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Abstract— Motivated by the results in [1] on the self-similarity
of the downlink interference in heterogenous service DS-CDMA
networks, in this paper, we propose a model-based linear
adaptive-predictive method to estimate the level of interference
for optimizing the system throughput and minimizing the delay
for non-real-time data transmission. We use a fractional Gaussian
noise (fGn) model in an appropriate time-scale to represent
the self-similarity in the downlink interference. The estimated
interference is utilized to allocate the available power to non-real-
time services. In doing so, we use a utility-based optimization
scheme and dynamic programming for time-domain optimal
scheduling of non-real-time traffic. Simulation results validate
the fGn model and show a substantial improvement in the delay
fairness and a significant increase in the average cell throughput
using our proposed scheme; and confirm that the interference
model is valid for a broad range of arrival rates of non-real time
traffic.

Index Terms— Downlink interference, DS-CDMA networks,
dynamic programming, fractional Gaussian noise, packet
scheduling, self-similar process.

I. INTRODUCTION

APROMISING air interface technology for wireless com-
munications is the direct sequence code division multiple

access (DS-CDMA), which has been shown to be interference-
limited [2]. Hence, exploiting the fluctuations of the total
interference for improving system performance is a major
challenge for the next generation heterogenous wireless net-
works. The time variation of the interference has been studied
in [3], where it has been observed that the total interference
in a data-centric DS-CDMA system is a self-similar process.
It has been shown in [3] and [4] that the source of self-
similarity of the total interference is user traffic characteristics.
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The predictive nature of the self-similar interference was used
in [3] and [4] to adjust the transmission rate with the variation
of the total downlink interference.

In [1], we have extended the results of [3], [4] and shown
that, under certain conditions, the total downlink interference
for a heterogenous cellular network is a self-similar process,
and thus, has long-range dependence (LRD). In our heteroge-
nous model, the network serves a mixed traffic of real-time and
non-realtime services with non-Poisson traffic characteristics.
User traffic characteristics are instrumental in creating self-
similarity in the downlink interference. We have also shown
in [1] that the conditions for the self-similarity in the downlink
interference are more general than those proposed in [3]
and [4]. The proposed model in [1] can be considered a
cross-layer model since both physical characteristics of the
wireless channel and user traffic parameters are utilized in
the development of that model. The long-range dependence in
the downlink interference is valid in time-scales of the order
of that used in packet scheduling, rate-control, and admission
control. Having established this fact, now the question is “how
can we exploit the self similarity of the downlink interference
to develop appropriate resource control mechanisms beyond
those in [1], [3], and [4]?” The present paper is trying to
answer this question.

The long-range dependence manifests itself in extended
periods of time over which the downlink interference exceeds
the performance threshold, and may lead to long outage
periods. Therefore, the presence of self-similarity in downlink
interference can be regarded as an opportunity for developing
innovative new approaches for resource control mechanisms in
heterogeneous DS-CDMA cellular networks. A very important
idea that emerges from the existence of LRD in the downlink
interference is the possibility of utilizing the predictive nature
of the total downlink interference to develop novel adaptive-
predictive resource control mechanisms in the appropriate
time-scales. A simple application can be found in [3]. We
have also proposed a method in [5] to exploit self-similarity
of interference to increase throughput, however in that work
the experienced delay of non-real time users is not considered.

The present paper utilizes the predictive nature of the self-
similar interference to develop a novel cross-layer adaptive-
predictive radio resource controller. In this paper, we model
the self-similarity of the total downlink interference with
the fractional Gaussian noise (fGn) [6] and then design an
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optimal linear adaptive predictor. Modelling interference with
a Gaussian self-similar process is convenient since an infinite
number of distributions can only be represented by three
parameters over the entire scaling region. The three parameters
are the mean, the variance, and the self-similarity index. The
application of optimal linear predictor on the fGn model is
simple and can easily be realized in either mobile terminal,
base-station, or radio network controller.

In the proposed method, the mobile terminal measures the
received downlink interference in each control window1. A
linear predictor is then employed to estimate the interference
level in the next control window based on this measured
value and the stored interference levels in the past. The model
parameters are also adaptively adjusted based on the stored
interference values. The estimated interference is then used in
the base-station or in the radio network controller to allocate
power to users during the next control window. First, power
is allocated to real-time traffic and then the remaining power
is assigned to users with best-effort service.

This paper uses a multi-time-scale time domain scheduler
in which each control window encompasses a number of
transmission frames. In time domain scheduling, during each
time interval, the total power is allocated to a single user with
the rest of the users kept inactive. The temporal extent of the
interval depends on the user data rate, the channel conditions,
and the available power. An opportunistic scheduler allocates
the total power only to the users with best channel conditions.
Although this scheme maximizes the total throughput, it
may introduce extensive delays for users far from the base
station or with bad channel conditions. Proportional fairness
schedulers have been proposed to reduce excessive delays of
the opportunistic scheduler and to address fairness (see e.g.
[7] and the references therein). In this paper, we propose a
utility-based [8] scheme in which the packets are scheduled
so as to maximize the total system utility. The proposed utility
is a function of the corresponding channel condition and the
relative experienced delay. We then use dynamic programming
to find the optimal scheduling.

