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Abstract—Vehicle-to-vehicle communications via dedicated-
short-range-communication (DSRC) devices will enable safety
applications such as cooperative collision warning. These devices
use the IEEE 802.11p standard to support low-latency vehicle-
to-vehicle and vehicle-to-infrastructure communications. How-
ever, a major challenge for the cooperative collision warning is
to accurately determine the location of vehicles. In this paper, we
present a novel cooperative-vehicle-position-estimation algorithm
which can achieve a higher accuracy and more reliability than
the existing global-positioning-system-based positioning solutions
by making use of intervehicle-distance measurements taken by
a radio-ranging technique. Our algorithm uses signal-strength-
based intervehicle-distance measurements, vehicle kinematics,
and road maps to estimate the relative positions of vehicles in a
cluster. We have analyzed our algorithm by examining its per-
formance-bound, computational-complexity, and communication-
overhead requirements. In addition, we have shown that the
accuracy of our algorithm is superior to previously proposed
localization algorithms.

Index Terms—Dedicated short-range communication (DSRC),
IEEE802.11p, localization, position estimation, vehicular net-
works, wireless access in vehicular environment, wireless commu-
nication.

I. INTRODUCTION

THE RECENT introduction of dedicated-short-range-
communication (DSRC) devices, based on the IEEE

802.11p standard for wireless access in vehicular environments,
has evoked considerable interest within the research communi-
ties and automotive industries. DSRC is designed to support
high-speed, short-range, low-latency wireless communications
between vehicles and between vehicles and roadside wireless
infrastructure. The 802.11p amendment is indeed an enhance-
ment of 802.11a in which node association has significantly
been simplified to enable rapid connection establishment and
network acquisition.

A DSRC device is categorized as an onboard unit, if built
inside a vehicle, or a roadside unit (RSU) if mounted on
roadside posts. DSRC devices will support a variety of safety
applications, such as collision avoidance and road-hazard warn-
ings, and other intelligent-transportation-system applications
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such as electronic toll collection and real-time traffic advisories
[1]. Safety applications alone have a huge potential to save
tens of thousands of lives and billions of dollars. In the U.S.
alone, the National Highway Traffic Safety Administration re-
ports that vehicle crashes account for more than 40 000 deaths,
3 million injuries, and an estimated economic loss of 230 billion
dollars annually [2].

One of the most promising vehicular safety applications is
the development of an advanced cooperative-collision-warning
system. It is envisioned that the advanced vehicle-collision-
warning system will use vehicle-to-vehicle radio communica-
tions to create a cooperative collision-warning system, where
vehicles—equipped with DSRC devices—cooperatively share
information (i.e., location, speed, heading, acceleration, etc.)
for collision anticipation. By sharing this information between
peers, each vehicle is able to predict potential hazards and to
take proper steps to alleviate the problem. However, accurately
determining a vehicle’s relative location among its neighbors
still remains a fundamental challenge. Without accurate vehicle
position estimates, the system may alert the driver when there
is no danger of collision, creating a number of unwanted
warnings, or may fail to alert the driver when there is a potential
danger ahead.

This paper will focus on the importance of accurate position
information in providing reliable safety applications, such as
cooperative collision avoidance. We will first highlight some
of the scenarios where position information and vehicle-to-
vehicle communication can be used to improve safety. Next,
we will examine some of the existing techniques for vehicle
positioning and the problems of those techniques and propose a
novel algorithm.

A. Safety Applications

There are numerous scenarios where intervehicle commu-
nication can be used to improve the safety of passengers.
Consider a vehicle at the head of a platoon which encounters
an emergency event and is forced to suddenly stop. Typically,
drivers rely on the brake lights of the vehicle immediately ahead
of them to decide on their own braking action. However, if the
emergency event is triggered by several cars ahead, by the time
the car immediately ahead brakes, it may be too late to safely
stop in time. The time for the driver to process the brake light
ahead and to step on the brake (typically 0.75–1.5 s) compounds
the problem, potentially leading to an emergency event causing
a multivehicle accident.

Chain vehicle collisions can be prevented or reduced in
severity if the delay between the time of the event and the
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Fig. 1. Model for chain of car collisions.

Fig. 2. Car is out of the driver’s field of view, but using vehicle-to-vehicle
communication, the driver can be forewarned.

time the trailing vehicles are informed of the event is reduced.
Consider the scenario shown in Fig. 1, where all cars are
traveling at 115 km/h with an intervehicle spacing of 1 s
and where car 1 encounters an emergency event and begins
decelerating at 4 m/s2. Car 2 starts decelerating after see-
ing the brake lights of car 1, and car 3 starts decelerating
after seeing the brake lights of car 2. For this example, it
was shown by Tatchitkou et al. [3] that without intervehicle
communication, these cars will collide, and if the cars sent
safety-warning messages containing position information, an
accident would be prevented. They also showed that, in general,
sending safety-warning messages with position information
can substantially reduce the probability of collision within a
platoon.

