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Abstract— We present a novel cooperative vehicle position es-
timation algorithm, which can achieve higher levels of accuracy
and reliability than existing GPS based positioning solutions by
making use of inter-vehicle distance measurements taken by a
radio ranging technology. Our algorithm uses signal strength
based inter-vehicle distance measurements, road maps, vehicle
kinematics, and Extended Kalman Filtering to estimate relative
positions of vehicles in a cluster. We have preformed analysis of
our algorithm examining its performance bounds, computational
complexity and communication overhead requirements. Also, we
have shown that the accuracy of our algorithm is superior to
previous proposed localization algorithms.1

I. INTRODUCTION

Recent advances in intelligent transportation systems (ITS),
with the advent of the 802.11p based dedicated short range
communication (DSRC) devices, has opened the door for a
new era of wireless applications. The 802.11p standard for
Wireless Access in Vehicular Environments (WAVE) is de-
signed to support short range, low latency, high speed vehicle-
to-vehicle and vehicle-to-infrastructure (e.g. road side access
points) wireless communication. Currently, DSRC devices are
used for electronic toll collection systems. However, in the
future, these devices will enable an enhanced level of safety,
efficiency and information availability, by using vehicle-to-
vehicle and vehicle-to-roadside communication to provide
real-time information about hazards that lie on the road ahead
(e.g. road construction) [1].

Recently, a cooperative collision warning system based on
inter-vehicle communications has been receiving considerable
interest among researchers, government and industry. This
cooperative collision warning system will work by vehicles
cooperatively sharing information (i.e. location, speed, head-
ing, acceleration, etc.), via DSRC, for collision anticipation.
It was shown in [2] that by sending safety warning messages
the probability of collision in a platoon of vehicles can
be substantially reduced. However, in order to enable the
operation of such a system, it is required that a vehicle build
a map of the relative location of neighbouring vehicles, in an
accurate and reliable way.

Currently, the dominant technology for determining a vehi-
cle’s position is the global positioning system (GPS). Regular
GPS can provide an accuracy of 10 meters when there is direct
line-of-site between the vehicle and four or more satellites [3].
The 10 meter accuracy of regular GPS can be improved by

1This research has been supported in part by in-kind contributions from
Mark IV industries.

using differential GPS (DGPS), which can achieve accuracies
between 3 and 7 meters [3]. However, the GPS signals can
often become blocked or degraded while a vehicle is traveling
under bridges, through tunnels, or in downtown areas among
tall skyscrapers resulting in inaccurate position estimates. To
combat these gaps in the availability of the GPS signal,
vehicles can make use of dead-reckoning systems to maintain
an estimate of their position, using onboard kinematic sensors
[3]. However, dead-reckoning systems are prone to error
accumulation. For example, if the GPS signal is lost for 30
seconds the position estimate can become inaccurate by as
much as 10-20 meters, for a vehicle traveling at 100km/h.

In this paper, we show that gains in accuracy and reliability
can be achieved over GPS-based approaches by making use
of inter-vehicle distance measurements taken by a radio based
ranging technology. Also, that the accuracy of previously
proposed radio ranging based localization method can be
improved by taking into account information such as road
maps and vehicle kinematics. We will propose a Kalman filter
based solution and show that our algorithm is accurate and
reliable, and allows a real-time implementation. Also, we will
show that the structure of our algorithm allows us to place a
probabilistic bound on the confidence in the position estimate,
so that inaccurate position estimates can be actively identified.

Before exploring the details of our algorithm we will, in
the next section, provide some background information on
the problem we are trying to solve as well as discuss some
previous works related to ours. After this, we will present
the details of the structure algorithm works. Then present
the results of series of experiments, where we compare our
algorithm to two previously proposed algorithms. Following
this, we will provide a detailed analysis of our algorithm in
terms of its performance bounds and computational complex-
ity. Then, lastly finish the paper with our conclusions.