We use our adaptive-predictive algorithm to estimate the
interference fluctuations and then exploit the multi-user di-
versity [9] through the utility-based optimal scheduling. The
contributions of this paper are as follows: First, a model
based adaptive predictor for the downlink interference is
proposed based on our previous work in [1]. Second, resource
allocation (i.e. traffic scheduling) for a given value of the base-
station available transmit power is modeled in a multi-time-
scale, utility-based scheme. Third, a dynamic programming
technique is proposed to solve the corresponding optimization
problem.

We simulate a heterogenous DS-CDMA network based on
the Universal Mobile Telecommunication System (UMTS)
standard [10] to validate the model and observe self-similarity
in total downlink interference when the call duration—of at
least one service—has a heavy tail distribution. The self-
similarity of downlink interference persists even after the time-
domain scheduler is applied. Simulation results show that fGn

1The system is time-slotted and each time-slot is referred to as a control
window.

is an appropriate model for the downlink interference and that
our proposed method provides a better throughput/delay than
the other existing schemes.

Organization of this paper is as follows. In Section II, we
present the interference model and review the results on the
self-similarity of the interference. In Section III, we propose a
model-based optimal downlink interference predictor. Then, in
Section IV, we study the performance optimization of the pro-
posed scheduling method. The simulation results are presented
in Section V, followed by our conclusions in Section VI.

II. DOWNLINK INTERFERENCE MODEL

We first present several important definitions.

Definition 1: Slowly Varying Function [11]: A function
f(x) > 0, x ∈ R is called a slowly varying function, if for all
u ∈ R+, f(ux)

f(x) → 1, as x → ∞.

Definition 2: Heavy-tailed Random Variable: A random
variable X is said to be heavy-tailed with infinite variance,
if for 0 < κ < 2, there exist a slowly varying function L(x)
such that as x → ∞,

P (|X | ≥ x) ∼ L(x)x−κ,

where the symbol ‘∼’ means behaves asymptotically as (e.g.
φ(k) ∼ ϕ(k) means: limk→∞

φ(k)
ϕ(k) = 1).

An example of a heavy tailed distribution is Pareto distrib-
ution:

Pr{τ = l} = η0l
−α−1, (1)

where l ∈ N and

η0
Δ=

1
Σ∞

l=1l
−α−1

, 1 < α < 2. (2)

Pareto distribution has been used to model call duration of
data traffic (see e.g. [12]).

Definition 3: Asymptotically Self-similar Process [13]:
A real-valued second-order stationary random process I =
{. . . , I(−1), I(0), I(1), . . .} is called an asymptotically self-
similar process (as-s), with self-similarity index H = 1−β/2,
0 < β < 1, if

lim
m→∞C(m)(k) =

C(m)(0)
2

(
(k+1)2−β−2k2−β+(k−1)2−β

)
,

(3)
where k ∈ Z+ , Cm(k) is the auto-covariance function of Im

that is the average process of I over blocks of length m.

Definition 4: Fractional Gaussian Noise [6]: Fractional
Gaussian noise (fGn) is a self-similar Gaussian process with
the auto-covariance function

γ(k) =
σ2

0

2
(|k + 1|2H − 2|k|2H + |k − 1|2H) , k ∈ Z, (4)

where σ2
0 is the variance and H is the self-similarity index.

If the variance and the self-similarity index, H , of a zero-
mean self-similar process are known—subject to assuming an
idealized Gaussian setting—the process can be modelled by
the fGn [6].

Authorized licensed use limited to: The University of Toronto. Downloaded on December 23, 2009 at 18:14 from IEEE Xplore.  Restrictions apply. 



NAVAIE et al.: OPTIMUM MODEL-BASED NON-REAL-TIME DOWNLINK DATA TRANSMISSION IN HETEROGENEOUS DS-CDMA CELLULAR NETWORKS 2359

We consider a DS-CDMA cellular system. Time is assumed
to be slotted, with each slot being a window of length Tw

seconds. We further assume Tw � Tc, where 1/Tc is the
spreading bandwidth of the cellular CDMA network. The
length of the control window Tw is chosen such that the
channel variations are negligible within that time slot.

The total downlink interference2, I(n), is a weighted sum
of the transmitted power of base-stations (BSs), P c(n), for
n ∈ Z, Z = {. . . ,−1, 0, 1, . . .} and c = 1, . . . , NC , where
NC is the number of cells in the network [1],

I(n) =
NC∑
c=1

ξc(n)P c(n)gc(n). (5)

The weight coefficients are the corresponding channel gains,
gc(n), and the cross-correlation between the spreading se-
quences of other users and the user of interest. Each sample
of the total downlink interference, I(n), is valid over a control
window of length Tw seconds. We assume gc(n) and ξc(n)
are two stationary processes independent of P c(n).3 Without
loss of generality, let the user of interest be located in cell 1.
We assume that the power allocated to that user is not included
in P 1(n) in (5).

To study I(n), we assume that a regular power transmission
regime is applied network-wide, in which the transmitted
power by any BS is not substantially higher than the transmit-
ted power by other BSs. This assumption is practically valid if
a load balancing mechanism is applied in the cellular network.