Safety-warning messages can also aid in expanding a driver’s
awareness of potential hazards. Consider the illustration in
Fig. 2 where a car is stalled in the middle of the road around
a blind corner. By the time the driver of the following car sees
the vehicle and reacts, it may be too late to avoid collision.
By sending a warning message containing position information
to the oncoming vehicles, a driver can be forewarned of the
potential hazards and can take appropriate action to avoid
collision.

Both of these scenarios exemplify the importance of po-
sitioning information. In addition, these examples highlight
the idea that when vehicles are equipped with DSRC de-
vices, drivers gain an expanded awareness of their sur-
rounding, giving them more time to react to potential road
hazards.

In Section II, we review the related literature on radio-
ranging techniques and wireless-node localization. We present
our algorithm in Section III. In Section IV, we study the
performance of our algorithm by deriving the Cramér–Rao
bound (CRB) and the computational cost. In Section V, we
present the simulation results and conclude the paper in
Section VI.

II. LOCATION-ESTIMATION TECHNIQUES

From the aforementioned examples, it can be seen that the
accurate estimation of the relative positions of neighboring
vehicles is a vital component of vehicular-network safety ap-
plications. Designing a solution for the accurate estimation of
neighboring vehicles based on real-time exchange of position
estimates, using vehicle-to-vehicle communication, is a chal-
lenging task. Given the subsecond decision latency requirement
of cooperative-collision-warning systems, the solution must be
able to establish the relative position of all neighbors in real
time and to continuously track their motion to proactively
identify potential vehicle-collision scenarios.

Currently, global positioning system (GPS) is used to lo-
calize vehicles. The GPS unit locates itself by comparing the
signal received from four or more GPS satellites. Although the
GPS is fairly accurate in flat open areas where a line of sight
to multiple satellites is possible, it fails to operate in tunnels
and in downtown areas where blockage of satellite signals is
frequent. Typically, during short outages of the GPS, vehicles
will use a dead-reckoning system to maintain an estimate of
their position [4]. Currently, the best dead-reckoning systems
have horizontal accuracies of approximately 1% of the total
distance traveled. Therefore, when traveling at 100 km/h, the
dead-reckoning system can estimate the vehicle’s location (with
permissible error of < 10 m) for 30 s.

One of the main challenges identified by Miller and Huang
[5] is that accurate location estimates were critical to the
success of cooperative-collision-warning systems and that the
approximate 5-m accuracy of a regular GPS is inadequate for
such applications. Improved solutions, such as the differential
GPS [6] and the assisted GPS [7], have been proposed. How-
ever, the reliability of these location estimators still does not
satisfy the needs of safety applications in vehicular networks,
which require that the relative position of vehicles be accurately
estimated. It has recently been argued that a combined solution
using the GPS—or one of its improved variants—and the use of
radio-based-ranging techniques to determine distance estimates
between vehicles in a cluster can be used to increase the
reliability of the location estimator [4].

The techniques proposed in this paper can be used with or
without the GPS. If the GPS estimate is available, the proposed
techniques in this paper can be used to increase the accuracy of
the location estimates. In the absence of the GPS, the techniques
are used to locate vehicles.

A. Radio-Based-Ranging Techniques

Radio-based-measurement technologies leverage signal-
propagation characteristics to derive an estimate of the
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distance between the transmitter and the receiver. There are
three common radio-ranging techniques used for nodal position
estimation in ad hoc networks, namely, received-signal-strength
indicator (RSSI), time of flight [e.g., time of arrival (ToA) or
time difference of arrival], and angle of arrival (AoA). We will
review each of these techniques and determine their feasibility
for use in vehicular networks.

The RSSI technique is the most widely known and provides
a low-cost means to estimate distance since it does not re-
quire any specialized hardware [4], [8]. This technique uses
known mathematical wireless-channel models that describe the
relationships between path-loss signal attenuation and distance
between the transmitter and receiver. One of the issues with this
technique is that it does not always produce accurate distance
measurements since there is large variation in signal attenua-
tion in different environments, particularly when multipath and
shadowing effects are present [9].

The time-of-flight-based methods find the distance by mea-
suring the propagation delay of a signal from the transmitter
to the receiver. In general, this technique works well with
high-resolution time measurements, accurate real-time clock
synchronization between nodes, and line-of-sight-propagation
conditions. To keep an accurate real-time clock synchronization
among all vehicles in a cluster would be difficult. However,
McCrady et al. [10] presented a two-way reciprocal ToA-
ranging technique that removes the need for any clock synchro-
nization among receiver–transmitter pairs and provides high
ranging accuracy (< 1 m) even in multipath scenarios. The
main drawback of this technique is the need for a complex
hardware.

