.

Second, such as any other target tracking system, the perfor-
mance of the PDL-DP method depends on the number of tar-
gets, the number of spurious observations, the closeness of the
targets, and the estimates of the tracking parameters. For in-
stance, when the number of targets increases, data association
might be more ambiguous. This is because the preprocessor,
which provides the observation data to the tracker, has a lower
performance for larger number of targets. This can result in
model fitting error, especially in the case of high clutter and low
SNR. Therefore, like any target tracking algorithm, the PDL-DP
tracker is expected to have a larger detection threshold as the
number of targets increases. Using multiple sensors/trackers and
employing data fusion may help by providing a higher dimen-
sional observation space.

Third, because of limited resolution of the preprocessor for
crossing or closely-spaced tracks, the observation will be biased

2We assume that each comparison uses one flop.
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Fig. 1. Power spectral density of the four simulated wideband signals.

and the innovation sequence will be correlated among those tar-
gets. Furthermore, in the crossing point, the number of detected
DOAs is smaller than the number of targets. To overcome this
limitation, one can modify the tracking system to recognize the
approaching tracks and when the targets are in a certain distance
to use the history of the tracks for target association. In this case,
a known data model for crossing and closely-spaced sources can
be included in the PDL framework. Due to space limitation, this
approach is not discussed in the present paper.

VIII. SIMULATION RESULTS

We have simulated a passive system with a uniform linear
array of 18 omni-directional sensors to localize underwater ve-
hicles. Practical measurements of acoustic signals emitted from
large underwater vehicles show that they consist of a continuous
spectrum and of a number of narrowband components. Here,
a Gaussian auto-regressive (AR) model is used for continuous
part of the spectrum, and a number of narrowband signals with
random relative power, location and bandwidth are added. Fig. 1
shows the power spectrum of 4 wideband signals that are used
in the simulations. We only process the frequency band of [100,
200] Hz; the sampling frequency is 2560 Hz. The distance be-
tween the sensors of the array is 3.75 m—half the wavelength
of the maximum frequency of the processing bandwidth. A spa-
tially and temporally white noise model is used. In each time
step, a block of 4 s of data received by sensors of the array is
processed. We assume s, and .

In the first scenario, the DOA estimates of the wideband
sources is obtained by [20] using the parameter estimation
algorithm of [21]. We have assumed SNR dB where the
SNR is defined as the ratio of signal power to noise power at the
processing bandwidth. Since the level of clutter is high and the
SNR is low, the MDL and AIC enumeration methods [2] fail
and cannot detect the proper number of signals. Therefore, we
use [21] which only requires a detection threshold. At the final
estimation stage of [21], no threshold is set and all peak points
in the array spatial spectrum are taken as raw observations fed
to the tracking system.

Fig. 2 shows the raw DOA estimates. In this figure, the raw
estimated DOAs are shown by “ .” We look for unknown but
constant number of targets in a window of 12 time steps. Fig. 3

Fig. 2. Estimated DOAs using the method of [21].

Fig. 3. Predictive description length versus the selected model.

illustrates the PDL cost as a function of assumed number of tar-
gets. Note that the minimum is achieved for four targets. There-
fore, PDL can enumerate the true number of signals.

Fig. 4 shows the estimated tracks for four sources in the
PDL-DP algorithm. The dashed lines in the figure indicate
true tracks (slowly moving) and the solid lines indicate the
estimated ones. Note that the estimated DOAs do not neces-
sarily coincide with the values suggested by the preprocessor.
It is seen that the number of targets and their trajectories are
estimated reasonably well.