In control window n, each BS serves a set of active users
(calls) in its coverage area, therefore the transmitted power by
the BS c, P c(n), is the sum of the allocated powers to all
calls in the corresponding coverage area,

P c(n) =
J∑

j=1

∑
i∈N

pc
ji(n − υc

ji + 1), (6)

where J is the number of services provided by the network,
N = {1, 2, . . .}, pc

ji(.) is the allocated power of call i of
service j of cell c, and υc

ji ∈ Z is the start time of the ith
call in cell c that receives service j. Calls are enumerated
by i in the order of their arrival, such that in each cell c,
υc

ji ≤ υc
ji+1. For the ith call of service j in cell c with a call

duration of τc
ji ∈ N seconds, pc

ji(.) is the allocated power in
its call duration, and is equal to zero otherwise.

To characterize I(n), we first need to obtain the characteris-
tics of P c(n) and gc(n). We assume that for each given cell c
and service j, the call duration sequence process, {τc

ji, i ∈ N},
the new call arrival rates sequence process, {μc

ji(.), i ∈ N},
and the allocated power sequence process, {pc

ji(.), i ∈ N},
are independent and identically distributed (i.i.d.) random
processes. We denote τc

ji, μc
ji(n) and pc

ji(n) by the generic
random variables τc

j , μc
j(n) and pc

j(n), respectively.
In this model, the traffic characteristics of a user of service

j is specified by three processes, μc
j(n), τc

j and pc
j(n), where

2Interference is measured for a given user, therefore it should have a user
index; however for brevity we have dropped the user index, but will use it
again in the latter parts of this paper.

3Here we assume that a fast power control mechanism is applied to
deal with the undesirable effects of fast fading. Fast fading and shadowing
processes are also assumed to be independent. Therefore, P c(n) and gc(m)
are also independent from one another for all n and m.

pc
j(n) is a function of the service type j, the bit-rate, and the

power allocation strategy in the network.
In [1], we have shown that the downlink interference can be

completely specified by traffic characteristics corresponding
to different services provided by the network and channel
processes, gc(n), for all c. Here, we briefly review the models
we use in this paper for the new call arrival process, the call
duration process, the allocated power process, and the wireless
channel process.

• New Call Arrivals: Assuming that the arrival rate of
new calls for each service type is less than the value
for which the network was designed, we have shown in
[1] that using a regular interface based call admission
control, the Poisson distribution with parameter λc

j is an
appropriate model for call arrival μc

j(n).
• Call Duration: Here, we denote both the packet duration

(for packet-oriented transmission) and the call duration
(for connection-oriented transmission) as “call duration”.
For voice service, an exponentially distributed call du-
ration is assumed [14]. For non-voice traffic, a general
heavy-tail distribution is considered (see e.g. [12]).

• Allocated Power to Each Call: For pc
j(n), we note that

for a given channel, the allocated power to a given user
at control window n is an increasing concave function of
its bit-rate [14].

• Wireless Channel: We assume that the channel gain,
gc(n) is a second-order stationary process for c =
1, . . . , NC . To obtain the channel gain gc(n), we assume
a deterministic distance-dependent path loss and two
fading effects: fast fading and shadowing. Note that fast
fading (e.g. Rayleigh or Rician) affects P c(n) in (5) in
smaller time-scales than the shadowing. Fast fading is
also partly cancelled by the fast power control. Moreover,
the short-range effect of fast fading is averaged out in
longer time-scales such as Tw. We further assume that

Cc
g(k) ∼ Lc

g(k)k−βc
g , k → ∞, (7)

where Cc
g(k) is the auto-covariance function of gc(n) and

k denotes time with a temporal resolution Tw, Lc
g(k) is

a slow varying function, and βc
g > 0 is the channel auto-

covariance decay exponent.

Here, we restate the results in [1] where we show that the
total downlink interference in multi-service wireless CDMA
networks is an asymptotically self-similar process where the
self-similarity emanates from user traffic characteristics.

Suppose that the downlink interference process, I =
{. . . , I(−1), I(0), I(1), . . .}, is a finite-mean, finite-variance,
second-order stationary process. In the following proposition,
we derive the necessary conditions for the self-similarity of
downlink interference.

Proposition 1 [1]: Consider the downlink interference
process, I , and let βc

P , c = 1, . . . , C satisfy

J∑
j=1

λc
jPr{τc

j = k}rc
j(k)(k) ∼ Lc

P (k)k−βc
P−2, k → ∞, (8)

where Lc
P (k) is a slowly varying function and 0 < rc

j(l)(k) <
∞ is the auto-correlation function of pc

j(l). Now, I is an as-s
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process with self-similarity index H = 1−β∗/2 if there exists
at least one c such that 0 < βc

P < 1 or 0 < βc
g < 1, and

β∗ = min
c

min{βc
P , βc

g}. (9)

Proposition 1 gives the sufficient condition as a combination
of the service call arrival rate, λj , the service call duration
distribution, Pr{τj = k} for k → ∞, and the asymptote of
the correlation function of the allocated power, rc

j(k)(k), for
k → ∞.

The self-similarity in the downlink interference manifests
itself in extended periods of time over which I(n) is smaller
than the system performance threshold, meaning that the
system resources are under-utilized. In the engineering sense,
the presence of self-similarity in I can be regarded as “good
news” as we can exploit these periods of low activity to
transmit delay tolerant packet data. To do so, we first need
to predict the interference fluctuation in an appropriate time-
scale.