The AoA technologies estimate position coordinates of the
subject node (e.g., vehicle) by using an antenna array and by
measuring the AoAs of signals from neighboring nodes and
then by performing triangulation. At close range, where line
of sight is possible, this technique works well. However, as the
distance between nodes increases, the performance degrades,
particularly in scenarios where line of sight is not possible
(e.g., urban environments), since the antenna array may lock
onto a multipath component which would corrupt the angle
measurements and introduce significant positioning errors.

The following two technologies could be applied to vehicular
communications: the RSSI and the ToA systems. However,
the key point to note is that, regardless of the radio-range-
estimation technology used, the distance measurements are
inherently noisy as a result of a number of factors, including
the limitations of the measurement device, multipath fading,
shadowing, and nonline-of-sight errors. In addition, mobility
complicates the case since outliers and noisy measurements
can be misinterpreted as an observed motion and the effects
of fading become more prevalent. Therefore, accurate localiza-
tion of vehicles cannot solely depend on intervehicle-distance
measurements using one of the aforementioned techniques.

B. Localization of Wireless Nodes

We will now examine some of the existing localization
approaches. In [11], a GPS-free positioning algorithm has been
proposed in which each node establishes a local coordinate

Fig. 3. Ambiguity in vehicle localization.

system based on the distance measurements between the nodes.
Once the local coordinate systems are formed, the nodes align
their coordinate systems to one of the nodes so that all coordi-
nates are oriented in the same direction. Unfortunately, this al-
gorithm requires that a large number of messages be exchanged
between nodes. As a result, this procedure does not scale well
and is not well suited for high-mobility environments, where
nodes are frequently entering and exiting clusters. Iyengar and
Sikdar [12] derived an improved version of Capkun et al. [11],
to tackle these issues, by creating an algorithm which improves
scalability and convergence times.

Kukshya et al. [4] used the results of Iyengar and Sikdar [12]
as the bases for creating a method of localizing neighboring
vehicles based on radio-range measurements. Their system
consisted of the following three main components: 1) a clus-
tering technique, which establishes a group of neighboring
vehicles that exchange information and assigns master/slave
associations; 2) a radio-based-ranging technique, which deter-
mines intervehicle-distance measurements; and 3) a positioning
algorithm, which determines the relative position coordinates
of the vehicles based on the distance measurements and tri-
angulation. There are a few problems with this work. First,
establishing a master/slave relationships may result in a large
number of polling rounds to determine new masters for the
cluster because the topology of vehicular networks is dynamic
(i.e., vehicles are often entering and exiting different clusters).
Second, the position estimates may become very inaccurate
since the distance measurements are noisy. Therefore, each
calculated relative coordinate system will contain some error
in the position estimates, and, as the coordinate systems are
aligned, the positioning error will propagate. Third, based on
the distance measurements and triangulation alone, it is possi-
ble for a vehicle to have two equally likely positions. Consider
Fig. 3, where car 0 has two possible positions that satisfy the
same set of distance constraints.

This flaw in pure triangulation approaches (i.e., where it
is possible for a node to have two or more positions that
satisfy the same distance constraints) prompted the work by
Eren et al. [13]. Their paper uses graph rigidity theory to derive
the theoretical framework for determining which nodes have a
unique position based on the internode-distance constraints.

Moore et al. [14] derived a robust-quads algorithm by mod-
eling the network in a graph representation, with the vertices
being the Euclidean positions of the nodes and the edges being
the distances measured between the nodes. However, there are
two types of discontinuous deformations that can prevent the
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Fig. 4. (i) Flip ambiguity node A can be either A or A’, and the distance
constraints are still satisfied. (ii) Flex ambiguity where distance constraints are
the same except that the graph is sheared.

graph realization from being unique (see Fig. 4): 1) a flip
ambiguity where all the distance measurements are the same
but the parts of the graph can become mirror reflections, or
2) flex ambiguities where the distance constraints remain the
same but the graph is sheared. Moore et al. [14] proposed a
heuristic to detect the nodes which have a high probability
of having a unique realization. Their algorithm localizes only
those nodes with unique realization to minimize the propa-
gation of localization error when the coordinate systems are
aligned to a common orientation.

The robust-quads algorithm [14] can be used in vehicular
networks. The algorithm was used in a sensor network and had
one experiment where a single node had mobility and the rest
of the nodes remained stationary, showing that a mobile node
could accurately be tracked within the network. However, it is
still unclear how their algorithm would perform if all the nodes
were mobile.