As the second scenario, we study a case with a time-varying
number of sources. Here, we have used the incoherent signal
processing with spatial smoothing for wideband DOA estima-
tion [22]. The number of subarrays is 3. At the final estima-
tion stage of [21] no threshold is set and all peak points in the
array spatial spectrum are taken as raw observations fed to the
tracking system. The processing frequency bandwidth is divided
into 30 segments with uniform spacing. Figs. 5 and 6 show the
PDL-DP tracking results using the extended trellis method. Be-
cause of the low resolution of the DOA estimator, when the two
center tracks intersect, one of them dominates and the DOA esti-
mator fails to recognize the two tracks. Such phenomenon seems
to be a common problem in passive wideband localization tech-
niques. However, the proposed approach for tracking a varying
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Fig. 4. Associated tracks for the four sources.

Fig. 5. Resolved tracks for four moving sources.

Fig. 6. Estimated number of targets as a function of time using the extended
trellis method.

number of targets allows us to detect the two center tracks when
the tracks separate. In such cases, a postprocessing stage in the
tracking system might be helpful. The post processor should
take into account the history of the tracks to resolve crossing
targets.

In the third example, we use a uniform linear array with eight
sensors, two moving narrowband signal sources, and iterative

TABLE I
COMPARISON OF THE PERFORMANCE OF THE PDL-DP, PDL [5], MDL, AND

AIC [2] ENUMERATORS FOR FOUR DIFFERENT SNR VALUES. THERE

ARE TWO MOVING SOURCES (i.e., A NONSTATIONARY DATA MODEL)

sample covariance matrix estimation with the smoothing factor
[5]. The number of snapshots in each block of

s of array data is 20. We study the performance for four dif-
ferent SNR values dB. We assume that

respectively for each SNR value. The
Monte-Carlo simulation includes 100 tracking runs, where each
data window (fed to the tracker) includes nine time samples,
(i.e., a total of 9 s each window). Therefore, for each SNR, the
DOAs are estimated 900 times in total. In each data window,
the two sources are initially located at 16 and 8 . Then, they
move with constant velocity of 0.5 per second, and at the end of
each observation window, they reach 12 and 12 . For DOA
estimation, the range of [ 45 , 45 ] is uniformly searched (so

). The performance of the PDL-DP tracker is com-
pared to the performance of the PDL [5], MDL, and AIC criteria
(see [2]). For the PDL method of [5], the alternating projection
method is used for maximum likelihood DOA estimation [23].
The input to the PDL-DP tracker consists of DOAs reported by
[21]. The results of enumeration for are reported in
Table I. Note that PDL-DP outperforms earlier methods.

In the last example, the PDL-DP is compared to the 2-D
assignment tracking algorithm (2-DA) [8] (the auction algo-
rithm). The variance of the observation noise changes in the
range , and the tracking results are analyzed
using Monte-Carlo simulations with 200 runs. The number of
clutter points is modeled as a Poisson process with average rate
of 2 (indeed it is approximately Poisson because it is forced
to have at least one clutter at each snapshot), and the clutter
points are approximately distributed with a uniform pdf in the
field-of-view, . The clutter points are separated from
other observations (and also from each other) by at least 4 .
There are two targets separated by 12 , moving with constant
velocity of 0.5 per second. and . The number
of time samples is 7, and the targets are initially located at
and 7 . One-point initialization is used. The percentage of cor-
rect detection is shown in Fig. 7 for each estimator. Note that
the PDL-DP has a higher detection percentage than 2-DA, es-
pecially for larger values of the observation noise variance.

IX. CONCLUSION

In this paper, the predictive description length was used to
estimate the number of sources in a target tracking system. The
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Fig. 7. Probability of correct enumeration versus observation noise variance
for two tracking methods: 2-DA [8] and PDL-DP.

PDL algorithm is applied to the set of raw DOA estimates to de-
tect the true number of DOAs and select the appropriate DOAs.
The prospective DOAs are decomposed into two sets repre-
senting the actual DOAs and the spurious DOAs induced from
clutter and noise. The PDL cost is computed for each set sepa-
rately and the results are added to calculate the total description
length. The PDL cost is computed for all tentative models and
the smallest is chosen as the best model. We have devised a dy-
namic programming formulation of the algorithm.
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