III. MODEL-BASED OPTIMAL

DOWNLINK INTERFERENCE PREDICTION

Since the self-similar processes have long-range dependence
[6], the samples of data in such processes are correlated over
long periods. Consequently, the accuracy of predictions can be
improved by appropriately filtering the previous values. In this
section, we model the total downlink interference with fGn and
utilize this model to devise an optimal downlink interference
predictor.

We assume a large number of users in the coverage area
of the network. We also select an appropriate time-scale and
assume that the resource control mechanism does not alter the
total downlink interference model. The interference is then
modeled using a fGn process as

I(n) = mI(n) + z(n), (10)

where mI(n) is the average interference of the process I(n)
measured over a large window of size K (i.e. (n−K, n−1]),
and z(n) is fGn.

We use the correlation structure of the total received inter-
ference and the auto-covariance of fGn, (4), to propose the
following optimal linear predictor for the total interference
[15]

Î(k + 1) = mI(k) + (Γ−1γ)T (I(k) − mI(k)1ML), (11)

where Î(k+1) is the predictor of I(k+1), I(k) Δ= [I(k), I(k−
1), . . . , I(k − ML + 1)]T is the ML × 1 vector of stored
interference measurements, ML ≤ K is the memory length
of the predictor, Γ is the covariance matrix with entities
Γij

Δ= γ(i− j), γ
Δ= [γ(1), . . . , γ(ML)]T , where γ(k) is given

in (4) and 1ML is the ML × 1 identity vector; the superscript
T denotes vector transposition. In our proposed scheme, the
parameters of the interference model in (11) are adjusted based
on the past interference measurements.

The variance of the prediction error is

ε = γ(0) − γT
1 Γ−1γ1. (12)

In Fig. 1, we illustrate the variance of the prediction error
versus self-similarity index H for a fGn process with σ0 = 1
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Fig. 1. Variance of the prediction error versus self-similarity index, H , for
different values of M , for a fGn model with σ0 = 1.

with three values for ML. It can be seen that the variance
of error decreases with H . Also the variance of error is not
sensitive to the value of ML for ML ≥ 5, therefore the optimal
linear predictor can be implemented using a small number of
measured interference samples.

A. Model Adjustment

To compensate for the effect of model parameter variations,
we adaptively adjust the model parameters in appropriate
time-scales. We assume that NL samples of the measured
interference in the past are available to the predictor. A simple
weighted summation of measured values of total interference
is used to estimate mean interference

mI(n) =
1

NL

n−1∑
m=n−NL

I(m). (13)

The interference variance is also estimated by

σ0(n) =
1

NL − 1

n−1∑
m=n−NL

(
I(m) − mI(n)

)2
. (14)

To estimate the self-similarity index, H , we use an on-
line version of the Abry-Veitch wavelet-based estimator [16].
This method uses a multi-resolution wavelet transformation
for weighted least squares fitting of different octaves, j1, j2,
j2 > j1. It is straightforward to show that the computational
complexity of this method is O(NL) [16]. The confidence
interval of the estimated self-similarity index, Ĥ, by the Abry-
Veitch method is [16]

Ĥ − σHzβ ≤ H ≤ Ĥ + σHzβ, (15)

where zβ is the (1 − β) quantile of the standard Gaussian
distribution, (i.e. P (z ≥ zβ) = β) and

σH =
( 2

(ln 2)22−j1NL

)( 1 − 2J

1 − 2−(J+1)(J2 + 4) + 2−2J

)
,

(16)
where J = j2 − j1.

Note that in our proposed scheme, the interference predictor
in Fig. 2 is implemented for all users including realtime

Authorized licensed use limited to: The University of Toronto. Downloaded on December 23, 2009 at 18:14 from IEEE Xplore.  Restrictions apply. 



NAVAIE et al.: OPTIMUM MODEL-BASED NON-REAL-TIME DOWNLINK DATA TRANSMISSION IN HETEROGENEOUS DS-CDMA CELLULAR NETWORKS 2361

Fig. 2. Model-based adaptive-predictive throughput maximization of non-
realtime data in the downlink: (a) user module, (b) BS module.

and non-realtime users. This interference predictor can be
implemented in the mobile station, in the base-station or
in the radio network controller. In each case, the measured
interference level, Ii(n), where i is the user index, should be
provided to the predictor in appropriate time-scales. The base-
station or the radio network controller then uses the predicted
interference levels, Îi(n + 1), to allocate the transmit power
in the next control window.

IV. PERFORMANCE OPTIMIZATION FOR

NON-REAL-TIME DATA TRANSMISSION

In the control window n, let G(n) be the set of real-time
users (such as voice and multimedia) served with a guaranteed
delay requirement and B(n) be the set of delay-tolerant users
waiting in the queue to be served under the best-effort service
category.

At a given instant n, the mobile terminal of each user
measures the level of interference and uses the methods in
Section III to adjust the values of parameters mI(n), σ0(n)
and H . Then these values are used in (11) to estimate the level
of interference in the subsequent control window.4 The esti-
mated interference is then communicated to the base-station.
The base-station uses the predicted downlink interference to
allocate the available power to non-realtime users.

In this section, we propose two techniques to allocate power
to backlogged best-effort traffic. In the first technique, the
available power is allocated to users with the best channel
conditions. In such an approach, the users with bad channel
conditions may experience excessive delay, hence the system
may have poor delay performance. Next, to reduce the delay,
we consider a utility-based approach [8] and propose an
optimal utility-based scheduling algorithm to maximize the
base-station utility for a given available transmit power.