The majority of the existing algorithms have been targeted
for use in wireless sensor networks. However, if instead we
consider these algorithms for vehicular networks, some po-
tential for further optimization arises. For example, with the
knowledge that vehicles are constrained to travel, in general,
within lanes, it may be possible to improve the accuracy and
the complexity of the existing node localization algorithms
since the search space for possible vehicle positions is smaller.
Moreover, vehicles have knowledge of their kinematics (e.g.,
speed, heading, and acceleration); thus, the number of times
the distance-measurement exchange takes place can be reduced.
In addition, if the GPS is available, it can serve as an initial
estimate for a vehicle’s position. Then, through refinement,
using the measured distances between vehicles, a more accurate
position estimate may be found. It is speculated that an accurate
and reliable solution for determining the relative positions of
neighboring vehicles will not be solely based on one component
(e.g., intervehicle-distance measurement) but on the result of a
data fusion from a variety of information sources.

III. PROPOSED ALGORITHM

The proposed vehicle localization system is shown in Fig. 5,
which is an extension of our earlier work in [15] to include
road and lane boundaries and the associated mathematical
analysis of these constraints. Furthermore, we have added a
more rigorous analysis of the performance bounds by deriving
the CRB in Section IV-A.

The localization module accepts inputs from the following
four modules: 1) a ranging module, based on a radio-ranging

technique, to estimate intervehicle-distance measurements;
2) an optional GPS module (if available) to provide an initial
position estimate of the vehicle when there is high confidence
in the GPS estimate (i.e., four or more satellites are in line of
sight; 3) a vehicle sensor module to determine the vehicle’s
kinematics; and 4) a mapping module to ensure that the position
estimates are within the road constraints. Using these four
modules as inputs to the localization module, the following
three-phase localization algorithm can be created.

Phase 1: Initialization

Obtain coarse initial position estimates for vehicles by mea-
suring and sharing intervehicle distances to perform trilatera-
tion or by using a GPS.

Phase 2: Refinement

Improve the position estimates, by minimizing the error in
the intervehicle-distance measurements, while ensuring that the
road and lane constraints are met.

If the previous position estimates are available, ensure that
the new position estimate is consistent with the vehicle-velocity
constraints.

Phase 3: Iteration

Periodically iterate through phase 2, using the final position
estimate as the initial position estimate for subsequent intervals.

Consider a cluster of n vehicles at unknown distinct locations
in some physical region at time t. For each vehicle, we establish
a map of the relative position of its neighbors. More explic-
itly, we estimate the true relative positions of the vehicles A
defined as

A = [x1, x2, . . . , xn, y1, y2, . . . , yn] (1)

where {xi, yi}n
i=1 represents the relative position of the ith

vehicle in a coordinate system with the location of the vehicle
performing the mapping set at the origin (0, 0).

These position estimates will be created based on the fol-
lowing three main factors: 1) intervehicle-distance estimates,
which are made by using a radio-based-ranging technology;
2) velocity information from each vehicle, which is derived
from onboard sensors; and 3) using a road map to ensure that
the position estimates are within the road boundaries. The first
two factors were used in an earlier version of this paper [15],
and the last factor will be included here. The road maps can be
loaded via the RSU when the vehicle enters the corresponding
fragment of the road.

A two-step process is performed to gain information about
the intervehicle distances and velocities of all vehicles in the
cluster. In the first step, intervehicle-distance measurements
are made by each vehicle using a radio-ranging technique to
estimate the vehicles’ relative distance. In addition, in the first
step, the vehicles within the cluster will read their own speed
information. In the second step, the information each vehicle
collected is shared with its neighbors, which can be accom-
plished by standard multicast techniques. Therefore, after the
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Fig. 5. Subsystem representation of the proposed solution.

second step, each vehicle has up to n × (n − 1) intervehicle-
distance readings and a set of n velocity readings. Note that the
distance measured from vehicle i to vehicle j may not be equal
to the distance measured from j to i.

We use Kalman filtering since it is recursive, incorporates
a motion model, and provides the optimal set of position esti-
mates in the mean-square sense for Gaussian-noise distribution
for the mobility and measurement models [16]. However, unlike
[15], we will use here the road map to constrain the solutions
to road boundaries. The motion model that we will use to
incorporate the velocity measurements is

Ak = Ak−1 + Tsuk−1 + Tswk−1 (2)

where

Ak = [x1,k, . . . , xn,k, y1,k, . . . , yn,k]T (3a)

uk−1 = [vx1,k−1, . . . , vxn,k−1, vy1,k−1, . . . , vyn,k−1]T (3b)

where n is the number of vehicles in the cluster at the kth
snapshot, Ts is the sampling interval, superscript T denotes
transposition, vxi,k−1 and vyi,k−1 are the velocities of vehicle
i in the x- and y-directions at time k − 1, respectively, Ak

is the position of vehicle at time k, and wk−1 is the process
noise describing the mobility variations. We assume that wk−1

is a zero-mean Gaussian random variable, with the following
covariance:

Qk−1
Δ=E{wk−1wT

k−1}=diag
(
σ2

x1, . . . , σ
2
xn, σ2

y1, . . . , σ
2
yn

)
(4)

where diag(·) denotes a diagonal matrix.
Considering that vehicles usually move along the lanes in

roads, the uncertainty in the direction of the road is greater than
the uncertainty in the direction orthogonal to the road. Let us
define the variance in the direction of the road for vehicle i
to be σ2

i,a and the variance in the direction orthogonal to be
σ2

i,o. Due to the higher uncertainty of the motion along the road,
σ2

i,a � σ2
i,o. Thus, for a road that runs in a direction that is θ

radians from the y-axis, the following transformation must be

applied:

σ2
xi = σ2

i,o cos2 θ + σ2
i,a sin2 θ (5)

σ2
yi = σ2

i,a cos2 θ + σ2
i,o sin2 θ. (6)

This allows Qk−1 to be biased in the direction of the road.
The observations of the intervehicle measurements are ex-

pressed as

zk = hk(A) + vk (7)

where hk(A) is a nonlinear equation describing the measure-
ments at time k, and vk is a zero-mean Gaussian random vector,
with the covariance matrix Rk, describing the noise charac-
teristics of the measurements. The measurement equation is
nonlinear since the distance between vehicles i and j equals√

(xi − xj)2 + (yi − yj)2. Note that the general form of the
Kalman filter requires that the measurement (observation) equa-
tion be in a linear form; therefore, we will linearize (7) using the
first-order Taylor-series expansion around the current position
estimates. Let us define

Ĥk =
dhk(A)

dA

∣∣∣∣
A=Ak|k−1

(8)

where Ĥk can be referred to as the Jacobian matrix, and Ak|k−1

is the estimate of Ak using the observation up to time k − 1.
Given (2) and the nonlinear form of (7), we can form the
extended-Kalman-filter (EKF) algorithm. The size of the Ĥk

for a cluster of n vehicles is (n2 − n) × (n − 1). To reduce the
computational complexity, we can reduce the number of rows
in the Ĥk matrix to (n2 − n)/2 if we set the average of the
pairwise distance measurements between vehicles i and j.

The EKF algorithm can be viewed as the following set of
recursive relationships:

Ak|k−1 = Ak−1|k−1 + Tsuk−1 (9)

Pk|k−1 =Qk−1 + T 2
s Γk−1 + Pk−1|k−1 (10)
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Ak|k =Ak|k−1 + Kk

(
zk − hk(Ak|k−1)

)
(11)

Pk|k =Pk|k−1 − KkĤkPk|k−1 (12)

where Γk−1 is the covariance matrix describing the uncertainty
in the velocity measurements, and Kk is the Kalman-filter gain
defined as

Kk = Pk|k−1ĤT
k

(
ĤkPk|k−1ĤT

k + Rk

)−1

. (13)

The Kalman filter is initialized as

A0|0 =AGPS (14)

P0|0 =E
[
(A0 − AGPS)(A0 − AGPS)T

]
(15)

where AGPS is the vector of estimates from the GPS1, and P0|0
is the covariance matrix of the GPS estimates.

Once the location of the vehicles is estimated from the
Kalman filter, the estimates should be checked against the road
boundaries. Examples of road constraints can be suggested by
enforcing road geometry. For example, each vehicle on the road
should have an xi(t) position that satisfies

Li ≤ xi(t) ≤ Ri (16)

where Li and Ri are found from road width; similar bounds
can be imposed on yi(t). These constraints can be represented
as DA ≤ d, where D is the selection matrix with the entities
equal to 1, −1, or 0, and d is the road boundaries. To enforce
constraints, we project Kalman-filter estimates onto the con-
straint space [17] by solving

Ãk = arg max
Ã

(Ã − Ak|k)TW (Ã − Ak|k) (17)

such that DÃ ≤ d (18)

where W is a positive-definite matrix chosen to give different
weights to the elements of (Ã − Ak|k). This optimization is
in the form of a quadratic programming problem [18] and is
usually solved using an active set method.

Active set methods use the fact that only a small set of
constraints is active at the solution. The active constraints in
our problem are the ones for which the Kalman filter gives
a coordinate that is outside the road boundaries. Assume that
the active constraints are represented by D̃Ã ≤ d̃ and then,
replacing these constraints in (18), give the following solution:

Ãk = Ak|k − W−1D̃T(D̃W−1D̃T)−1(D̃Ak|k − d̃). (19)

This solution has a number of interesting properties [19]. First,
the constrained estimate is unbiased. Second, setting W = P−1

k

results in a minimum variance filter. Third, setting W = I
(where I is the identity matrix) results in a constrained estimate
that is always closer to the true state than the unconstrained
estimate.

Given the aforementioned set of equations for the Kalman
filter, our algorithm can be summarized as follows:

Step 1) Each vehicle performs intervehicle-distance mea-
surements and takes a reading of its own velocity.

1Instead of GPS, we may use triangulation to find the initial values.