II. RELATED WORK AND BACKGROUND INFORMATION

The idea of using a radio based ranging technology for
node positioning is not new. In the last few years, this
problem has been tackled by researchers for stationary sen-
sor networks (e.g. [4], [5], [6]). However, the problem of
vehicle localization is different as the nodes (vehicles) in
the network are all mobile. Previously proposed stationary
localization approaches offer no straightforward extension to
the mobile case. In [5], it was shown that mobility makes
localization much more difficult and that position estimation
errors increase with speed. Also, in localization of sensor
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nodes, generally, the goal is to determine the position of
each sensor with respect to a global coordinate system, under
the assumption that a subset of the sensor nodes in the
network have prior prefect knowledge of their location. For
our case, we wish to only establish the relative positions of
the vehicles. This can be seen as a more generalized version
of the problem for sensor networks, since a localization
solution based on inter-vehicle distances alone is valid for an
arbitrary translation, rotation and reflection of the network.
Therefore, for fairness of comparison we will choose to
compare our method to other previously proposed approaches
that estimate relative node positions. In [6], Moore et al.
present robust quads algorithm that allows each node to derive
the relative positions of its neighbours. Unfortunately, the
algorithm presented in [6] achieves its level of robustness
by localizing only those nodes that have a high probability
of having an unambiguous position (i.e. will not necessarily
localize all nodes in a cluster).

Other algorithms for relative position estimation are based
on multi-dimensional scaling (MDS), such as the ones pre-
sented in [7] and the references therein. In general, the
MDS approach solves a robust weighted non-linear least
squares optimization problem. The majority of the works
only consider static localization. However, there have been
extensions proposed for the nonlinear least square problem
to include velocity and lane constraints in the localization
problem [8]. The work in [8] was later reformulated, so that
the maximum error in the position estimates was minimized
[9]. Both [8] and [9] place hard bounds on the possible
positions of the vehicles in the cluster. The hard bounds
are found by introducing a noise margin in the location
estimates. However, this noise is difficult to be described at
each time step. In this paper, we incorporate the noise in the
velocity readings by describing the probability distribution of
the noise. In the case of Gaussian noise, all that is required
is the mean and variance. Overall, this has the effect of
reducing the algorithm sensitivity where the error in one of the
inter-vehicle distance measurements is relatively high. Also,
it allows us to structure our algorithm so that instead of the
algorithm returning a set of position estimates, as in [8] and
[9], we can assign a probabilistic level of uncertainty to each
position estimate.

In [10], the mobility for the sensor networks has been used
to improve the accuracy of the location estimator. However,
they have assumed that at each time step each node is able to
move in an arbitrary direction, with a bound on the maximum
speed of the movement. In our case, for a vehicular network,
we know that vehicles travel on roads, and in general within
lanes. Also, it is possible to determine the velocity of the
vehicle. Both of which provide a different set of constraints
for the localization problem.

Given these different approaches the two closest to our
work is the robust quads algorithm presented by Moore et al.
in [6] and the vehicle based nonlinear least squares approach
presented in [8]. Therefore, we will compare the algorithm
presented in this paper to these methods.

A. Radio Based Ranging Techniques

In general, localization schemes discussed in the previous
section are independent of the ranging technology used for
distance estimates — all they require is that distance estimates
are obtained by some means. However, for completeness we
will mention that distance estimates are commonly found
using received signal strength indicator, time-of-flight, or
angle-of-arrival. Each of these techniques has been studied
extensively in literature. We refer the reader to [11] for a
good overview of these techniques and [12] for an analysis
of the performance limitations of each of these techniques.

III. PROBLEM DEFINITION

The vehicle position estimation problem can be formulated
as follows. Consider a cluster of n vehicles labeled 1,2,...n at
unknown distinct locations in some physical region at time t.
For each vehicle, we establish a map of the relative position of
its neighbours. More explicitly, we estimate the true relative
positions of the vehicles, A, defined as:

A = [x1, x2...xn, y1..yn] (1)

where {xi, yi}n
i=1 represents the relative position of the ith

vehicle in a coordinate system with the location of the vehicle
performing the mapping set at the origin (0, 0).

These position estimates will be created based on three
main factors: inter-vehicle distance estimates, made by using
a radio based ranging technology; velocity information from
each vehicle, derived from onboard sensors; and using a road
map to ensure that position estimates are within the road
boundaries.

A two step process is performed to gain information about
the inter-vehicle distances and velocities of all vehicles in the
cluster. In the first step, inter-vehicle distance measurements
are made by each vehicle using a radio ranging technology to
estimate their relative distance. Also, in the first step vehicles
within the cluster will read their own speed information. In the
second step, the information each vehicle collected is shared
with its neighbours, which can be accomplished by standard
multicast techniques. So, after the second step each vehicle
has up to n × (n − 1) inter-vehicle distance readings and a
set of n velocity readings. Note, that the distance measured
from vehicle i to vehicle j, may not be equal to the distance
measured from j to i.