Since in this section we consider the power allocation in a
given cell, hereafter we drop the cell index for brevity.

4In view of simplicity of mobile terminals, it would be possible to adjust
the model parameters and predict the interference in the base-station.

A. Power allocation to guaranteed service users

For a user i in G(n), with bit-rate Ri(n) and the required
bit energy to the interference plus noise spectral density, ρi,
the allocated power should be

pi(n) =
ρiRi(n)
Wgi(n)

(Îi(n) + PN (n)), i ∈ G (17)

where gi(n) is the channel gain between the base-station and
user i and PN (n) is the background noise power at the receiver
of user i.

We assume that the total transmit power of the base-
station at instant n is Pmax(n). This value may be set either
permanently at the network dimensioning phase or adaptively
by the radio network controller. Therefore, the available power
for non-realtime users in the control window n, PA(n), is

PA(n) = Pmax(n) −
∑

i∈G(n)

pi(n). (18)

Next, we distribute PA(n) among backlogged non-real-time
traffics.

B. Power allocation to delay-tolerant non-real-time users

Our objective is to find a set of users in B(n), namely S(n),
to maximize the total throughput of non-real-time traffic for a
given value of the available transmit power PA(n) in the nth
control window with length Tw. Let pi(t) denote the allocated
power to the ith non-real-time user at time t. The signal-to-
interference ratio of non-real-time user i can be written as

SIRi(t)
Δ=

gi(t)pi(t)∑
j∈S(t),j �=i ξijpj(t)gj(t) + Ii(t) + PN (t)

(19)

where t ∈ [(n−1)Tw, nTw], gi(t) is the channel gain between
the base-station and user i and Ii(t) is the total interference
received from the adjacent stations and the transmission to
other real-time users in the same cell. The coefficient 0 <
ξij ≤ 1 is the normalized cross correlation between pi(t) and
pj(t) at the receiver of user i, that is the effective fraction of
the received signal power from transmitter j that contributes
to the interference experienced by user i.

Define the average rate of user i over control window n by

Ri(n) Δ=
1

Tw

∫ (n+1)Tw

nTw

ri(t)dt (20)

where ri(t) is the instantaneous bit-rate defined as

ri(t) =
W

ρi
SIRi(t), i ∈ S(n) (21)

where ρi is the required Eb/I0 for user i, and W = 1/Tc is
the spreading bandwidth.

The maximum throughput of the non-real-time traffic for a
given value of the available transmit power PA(n) is found
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Fig. 3. Multi-time-scale system: each control window contains M frames.

from

max
S(n)

max
pi(t)

Tw

∑
i∈S(n)

Ri(n) (22)

s.t.
1

Tw

∫ (n+1)Tw

nTw

ri(t)dt = Ri(n), i ∈ S(n) (23)

ri(t) =
W

ρi
SIRi(t), i ∈ S(n) (24)∑

i∈S(n)

pi(t) ≤ PA(n), t ∈ [nTw, (n + 1)Tw]

(25)

We note that for maximizing the throughput, it is beneficial
to allocate the maximum available power over the window
[0, Tw]. Therefore, we consider that (25) holds with equality.

It is straightforward to show that the solution of the
optimization problem (22)-(25) belongs to the set of time
domain schedulers [17], [9], [18]. Generally speaking, time
domain scheduling is a scheme in which the total power is
allocated to a single user over a fraction of Tw. During this
period, the base-station transmits only to one user, and the
rest of the users are kept inactive. Under the time-domain-
scheduling, in (22)-(25), a portion of Tw is allocated to a
selected user and the base-station transmits to that user with
transmission power PA(n). Therefore, in each control window,
S(n) includes those users with the best channel condition and
backlogged traffic at the base station. Transmission to such
users maximizes the total network throughput for a given
value of PA(n). The order of transmission for the users in
S(n) during the control window n is not specified by the
optimization problem in (22).

C. Delay Fair Resource Scheduling

We assume that each control window of length Tw seconds
contains M frames of Tf seconds (see Fig. 3). Data traffic
is packetized into fixed L-bit packets and transmitted in an
integer number of frames. At control window n, a number of
packets destined to the users in the coverage area are waiting
in the base-station to be served. The available transmit power,
to be allocated to the best effort service, is PA(n).

Let mi(n) be the number of required frames for transmis-
sion of packet i in control window n,

mi(n) =
⌈ L

Ri(n)Tf

⌉
, (26)

where 	.
 gives the upper nearest integer and Ri(n) is the
bit-rate of the channel to the corresponding destined user d(i).
Note that Ri(n), obtained from (20) depends on the predicted
interference, and the channel gain. In practice variable bit-rates
are implemented by using the orthogonal variable spreading
factor technique (see e.g, [10]). Therefore, only a limited
number of choices for Ri(n) would be available.