This information is then shared with all the vehicles
within the cluster. If new vehicles have just joined
the cluster, an initial estimate of their position is also
required. This initial estimate can be established in
one of two ways, either by vehicles exchanging GPS
position estimates or by measuring and exchanging
the intervehicle distances to perform trilateration. In
general, GPS, if available, is the preferred method in
establishing initial estimates since trilateration, with
noisy intervehicle-distance measurements, can often
yield ambiguous initial position estimates [14].

Step 2) Update the (9) and (10) predictions. Note that the
rank of the state matrix will be dynamic since the
number of vehicles within the cluster can change
from one time step to the next.

Step 3) Incorporate the measurements from step 1) to update
(11) and (12). The current position estimate based on
vehicle movements and a current set of intervehicle-
distance estimates will be contained in the matrix
of position estimates Ak|k with an associated level
of uncertainty captured by the Pk|k matrix. The
algorithm also forces the position estimates to be
within the road boundaries.

Step 4) Repeat steps 1), 2), and 3) at the update rate of the
filter Ts.

IV. PERFORMANCE ANALYSIS

A. Cramér–Rao Bound

To gain a better understanding of the performance of our
algorithm, we derive the CRB. The CRB provides a lower
bound on the error covariance matrix of any unbiased esti-
mate of unknown parameters. It is a tight bound in the sense
that the maximum-likelihood detector asymptotically ap-
proaches the performance CRB for high signal-to-noise ratio
[16]. For the case of localization, where velocity information is
available, and using the motion model (2), the lower estimation
bound denoted as P k is calculated by the recursion [20]

Cov(Ak) ≥P k (20)

P k+1 =
(
(P k + TsQk)−1 + JP

)−1
(21)

where JP is equal to the Fisher information matrix for the
static localization case, which is studied for the received-signal-
strength-, ToA-, and AoA-ranging techniques in [21]. The
recursive (21) has the form of a Riccati recursive equation and
will have a stationary form [20]

P̄ =
(
(P̄ + TsQ)−1 + JP

)−1
(22)

which has the following solution:

P̄ = −1
2
TsQ + J− 1

2
P

×
(
J

1
2
P

(
TsQ +

T 2
s

4
QJPQ

)
J

1
2
P

) 1
2

J− 1
2

P . (23)
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Fig. 6. CRB for position estimates versus our Kalman-filter-based solution;
lower curve shows performance gain by forcing the position estimate to be
within the confines of the road.

Note now that if Q → ∞—i.e., as the uncertainty in the mobil-
ity goes to infinity—then (23) gives P̄ = JP. Therefore, it is
clear how including the mobility in localization is important for
the improvement of position estimates. In general, for a linear
system with a Gaussian-noise distribution, the Kalman filter
can be shown to achieve this CRB [16]. In our case, we are
deploying an EKF where we are linearizing the nonlinear mea-
surement equation using the Taylor series. Although, generally
speaking, the EKF will not achieve the CRB, it still serves as
a good ultimate bound. Generally, how close the EKF comes
to the bound is based on how well the Taylor-series expansion
describes the nonlinear measurement equation.

To see how well our algorithm performs in relation to the
bound, we will first consider when there is no hard constraints
imposed to force position estimates to be within the confines
of the road. Therefore, we can use (23) to compare to the
output of our algorithm. Consider the case where we use a
ToA-based-radio-ranging scheme with a standard deviation of
4 m of error in the intervehicle-distance estimates. From Fig. 6,
it is clear that due to the Taylor-series approximation, our
algorithm without hard lane constraints (the top curve) does
not always achieve the CRB (the middle curve). However,
when hard lane constraints are imposed, the bound (23) can be
exceeded (as seen by the lower curve). This result makes sense
since, by imposing hard lane constraints, there is a new piece
of information, therefore allowing our approach to exceed the
CRB of the general velocity case. Indeed, the true CRB should
be rederived for the case with lane constraints.

B. Computational Cost

In this section, we find the computational cost of our algo-
rithm. Let n be the number of vehicles within the local cluster.
The computational complexity of our algorithm is O(m2.4 +
n2) [22], where m is the size of our measurement vector. The

m2.4 term is due to the multiplication of the Ĥk matrix, and
the n2 term is for other matrix multiplications in the Kalman
update. If all measurements are used, then m will be equal to
(n2 − n); however, in practice, the distance measured between
vehicles i and j are averaged so that m is effectively equal to
(n2 − n)/2. However, for the majority of practical scenarios,
m is small. As a point of reference, our algorithm implemented
in MATLAB runs in less than 500 ms on a 3-GHz machine
when there are up to 15 vehicles in a cluster and when the
measurements are being shared at a rate of once per second.

The only stage in the algorithm that entails communication
overhead is the step where the vehicles share distance and
velocity estimates with their neighbors. If we assume that
nonoverlapping clusters do not share the same channel be-
cause of range limitations, then the communication overhead
is O(n2) since n2 measurements are being shared. In practice,
this is implemented by each vehicle sending one packet of size
O(n) containing all the observed distance measurements and a
packet of constant size for the vehicle’s velocity information.

