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Abstract— In this paper, a novel multiple target local-
ization approach is proposed by exploiting the compressive
sensing theory, which indicates that sparse or compressible
signals can be recovered from far fewer samples than that
needed by the Nyquist sampling theorem. We formulate
the multiple target locations as a sparse matrix in the
discrete spatial domain. The proposed algorithm uses the
received signal strengths (RSSs) to find the location of
targets. Instead of recording all RSSs over the spatial grid
to construct a radio map from targets, far fewer numbers of
RSS measurements are collected, and a data pre-processing
procedure is introduced. Then, the target locations can be
recovered from these noisy measurements, only through an
ℓ1-minimization program. The proposed approach reduces
the number of measurements in a logarithmic sense, while
achieves a high level of localization accuracy. Analytical
studies and simulations are provided to show the perfor-
mance of the proposed approach on localization accuracy.

I. INTRODUCTION

Accurate localization of multiple targets is one of

the fundamental and challenging problems in signal

processing [1]. In various applications, including in-

door location-based services for mobile users, equip-

ment monitoring in wireless sensor networks, and radio

frequency identification (RFID)-based tracking, accurate

and timely location information plays a prime role.

Current literature shows a growing interest in using

localization techniques based on the received signal

strength (RSS), so that they can be applied to almost

any radio device. A traditional wisdom in designing

RSS-based localization techniques treats the location

finding as a distance estimation problem based on RSS

measurements directly. However, due to the complexity

of the radio channel, it always fails to provide satis-

factory accuracy in most applications. Thus, one of the

key challenges arises: how to estimate target locations

accurately while conducting only a small number of RSS

measurements.

This work was supported by the State Key Laboratory of Rail Traffic
Control and Safety, Beijing Jiaotong University, under project No.863
(2007AA01Z277).

In this paper, we use compressive sensing (CS)

for target localization. Compressive sensing provides a

novel framework for recovering signals that are sparse

or compressible under a certain basis, with far fewer

noisy measurements than the traditional methods [2]–[5].

It then uses an ℓ1-minimization program to acquire the

sparse signal or its unique sparse representation, which

can be effectively solved in polynomial time. In the

localization problem, since the location of a target is

unique in the discrete spatial domain at a certain time, it

can be modeled as an ideal 1-sparse vector. Hence, this

paper focuses on investigating an accurate localization

approach for multiple targets from only a small number

of noisy RSS measurements using the CS theory.

Other approaches to target localization have also

been proposed in the literature. In [6]–[8], the local-

ization problem was formulated from pair-wise mea-

surements as a dimensionality reduction problem on a

Riemann manifold. This method improved the accuracy

in dense wireless sensor networks. However, when the

networks are sparse, the accuracy decreases sharply.

Meanwhile, it assumed continuous communication be-

tween each sensor node and the centre node to transmit

the pair-wise measurement data, which implied an ex-

tremely high communication cost in terms of bandwidth

and energy consumption.

From the viewpoint of device complexity and cost,

indoor localization via RSS fingerprinting of Wireless

LAN (WLAN) infrastructure was proposed in [9]. The

fundamental insight was that a radio map with the RSS

fingerprinting over spatial discrete grid points was gener-

ated during an off-line phase, and the location of a target

was estimated by comparing its online measurements

with the radio map. Some improved models were pro-

posed based on the fingerprinting method [10]. However,

an accurate localization scheme requires a large grid

size, while on each grid point an RSS measurement

is needed. Since this method is highly dependent on

the environment, any significant change to the topology

implies a costly new re-calibration.

In [11][12], it has been realized that the localiza-
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tion problem can be formulated as a distributed sparse

approximation problem, by which inter-sensor commu-

nication costs can be reduced significantly. However,

a localization dictionary has to be locally estimated

at each sensor node, which induces estimation error.

Meanwhile, communication requirements are demanded

among sensor nodes, which also leads to poor result in

sparse networks.

In this paper, we propose a novel multiple target

localization approach by using the CS theory. The target

locations are formulated as a sparse matrix in the discrete

spatial domain. By measuring only a small number of

signal strengths from targets, the target locations can

be fully recovered through an ℓ1-minimization program.

To apply the CS theory, appropriate data processing is

needed. A pre-processing procedure on the original mea-

sured data is introduced to induce incoherence needed

in the CS theory; and a post-processing procedure to

compensate for the spatial discretization caused by grid

assumption. In this paper, we use Basis Pursuit (BP)

[13], Basis Pursuit Denoising (BPDN) [14], and Dantzig

Selector (DS) [15] for ℓ1-minimization programs, and

compare their performance for location estimation.

The proposed localization method can be applied in

a number of applications. It is frequently desirable to

detect the location of wireless nodes inside a building.

Fig. 1 illustrates an example with K target nodes.