For packet i, we associate the utility-function, ui(n), that
shows the “benefit” that network earns if the packet is served
in control window n. Utility function serves as an optimization
objective for packet transmission. It can be used to optimize
radio resource allocation to build a bridge among different
service and network parameters in different layers. The earned
benefit modelled by the utility function provides a priority
metric for a packet served by a base-station, which means
the larger the value of the utility function, the higher the
priority of transmitting the corresponding packet. The utility
function ui(n), is a function of allocated network resources
to that packet as well as its experienced delay. For non-real-
time traffic, it is a function of Ri(n) and τi(n), where τi(n)
denotes the amount of time that the packet has spent in the
system. The benefit earned by the base-station is an increasing
function of the wireless link quality. In addition, for two users
with the same channel quality and backlogged packets at time
n, it would be more beneficial—from the network point of
view—to serve the packet with a larger experienced delay.

For a packet i, transmitted in control window n, we define
the following utility function,

ui(n) Δ=
1

mi(n)
exp

(
τi(n) − τ (n)

)
, (27)

where τ(n) = 1
N(n)

∑
i∈B(n) τi(n) is the average delay and

N(n) is the number of backlogged packets. Note that in (27),
a packet is given a large utility either when the corresponding
user experiences a “good” channel condition or when it
experiences a relatively “bad” delay. The utility function in
(27) is similar to that given in [19] that attempts to provide
fairness in delay. Note that different utility functions can be
designed to satisfy various design objectives. The formulation
presented in this paper is independent from the definition of
utility function. Generally, a utility function is defined by
the service provider to quantify the trade-off between the
performance (e.g. throughput) and fairness.

We define the total network utility at each control window
n, as the network performance indicator

U(n) Δ=
∑

i∈S(n)

ui(n). (28)

The total system utility indicates the total system revenue. Our
objective is to maximize the total system utility as

max
S(n)|PA(n)

U(n) (29)

s.t.
∑

i∈S(n)

mi(n) ≤ M (30)

where in (29), S(n)|PA(n) denotes finding S(n) subject to
the available transmit power, PA(n), for non-real-time traffic
in the n-th control window.

The inequality in (30) indicates the system downlink re-
source constraint. The output of the maximization problem,
(29), is S(n). Maximization of (29) selects the packets that
result in the highest total utility subject to constraint (30).
Therefore, at each control window, the solution of (29) gives
the packets that are scheduled for transmission. Since we solve
this optimization problem for each control window, hereafter,
we drop the time index n for brevity.
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1) Scheduling Algorithm: Here, we show that the optimiza-
tion problem in (29)-(30) is indeed a classical combinatorial
problem; 0–1 Knapsack problem (0–1 KP). In the following,
we first define the 0–1 KP.

Definition 5: 0–1 Knapsack Problem [20]: Given a set of
items B, each with a cost mi and a value ui, 0–1 Knapsack
Problem determines the items to be included in a collection
S, so that the total cost

∑
S mi is less than some given cost

M , and the total value
∑

S ui is as large as possible.
Consider the base-station as a knapsack with the resource

constraint M . Resource constraints are the number of available
frames in each base-station in each control window (i.e. M ).
For each packet i, the corresponding value is ui. For each item,
the required resource is mi. Therefore, the downlink resource
allocation in (29) is a 0–1 KP.

We note that 0–1 KP is NP-Hard [20], thus the brute force
solution for KP would be to try all 2N(n) where N(n) is the
number of packets in all possible subsets of B(n). Obviously,
such algorithms are not suitable for practical purposes. Instead,
we utilize a polynomial time dynamic programming approach.

We use dynamic programming to find an approximate
solution for the knapsack problem in (29)-(30). Dynamic pro-
gramming decomposes the optimization problem into smaller
problems and then recursively obtains the value of the max-
imum utility in terms of the solutions to smaller problems
[21].

Consider the array U(i : 1, . . . , N, m : 0, . . . , M), where N
is the number of packets in the base-station in the correspond-
ing control window. The entry U(i, m) contains the maximum
achieved utility of any subset of packets {1, . . . , i} of the total
allocated frames m

U(i, m) Δ= max
Si

{ ∑
j∈Si

uj

∣∣∣ ∑
j∈Si

mj ≤ m
}

,

where Si ∈ {1, 2, . . . , i}. The maximum achieved utility
is U(N, M). Now, U(i, m) can be defined in terms of the
solution to the smaller problems,

U(i, m) = max
{

U(i−1, m), ui+U(i−1, m−mi)
)}

. (31)

The pseudo-code of the proposed algorithm is illustrated
in Fig. 4. In the proposed algorithm, we compute the values
of U(i, m) bottom up using (31) with the initial condition
U(0, m) = 0.

To keep track of the selected packets for transmission, in
Fig. 4, we have considered the auxiliary boolean array s(i, w),
which is equal to 1 if the decision is to take the i-th file in
U(i, m), and 0 otherwise. The set of the selected packets for
transmission is then constructed using the array s(., .) by the
procedure in the second part of the algorithm in Fig. 4. Note
that if s(N, W ) is 1, then packet N is selected for transmis-
sion. We then repeat this argument for s(N − 1, M − m). If
s(N, W ) is 0, then packet N is not selected for transmission
and we repeat this argument for s(N − 1, W ). It is simple to
show that the complexity of this algorithm is in the order of
NM which makes it appropriate for real-time radio resource
allocation in wireless communication networks.

Fig. 4. A dynamic programming approach for optimal downlink resource
allocation.