Based on the frequency the measurements are shared be-
tween vehicles and the cluster size, the communication over-
head becomes an interesting problem since there will be
message collisions. For our experiments, we have used a 1-s
update rate with cluster sizes not larger than 15 vehicles, but
different update rates will be studied in the future.

V. SIMULATION RESULTS

We study the performance of our algorithm under three
scenarios. First, we compare our algorithm to the robust quads
proposed by Moore et al. [14]. The robust-quads algorithm
is designed primarily for localizing a stationary set of nodes
and, therefore, does not have a mechanism for incorporating
past localization results. To compare the robust-quads algorithm
to ours, we operate it in a sequential fashion such that at
each time step, the localization algorithm is run independent
of the previous localization results. Next, we will compare
our algorithm to the one presented in [23], where velocity
and road boundary information is used to localize vehicles
with a nonlinear least squares (NL-LS) optimization. Therefore,
unlike the robust-quads implementation, past vehicle locations
are incorporated into the estimation of the position at the current
time step.

In the next two sections, we will outline the simulation
environment used as well as define the performance metrics
that we will be using to analyze and compare our localization
algorithm to previously proposed ones.

A. Simulation Environment

We have used the Corridor Simulator, which is a microscopic
transportation simulator and has been developed by the U.S.
Federal Highway Administration to model vehicle movements.
We have modeled a 4-km road with three east-bound and
three west-bound lanes with vehicles entering into the east and
west ends of the system at a rate of 1200 vehicles per hour,
as shown in Fig. 7. The speed limit for the road was set to
100 km/h.
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Fig. 7. Roadway for simulated vehicular environment.

For the experiments, we track a single vehicle’s ability to
determine the relative position of all vehicles within its cluster
(i.e., all vehicles within its communication range of 150 m) as it
traverses the 4-km section of the road. Naturally, there will be a
variable number of vehicles within a vehicle’s communication
range as it transverses the network. Given this experiment setup,
we found that each vehicle generally had between 8 and 14
neighboring vehicles at each time step.

In addition, note that, for the simulation experiments, we
have assumed that the position estimate for a vehicle when
it first enters the cluster has been made via the GPS for the
algorithms requiring an initial position estimate of the vehicle.
After a vehicle has appeared once in the cluster, all future
position estimates are based on prior estimates. The GPS po-
sition estimate for these experiments was set to differ from the
true position by a Gaussian-distributed random variable with a
standard deviation of 6 m that is for consistency with the real
GPS error levels of 3–10 m [24].

B. Performance Metrics

There are two main metrics that we have chosen to use for
evaluating the effectiveness of the localization algorithms. The
first metric that we have used is the root-mean-square error
(RMSE) in the final position estimate, which can be thought
of as the average distance of the final position estimate from
the actual position. We have defined RMSE in the final position
estimate as follows:

σfinal

=

√√√√ n∑
i=1

(xfinal est. i−xactual i)2+(yfinal est. i−yactual i)2

n
(24)

where n is the number of vehicles in the cluster at the current
time, (xactuali, yactuali) represents the actual position of vehicle
i (often referred to as the ground truth in other literature),
and (xfinal est.i, yfinal est.i) is the position estimate of vehi-
cle i after running step 4) of our algorithm. Note that since
only one vehicle is fixed at position (0, 0) when the position
estimate is being made, an arbitrary reflection or rotation
from the actual positions of the vehicles is an equally valid
solution.

Fig. 8. Showing effect on performance when the intervehicle-distance-
estimation error is varied.

The second metric that we have used is the RMSE in the
intervehicle-distance measurements, which we have defined as

σd =

√√√√ M∑
i,j=1

( ˆdi,j − di,j)2

M
(25)

where M is the number of intervehicle-distance measurements,
ˆdi,j is the measured distance between vehicles i and j, and di,j

is the actual distance between vehicles i and j. This metric
is important because it allows us to measure the sensitivity
of the localization algorithm to error levels in the distance
measurements.

C. Comparisons With Other Algorithms

First, we will compare the performance of our algorithm
with the robust-quads algorithm [14]. Since the robust-quads
algorithm does not rely on the initial position estimates of the
vehicle, we will compare it to ours based on changing the error
levels in the intervehicle-distance measurements.

To examine the effect of errors in the intervehicle-distance
estimates on the final position estimate, we have varied the
RMSE in the distance measurements while leaving all other
parameters constant. The results of this experiment are shown
in Fig. 8, where each data point is the average of ten runs of
the algorithms through our simulated vehicular environments.
The top curve shows the robust-quads algorithm, whereas the
bottom curve is our proposed algorithm. From the figure, it is
clear that the error level in position estimates of the robust-
quads algorithm grows at a linear rate which is about seven
times greater than our algorithm. The major difference in
performance can be attributed to the fact that the robust-quads
algorithm does not make use of velocity information or road
constraints.