IV. ALGORITHM FRAMEWORK

A. Extended Kalman Filter Approach

We use Kalman filtering since it allows a recursive set of
operations that produces an estimate of the positions (state)
by processing data from the inter-vehicle distance estimates
(observations) and incorporates this into a motion model.
Also, the Kalman filter provides the optimal set of position
estimates in the mean square sense, under the assumption of
Gaussian noise distribution for the mobility and measurement
model [13].
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The motion model we will use to incorporate the velocity
measurements (also often referred to as the state equation) is:

Ak = Ak−1 + Tsuk−1 + Tswk−1 (2)

where

Ak = [x1,k, x2,k...xn,k, y1,k...yn,k]T (3a)

uk−1 = [vx1,k−1, ...vxn,k−1, vy1,k−1...vyn,k−1]
T (3b)

where n is the number of vehicles in the cluster at the kth
snap shot; Ts is the sampling interval; superscript T denotes
transposition, vxi,k−1, vyi,k−1 is the velocity of vehicle i in
the x and y directions at time k − 1, respectively; Ak is the
position of vehicle at time k; and wk−1 is the process noise
describing the mobility variations. We assume that wk−1 is
a zero-mean Gaussian random variable, with the following
covariance:

Qk−1 � E{wk−1wT
k−1} = diag(σ2

x1....σ
2
xn, σ2

y1...σ
2
yn) (4)

where diag(·) denotes a diagonal matrix.
Considering that vehicles usually move along lanes in

roads, the uncertainty in the direction of road is greater than
the uncertainty in the direction orthogonal to the road. Let us
define the variance in direction of the road for vehicle i to be
σ2

i,a and the variance in the direction orthogonal to be σ2
i,o.

Due to the higher uncertainty of the motion along the road
σ2

i,a � σ2
i,o. Thus, for a road that runs in a direction that is

θ radians from the y axis, the following transformation must
be applied:

σ2
xi = σ2

i,o cos2 θ + σ2
i,a sin2 θ (5)

σ2
yi = σ2

i,o sin2 θ + σ2
i,a cos2 θ (6)

This allows Qk−1 to be biased in the direction of the road.
The observations of the inter-vehicle measurements are

expressed as:
zk = hk(A) + vk (7)

where hk(A) is a nonlinear equation describing the measure-
ments at time k and vk is a zero mean Gaussian random
vector, with the covariance matrix Rk, describing the noise
characteristics of the measurements. The measurement equa-
tion is nonlinear, since the distance between vehicles i and
j equals

√
(xi − xj)2 + (yi − yj)2. Note, that the general

form of the Kalman filter requires that the measurement
(observation) equation be in a linear form, therefore we will
linearize (7) using the first-order Taylor series expansion
around the current position estimates. Let us define

Ĥk =
dhk(A)

dA

∣∣∣∣
A=Ak|k−1

(8)

where Ĥk can be referred to as the Jacobian matrix and
Ak|k−1 the estimate of Ak using the observation up to time
k − 1. Given (2) and the nonlinear form of (7), we can form
the extended Kalman filter (EKF) algorithm. The size of the
Ĥk for a cluster of n vehicles is (n2−n)×(n−1). To reduce
the computational complexity we can reduce the number of
rows in the Ĥk matrix to (n2 − n)/2 if we set the average

of the pairwise distance measurements between vehicle i and
vehicle j.

The extended Kalman filter algorithm can be viewed as the
following set of recursive relationships:

Ak|k−1 = Ak−1|k−1 + Tsuk−1 (9)

Pk|k−1 = Qk−1 + T 2
s Γk−1 + Pk−1|k−1 (10)

Ak|k = Ak|k−1 + Kk

(
zk − hk(Ak|k−1)

)
(11)

Pk|k = Pk|k−1 − KkĤkPk|k−1 (12)

where

p(Ak−1|z1:k−1) ≈ N (Ak−1; Ak−1|k−1, Pk−1|k−1)(13)

p(Ak|z1:k−1) ≈ N (Ak; Ak|k−1, Pk|k−1) (14)

p(Ak|z1:k) ≈ N (Ak; Ak|k, Pk|k) (15)

and N (x;μ, P ) is a Gaussian density with argument x, mean
μ and covariance P ; Γk−1 the covariance matrix describing
the uncertainty in the velocity measurements; Kk is the
Kalman filter gain, defined as:

Kk = Pk|k−1Ĥ
T

k

(
ĤkPk|k−1Ĥ

T

k + Rk

)−1

(16)

Given the above set of equations for the Kalman filter, our
algorithm can be summarized as follows:
Step 1: Each vehicle performs inter-vehicle distance mea-
surements, and takes a reading of its own velocity. This
information is then shared with all vehicles within the cluster.
If new vehicles have just joined the cluster, an initial estimate
of there position is also required. This initial estimate can be
established in one of two ways, either by vehicles exchanging
GPS position estimates or measuring and exchanging the
inter-vehicle distances to perform trilateration. In general,
GPS is the preferred method of establishing estimates, since
with trilateration using noisy inter-vehicle distance measure-
ments can often yield ambiguous position estimates [6].
Step 2: Update the prediction equations, (9) and (10). Note,
the rank of the state matrix will be dynamic, since the number
of vehicles within the cluster can change from one time step
to the next.
Step 3: Incorporate the measurements from step 1 to update
(11) and (12). The current position estimate based on vehicle
movements and a current set of inter-vehicle distance esti-
mates will be contained in the matrix of positions estimates,
Ak|k, with an associated level of uncertainty captured by the
Pk|k matrix. The algorithm also forces the position estimates
to be within the road boundaries.
Step 4: Repeat steps 1-3, at the update rate of the filter, Ts.

V. ANALYSIS

A. Algorithm Performance Bounds

To gain a better understanding of the performance bottle-
necks of our algorithm, we derive the Cramér-Rao Bound
(CRB). The CRB is a classical result from estimation theory
that provides a lower bound on the error covariance matrix
of any unbiased estimate of unknown parameters. It is a tight
bound in the sense that the maximum likelihood detector
asymptotically approaches the performance CRB for high
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signal-to-noise ratio [13]. For the case of localization where
velocity information is available and using the motion model
(2), the lower estimation bound denoted as Pk is calculated
by the recursion [14]:

Cov(Ak) ≥ Pk (17)

Pk+1 =
(
(Pk + TsQk)−1 + JP

)−1
(18)

where JP is equal to the Fisher Information Matrix for
the static localization case, studied for the received signal
strength, the time-of-arrival, and the angle-of-arrival ranging
techniques in [12]. The recursive equation (18) has the form
of a Riccati recursive equation and will have a stationary value
of [14]:

P̄ =
(
(P̄ + TsQ)−1 + JP

)−1
(19)

which has the following solution:

P̄ = −1
2
TsQ + J− 1

2

P ×
(
J

1
2

P(TsQ +
T 2

s

4
QJPQ)J

1
2

P

) 1
2

J− 1
2

P

(20)
Note, how if Q → ∞ — that is as the uncertainty in the
mobility goes to infinity — then (20) gives P̄ = JP. There-
fore, it is clear how including mobility in the localization is
important for improving position estimates. In general, for a
linear system with Gaussian noise distribution, the Kalman
filter can be shown to achieve this CRB [13]. In our case,
we are deploying an extended Kalman filter (EKF) where
we are linearizing the nonlinear measurement equation using
the Taylor series. Although, generally speaking the extended
Kalman filter will not achieve the CRB, it still serves as a
good ultimate bound. Generally, how close the EFK comes
to the bound is based on how well the Taylor series expansion
describes the nonlinear measurement equation.

To see how well our algorithm performs in relation to
the bound, we will first consider when there is no hard
constraints imposed to force position estimates to be within
the confines of the road. Therefore, we can use (20) to
compare to the output of our algorithm. Consider, the case
where we use a time of arrival based radio ranging scheme
with a standard deviation of 4m of error in the inter-vehicle
distance estimates. From Figure 1, it is clear that due to the
Taylor series approximation, our algorithm without hard lane
constraints (the top curve) does not always achieve the CRB
(the middle curve). However, when hard lane constraints are
imposed the bound (20) can be exceeded (as seen by the
lower curve). This result makes sense since by imposing hard
lane constraints there is a new piece of information, therefore
allowing our approach to exceed the CRB of the general
velocity case. Indeed, the true CRB should be re-derived for
the case with lane constraints.