V. SIMULATION RESULTS

To study the system performance, we consider a two-tier
hexagonal cell configuration with a wrap-around technique
[22]. A UMTS [10] cellular network, with a fast power
controller running at 1500 updates per second, is simulated.
Cross-correlation between the codes is assumed to be 0.5.
Three traffic types are used: 12.2 kbps voice (with the required
Eb/I0 = 5 dB), 32 kbps data (with the required Eb/I0 = 3
dB) and 64 kbps data (with the required Eb/I0 = 2 dB). We
assume a steady 5 Erlangs of voice traffic. For data traffic, we
assume Pareto call duration (see Definition 2). The control
window is Tw = 10 ms.

We assume that the channel gain gc(n) is given by

gc(n) = Lcd
−γc
c θc(n), (32)

where dc is the distance between the base-station c and
the user for which the downlink interference is measured,
γc is the path loss exponent which is a function of the
antenna height and the signal propagation environment, Lc

is an environmental constant, and θc(n) is the shadowing
process, which has a log-normal distribution with the standard
deviation σc. The Gudmundson correlation model [23] is used
for log-normal shadowing as

Θc(n + 1) = ηcΘc(n) + (1 − ηc)νc(n), (33)

where the time-scale is Tf (fading period), Tf ≥ Tw, Θc(n) =
log θc(n) is the log-normal fading in dB, νc(n) is a zero-mean
white Gaussian noise with variance σ2

c (1 + ηc)/(1− ηc), and
0 < ηc < 1 is the channel correlation coefficient. We assume
σc = 8 dB and Tf = 100 ms. A distance-dependent channel
loss with path exponent γ = −4 is considered. Users are
distributed uniformly with different service types. The details
of the simulation setting are given in Table I.
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TABLE I

SIMULATION PARAMETERS

Parameter Value
Number of BSs 19
Cell Radius 100 m
BSs Transmit Power 10 W
Physical Layer Based on UMTS
Power Control Fast Power Control 1500/s
Tw 10 ms
Standard Deviation of Fading 8 dB
Loss Exponent -4
Thermal noise density -174.0 dBm/Hz
Tf 100 msec
Eξ1 0.5
Services 12.2 kbps voice, 32 and 64 kbps data
12.2 kbps voice Eb/I0 = 5 dB, 5 Erlangs
32 kbps data Eb/I0 = 3 dB, Pareto Dist.
64 kbps data Eb/I0 = 2 dB, Pareto Dist.
Bit-rates (non-realtime traffic) 16, 32, 64, 144, 384 kb/s

A. Model Validation

We consider two data services in Table I with the Pareto
type call duration with parameters α1 = 1.5, Eτ1 = 2 minutes
and α2 = 1.8, Eτ2 = 1.5 minutes. Data call arrival in
both cases is generated by a Poisson distribution with an
average rate of 10 arrivals per second. The heavy-tail call
durations of data traffic satisfy the conditions of Proposition
1, which gives the self-similarity index H = 0.75. We
study the time trace of the received downlink interference
measured at different arbitrary locations in cell c = 1. High
variations are seen in traces with different time-scales. To
estimate the self-similarity index H , the Whittle estimator [6]
is used, which gives H = 0.65. The discrepancy between the
estimated value of H by the simulations and that obtained
from Proposition 1 is mainly due to the fact that in the
simulations, the network will not accept all requests because of
the interference threshold. Extensive simulations on the self-
similarity in the total downlink interference are also presented
in [1].

We now show that fGn is an appropriate model for I(n). We
use the quantile-quantile (Q-Q) plot [6] to show that the total
interference is a Gaussian process. The Q-Q plot is a graphical
technique that determines whether two data sets have the same
probability distribution. A Q-Q plot is a plot of the quantiles
of the first data set against the quantiles of the second data set.
A quantile is the fraction of points whose values are smaller
than the given value; that is, the x% quantile is a point at
which x% of the points in the data set have values smaller
than the given value and (1 − x)% have values larger than
that value. If the two sets come from a population with the
same distribution, the points should fall approximately along
the 45-degree reference line. The greater the difference from
this reference line, the greater the evidence that the two data
sets have different distributions. The received total interference
values comprise the first data set, and the values generated by
a Gaussian distribution with the same mean and variance are
in the second data set. In Fig. 5, the Q-Q plot shows that the
received total interference for the above configuration can be
closely approximated by the Gaussian distribution.
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Fig. 5. The Q-Q plot for the marginal distribution of total interference.

B. Performance of the proposed adaptive-predictive method

To study the performance of the proposed method, we add
a fourth non-real-time traffic. This traffic constitutes fixed-size
packets with Poisson arrival with rate λ. We set NL = 100
and use a linear predictor with ML = 5 taps to predict the
interference level; we have found that the predictor error is
not sensitive to the value of ML for ML ≥ 5 (See Fig. 1).
A confidence interval of 95% for the estimate of the self-
similarity index, H , is considered. We also assume that the
cross-correlation between DS-CDMA codes in cell c = 1,
i.e., ξ1, is equal to 0.5.

To minimize the prediction error, the model parameters
are adjusted based on the scheme presented in Subsection
II. Using this adaptively adjusted linear predictor, together
with 95% confidence interval for estimating the self-similarity
index and a long window consisting of 100 samples (i.e.,
NL = 100) for estimating the interference variance and mean,
we expect very low prediction error.