To verify this claim and to see the benefits of the road and
velocity information, we will compare our algorithm to the NL-
LS approach presented in [23]. Comparing the middle curve in
Fig. 8, which is the results of the algorithm presented in [23],
with the upper curve showing the robust-quads algorithm [14],

Authorized licensed use limited to: The University of Toronto. Downloaded on December 23, 2009 at 17:22 from IEEE Xplore.  Restrictions apply. 



PARKER AND VALAEE: VEHICULAR NODE LOCALIZATION USING RECEIVED-SIGNAL-STRENGTH INDICATOR 3379

Fig. 9. Comparison of NL-LS approach to our Kalman-filter-based approach.
The performance of using GPS with a mapping module is also shown for
reference.

it is clear that by including velocity and road constraints, the
sensitivity to distance-measurement errors is reduced. Although
the algorithm presented in [23] shows significant performance
gains over existing static-based localization schemes by in-
cluding these additional constraints, on average, it performs
worse than the algorithm proposed here. The primary reason
for this performance difference is in how the velocity and road
constraints are incorporated into the optimization scheme, as
discussed earlier. This can be verified by examining the result
of how well a single vehicle was able to localize its neighbors
at each time step as it traveled through the system. If we assume
that a Gaussian random variable with a standard deviation
of 6 m describes the noise characteristics of the intervehicle-
distance measurements, then we get the results shown in Fig. 9.
The curve with the higher peaks is the NL-LS implementation
proposed in [23], and the bottom curve is our Kalman-filter-
based approach presented in this paper. Overall, we see that
there is much less variation in the error levels of our algorithm
versus the NL-LS approach. This lower variation results in an
overall lower average level of error for our algorithm—2.2 m
for the Kalman-filter approach versus 3.2 m for the NL-LS
approach.

In Fig. 9, we have also included the average performance of
a GPS-based system (i.e., the horizontal line with the rms error
of approximately 5.7 m), which made use of lane and velocity
constraints to establish position estimates. The GPS system was
set to have an average accuracy of 6 m, which is consistent with
the performance of real-world GPS [24], and then, the velocity
lane constraints were imposed. This reinforces the additional
benefits of using intervehicle-distance estimates.

VI. CONCLUSION

The pursuit of cooperative-vehicle-collision-warning system
is one of the many efforts of automotive manufactures, gov-

ernment, and researchers to reduce the vehicle-accident rate. In
the future, it is envisioned that vehicles will be equipped with
DSRC devices, which allows vehicle-to-vehicle and vehicle-to-
infrastructure communications. Equipping vehicles with DSRC
devices will allow vehicles to cooperatively share information
(i.e., location, speed, heading, acceleration, etc.) with their
peers and be able to predict potential hazards that lie on the
road ahead. However, the ultimate success of this system will
be dependent on how accurately the relative position of neigh-
boring vehicles can be predicted. This is an essential component
for cooperative-collision-warning systems.

The GPS and some of its improved variants are currently
used for positioning; however, these technologies do not sup-
port the stringent reliability and accuracy requirements for
cooperative-vehicle-collision-warning systems. In the effort to
improve reliability and accuracy, radio-based-ranging tech-
niques can be used to determine intervehicle distances. The
RSSI, with an accurate model of the wireless channel, and the
two-way reciprocal ToA system are two candidates.

In this paper, we discussed that a majority of the existing
localization approaches are not applicable to vehicle networks
for one or more of the following reasons: They do not account
for the noise that is present in the internode-distance measure-
ments, the node localization cannot be performed in a distrib-
uted fashion, or they fail with node mobility. Nevertheless,
the robust-quads algorithm seemed to show promise for use in
vehicular networks. However, the algorithm is still unproven for
networks with high levels of node mobility.

It is likely that not one technology or one positioning algo-
rithm, on its own, will provide the optimal solution for vehicle
positioning within a cluster. However, using other resources
(e.g., a vehicle’s velocity and acceleration, a road map of the
surrounding area, and the intervehicle distances) may improve
the estimation of vehicle position and ultimately allow the
realization of a cooperative-collision-warning system.

We have shown that gains in accuracy and reliability can be
achieved over the GPS-based approaches by using intervehicle-
distance measurements taken by a radio-based-ranging tech-
nique and that the accuracy of localization can be improved
by taking into account extra information, such as maps of the
road, vehicle kinematics, etc. We have performed an analysis of
our algorithm to examine its performance limits, computational
complexity, and its sensitivity-measurement errors. We have
shown that our Kalman-filter-based solution is accurate and
reliable, and it allows a real-time implementation. The structure
of our algorithm allows us to place a probabilistic confidence on
the position estimates, so that inaccurate position estimates can
be actively identified, making it practical for future vehicular
safety applications.
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