B. Computational Cost

As with any localization scheme, it is important to have a
high computational efficiency. Let n be the number of vehicles
within the local cluster. Our algorithm grows linearly as new
vehicles join the cluster. The computational complexity of our
algorithm is O(m2.4 + n2) [15], where m is the size of our
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Fig. 1. Cramér-Rao bound for position estimates versus our Kalman filter
based solution, lower curve shows performance gain by forcing the position
estimate to be within the confines of the road

measurement vector and n is the number of vehicles within
the cluster. The m2.4 is due to the multiplication of the Ĥk

matrix and the n2 is for other matrix multiplications in the
Kalman update. If all measurements are used, then m will
equal (n2 − n), however in practice the distance measured
between vehicle i and vehicle j are averaged so that m is
effectively equal to (n2 −n)/2. However, for the majority of
practical scenarios m will be small. As a point of reference,
our algorithm implemented in MATLAB runs in near real-
time on 3GHz machine, when there are up to 15 vehicles in
a cluster.

The only stage in the algorithm that entails communication
overhead is the step where the vehicles share distance and
velocity estimates with their neighbours. If we assume that
non-overlapping clusters do no share the same channel be-
cause of range limitations then the communication overhead is
O(n2), since n2 measurements are being shared. In practice,
this is implemented by each vehicle sending one packet of size
O(n) containing all the observed distance measurements and
a packet of constant size for the vehicle’s velocity information

VI. EXPERIMENTATION RESULTS

We study the performance of our algorithm under three
scenarios. First, we compare our algorithm to robust quads
proposed by Moore et al. [6]. The robust quads algorithm is
designed primarily for localizing a stationary set of nodes,
therefore does not have a mechanism for incorporating past
localization results. To compare the robust quads algorithm
to ours, we operate it in a sequential fashion such that at
each time step the localization algorithm is run independent
of the previous localization results. Next, we will compare
our algorithm to the one presented in [8], where velocity
and road boundary information is used to localize vehicles
with a nonlinear least squares optimization. Therefore, unlike
the robust quads implementation, past vehicle locations are
incorporated into the estimation of the position at the current
time step.

In the next two sections, we will outline the simulation
environment used, as well as define the performance metrics
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3 km

2 km 2 km

Fig. 2. Roadway for simulated vehicular environment

that we will be using to analyze and compare our localization
algorithm to previously proposed ones.

A. Simulation Environment

We have used a microscopic transportation simulator COR-
SIM (CORridor SIMulator), which has been developed by
the US Federal Highway Administration to model vehicle
movements. We have modeled a 4 km road with 3 east bound
and 3 west bound lanes with vehicles entering into the east
and west end of system at the rate of 1200 vehicles per hour
depicted in Figure 2. The speed limit for the road was set to
100 km/h.

For the experiments, we track a single vehicle’s ability to
determine the relative position of all vehicles within its cluster
(i.e. all vehicle’s within its communication range of 150 m)
as it traverses the 4 km section of road. Naturally, there will a
variable number of vehicles within a vehicle’s communication
range as it transverses the network, given this experiment
setup, we found that each vehicle generally had between 8
and 14 neighbouring vehicles at each time step.

Also, note that for the simulation experiments we have
assumed that the position estimate for a vehicle when it first
enters the cluster has been made via GPS, for the algorithms
requiring an initial position estimate of the vehicle. After a
vehicle has appeared once in the cluster, all future position
estimates are based on prior estimates. The GPS position
estimate for these experiments was set to differ from the
true position by a Gaussian distributed random variable with
standard deviation of 6 meters, for consistency with real GPS
error levels of 3 to 10 meters [3].

B. Performance Metrics

There are two main metrics we have chosen to use for
evaluating the effectiveness of the localization algorithms.
The first metric we have used is the root-mean-square error
(RMSE) in the final position estimate, which can be thought
of as the average distance of the final position estimate from
the actual position. We have defined RMSE in the final
position estimate as follows:

σfinal =

√√√√ n∑
i=1

(xfinal est. i − xactual i)2 + (yfinal est. i − yactual i)2

n

(21)
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where n is the number of vehicles in the cluster at the current
time; (xactual i, yactual i) represents the actual position of vehicle
i (often referred to as the ground truth in other literature);
(xfinal est. i , yfinal est. i) is the position estimate of vehicle i after
running step 4 of our algorithm. Note, that since only one
vehicle is fixed at position (0, 0) when the position estimate
is being made, an arbitrary reflection or rotation from the
actual positions of the vehicles is an equally valid solution.