We have run 50 independent simulation trials with users
uniformly dispersed in the cell coverage area. In the sequel,
we report the average values in these runs for two systems.
The first system (System A) uses the proposed method in
this paper for interference prediction. For non-real-time traffic,
we first consider System A using the throughput-optimal
time-domain-scheduling (System A-TDS-Th) in (22)-(25), and
using the utility-maximized time-domain-scheduling in (29)-
(30) (System A-TDS-U). The second system (System B) uses
the average values of the 5 last samples of the measured
interference as the predicted value. We consider System B
using the throughput-optimal time-domain-scheduling (System
B-TDS-Th) in (22)-(25), using the utility-maximized time-
domain-scheduling in (29)-(30) (System B-TDS-U), and fi-
nally without it (System B-CDMA).

We compare the cell throughput for the non-real-time data
service of the systems A and B for different values of the
interference self-similarity index H . We consider System B-
CDMA as the benchmark and normalize the cell throughput
in each case to the corresponding value of the throughput
in System B-CDMA. The results are illustrated in Fig. 6.
A significant improvement in the average cell throughput
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Fig. 6. The normalized average cell throughput versus H .
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is seen in Fig. 6 where our proposed adaptive-predictive
method for interference prediction is used. As we expect, the
cell throughput of System A-TDS-U is smaller than that of
System A-TDS-Th since we trade the throughput for the delay
fairness.

In Fig. 6, it is also interesting to note that even for greater
values of H , the utility-based optimization results in larger
throughput compared with that for System B-TDS-Th. This
is because of the more accurate interference predication using
our proposed predictive-adaptive method.

We have found the standard deviation of the actual packet-
delay for systems A-TDS-U and A-TDS-Th. A lower value of
the standard deviation indicates an improved fairness in delay.
As can be seen in Fig. 7 using the utility based optimization,
the fairness in delay is significantly improved.

A very important question is: “What is the impact of
applying our proposed method on the self-similarity of inter-
ference?” Since the self-similarity of downlink interference
emanates from user traffic characteristics, the application
of the proposed scheme—and possibly other radio resource
control mechanisms—would not alter the self-similarity of the

TABLE II

ESTIMATED H FOR DIFFERENT SIMULATION RUNS.

H for different runs of simulation

λ = 5 0.6431 0.6357 0.6201 0.6520 0.6461
λ = 10 0.6373 0.6480 0.6542 0.6516 0.6391
λ = 15 0.6512 0.6439 0.6448 0.6484 0.6435
λ = 20 0.6405 0.6534 0.6350 0.6282 0.6431
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Fig. 8. Packet drop ratio (PDR) for the best-effort data traffic versus the
packet arrival rate λ using the proposed method. The PDRs for a system that
in each time instance uses the average value of the 5 last samples of measured
interference and pure CDMA are also shown.

downlink interference; but it may alter the model parameters.
Table II illustrates the estimated values of H for the cellular
network with the parameters given in Table I and with 95%
confidence interval after our proposed method is applied. In
this table, Ĥ for five independent simulation runs for different
non-real-time packet arrival rates for a given throughput R =
5000 bps are presented. The results in Table II confirm the
following two points: first, the interference in the downlink is
self-similar, as its self-similarity index is greater than 0.5; and
second, the self-similarity index does not depend on the arrival
rates of non-real-time traffic. This is due to the fact that the
self-similarity in the downlink interference emanates from the
traffic characteristics of the real-time calls, which have heavy
tail call durations.

We also study the effect of utilizing the proposed method
on the packet drop ratio (PDR) of non-real-time data traffic.
Fig. 8 illustrates the PDR versus packet arrival rate of the best-
effort (non-real-time) data traffic. In each case, we consider
two traffic patterns: the first is the one we have used in Subsec-
tion V-A, and the second corresponds to a system with a higher
self-similarity index (H = 0.7) in the downlink interference.
As it is seen, the PDR of the system using the proposed
method is smaller than that of the system using the average
values of the measured interferences. Fig. 8 also shows the
improvement in PDR with the higher value of self-similarity
in the downlink interference. This demonstrates the ability of
our proposed method to exploit temporal correlation in the
downlink interference to improve the system performance.
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VI. CONCLUSIONS

In this paper, we use the predictive structure of the total
downlink interference in [1] to maximize non-real-time data
throughput in a heterogenous service DS-CDMA cellular
network. We propose a model-based linear adaptive-predictive
method to estimate the level of interference for optimizing
the system throughput and minimizing the delay for non-real-
time data transmission. We use a fractional Gaussian noise
(fGn) model in an appropriate time-scale to represent the
self-similarity of the downlink interference. The interference
predictor can be implemented in the mobile station, in the
base-station, or in the radio network controller.

The estimated interference is used to allocate power to non-
real-time services. We first utilize a throughput maximization
approach. Although this scheme maximizes the total through-
put, it introduces extensive delay for users far from the base
station or with bad channel conditions. We then propose a
utility-based scheme in which the packets are scheduled so
as to maximize the total system utility. A utility function
for each packet is considered which builds a bridge between
the service and the network parameters including the channel
status and the actual delay. We map the optimization problem
for the downlink packet scheduling to a knap-sack problem,
and propose a dynamic programming technique to solve the
optimization problem. Simulation results validate the fGn
model and show that our proposed scheme can substantially
improve the delay fairness, and significantly increase the
average cell throughput. The simulation studies also confirm
that the interference model is valid for a broad range of arrival
rates of non-real-time traffic.
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