The second metric we have used is the RMSE in the inter-
vehicle distance measurements, which we have defined as:

σd =

√√√√ M∑
i,j=1

( ˆdi,j − di,j)2

M
(22)

where M is the number of inter-vehicle distance measure-
ments, ˆdi,j is the measured distance between vehicles i and
j, and di,j is the actual distance between vehicles i and j.
This metric is important because it allows us to measure the
sensitivity of the localization algorithm to error levels in the
distance measurements.

C. Performance Comparisons with Other Algorithms

First we will compare the performance of our algorithm
against the robust quads algorithm presented in [6]. Since,
this algorithm does not rely on initial position estimates of
the vehicle, we will compare it to ours based on changing the
error levels in the inter-vehicle distance measurements.

To examine the effect of errors in the inter-vehicle distance
estimates on the final position estimate, we have varied
the RMSE in the distance measurements while leaving all
other parameters constant. The results of this experiment are
presented in Figure 3, where each data point is the average
of 10 runs of the algorithms through our simulated vehicular
environments (as was described in the section entitled Sim-
ulation Environment). The top curve shows the robust quads
algorithm and the bottom curve is our proposed algorithm.
From the figure, it is clear the error level in position estimates
of the robust quads algorithm grows at a linear rate which is
on the order of 7 times greater than our algorithm. The major
difference in performance can be attributed to the fact that
the robust quads algorithm does not make use of velocity
information or road constraints.
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To verify this claim and to see the benefits of road and
velocity information we will compare our algorithm to the
non-linear least squares approach presented in [8].

Comparing the middle curve in Figure 3, which is the
results of the algorithm presented in [8], to the upper curve
showing the robust quads algorithm [6], it is clear that by
including velocity and road constraints the sensitivity to dis-
tance measurement errors is reduced. Although, the algorithm
presented in [8] shows significant performance gains over
existing static based localization schemes by including these
additional constraints, on average it performs worse than the
algorithm proposed here. The primary reason for this perfor-
mance differential is in how the velocity and road constraints
are incorporated into the optimization scheme, as discussed
in section II of this paper. This can be verified by examining
the result of how well a single vehicle was able to localize its
neighbours at each time step as it traveled through the system.
If we assume that a Gaussian random variable with standard
deviation of 6 meters describes the noise characteristics of
the inter-vehicle distance measurements, then we get the
results shown in Figure 4. The curve with the higher peaks
is the nonlinear least squares implementation proposed in [8]
and the bottom curve is our Kalman filter based approach
presented in the this paper. Overall, we see that there is
much less variation in the error levels of our algorithm versus
the non-linear least squares (NL-LS) approach. This lower
variation results in an overall lower average level of error for
our algorithm — 2.2m for the Kalman filter approach versus
3.2m for the NL-LS approach.

Also, in Figure 4, for reference we have included the aver-
age performance of a GPS based system (i.e. the horizontal
line with RMS error of approximately 5.7m), which made use
of lane and velocity constraints to establish position estimates.
The GPS system was set to have an average accuracy of 6
meters, which is consistent with the performance of real-world
GPS [3], then the velocity lane constraints were imposed.
This reinforces the additional benefits of using inter-vehicle
distance estimates.

VII. CONCLUSION

We have shown that gains in accuracy and reliability can be
achieved over GPS-based approaches by using inter-vehicle
distance measurements taken by a radio based ranging tech-
nology. Also that the accuracy of previously proposed radio
ranging based localization can be improved by taking into
account extra information that is available to vehicles (e.g.
maps of the road; vehicle kinematics). We have performed
an analysis of our algorithm to examine its ultimate accuracy
performance limits, computational complexity, and its sensi-
tivity measurement errors. We have shown that our Kalman
filter based solution is accurate and reliable, and allows a real-
time implementation. The structure of our algorithm allows us
to place a probabilistic confidence on the position estimates,
so that inaccurate position estimates can be actively identified
making it very practical for future vehicle safety applications.
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