These nodes can be wireless access points or RFID tags

transmitting radio frequency signals. The strength of the

signal transmitted by each node is measured at M points,

possibly by a receiver traveling in the coverage area and

registering the RSS received from each transmitter at

the sampling points. If the transmitters are RFID tags,

then the receiver will be an RFID reader. If the wireless

nodes are access points, the receivers are laptops, PDAs,

or smart phones with WiFi capability. The sample points

may also be multiple fixed readers measuring the RSS

of targeted tags.

The remainder of this paper is organized as follows.

In Section II, we describe the multiple target localization

approach, presenting and proving the idea of locating

targets using the CS theory via spatial sparsity. The

performance of the proposed approach is studied through

simulations in Section III. Finally, Section IV concludes

the paper.

II. TARGET LOCALIZATION USING COMPRESSIVE

SENSING

Consider a case, where K targets are located in an

isotropic area, which is divided into a discrete grid with

N points, while their positions are unknown. Wireless

nodes take RSS measurements from these targets at M
arbitrary reference points (RPs) over the grid. The goal is

to determine the locations of these targets simultaneously

Target 1
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Target 3

Target K

RP 1

RP 2
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Fig. 1. The scenario of multiple target localization.

and accurately, using only a small number of noisy

RSS measurements and simple operations. It is noticed

that the problem has a sparse nature, that is K ≪
N . Furthermore, the number of measurements is much

smaller than the grid size, M ≪ N .

Compressive sensing provides a novel framework

for recovering signals, which are sparse or compressible

under a certain basis, with far fewer noisy measure-

ments than the traditional methods. It exploits an ℓ1-

minimization program to acquire the sparse signal or

its unique sparse representation. To make this possible,

two basic components should be held in CS: sparsity

and incoherence. In the localization problem, since the

location of a target is unique in the discrete spatial

domain at a certain time, it can be modeled as an ideal

1-sparse vector. Meanwhile, the incoherence requirement

from the CS theory can be achieved with the same effect

through an appropriate data pre-processing. Thus, the

localization problem can be well formulated as a sparse

matrix recovery problem in the discrete spatial domain.

Assume that the location of the targets over the grid

is denoted by ΘN×K , which is shown as the N × K
matrix,

Θ = [θ1, ..., θk, ..., θK ] (1)

where, each θk is an N × 1 vector with all elements

equal to zero except θk(n) = 1, where n is the index of

the grid point at which the kth target is located.

According to the CS theory, rather than measur-

ing the K-sparse signal or its sparse representation Θ
directly, compressive noisy RSS measurements in an

M -dimensional space are conducted. The compressive

measurements are obtained by multiplying a random

matrix on the original signal,

y = ΦΨΘ + ε (2)

where,
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Fig. 2. The flow chart of multiple target localization approach based
on the CS theory.

1) ΨN×N is the sparsity basis, under which the

measured signals have sparse coefficients Θ, as

defined in (1). Assume that the transmission power

for each target is Pt (dBm). The RSS dictionary

indicates the radio propagation channel model,

which follows [16]:

RSS(d) = Pt +Ke − 10ηlog10(
d

d0

)+α+β (3)

where Ke is a unitless constant that depends on

the environment; d is the real transmitter-receiver

distance, and d0 is a reference distance for the

antenna at far field; η is the path loss coefficient;

α accounts for the fast fading effect, which is

zero in our case; β denotes the random attenuation

due to shadowing. Typically, shadowing is almost

constant over long time periods. Thus, [Ψ]ij =
RSS(dij), records the RSS reading on grid point

i from the target located at grid point j, for all

1 ≤ i ≤ N, 1 ≤ j ≤ N .

2) ΦM×N is the measurement matrix. Instead of

measuring all the RSS readings on the overall

grid, only a small number of measurements are

collected on several arbitrary grid points, which are

referred to as RPs. Thus, each row of Φ represents

the location of each RP, with an element of 1 to

indicate the grid point at which the RP is located.

3) ε is the measurement noise.

Based on the above formulations, the M×K matrix

y, is the compressive noisy RSS measurements from

K targets on M RPs, with each row vector indicating

one measurement value. The number of measurements

obeys M = O(K log(N/K)), with M ≪ N . The

overall localization approach based on the CS theory is

illustrated in Fig. 2.

Since the sparsity basis Ψ and the measurement

matrix Φ are coherent in spatial domain, the CS theory

cannot be directly applied. To solve this problem, a data

pre-processing on measurement matrix y is introduced.

It is proved that this procedure has the same effect as

orthogonalizing the two matrices.

Proposition 1: Assume that y is a compressive

noisy measurement matrix, with size M × K. Let y =
ΦΨΘ + ε, where Θ is a K-sparse matrix in a N -

dimensional space, and M = O(K log(N/K)). Let T

be a pre-processing operation on y, i.e., y′ = Ty. Let

T = QR† (4)

where R = ΦΨ, and Q = orth(RT )T , where orth(A)
is an orthogonal basis for the range of A, and AT returns

the transpose of matrix A. Then, Θ can be well recovered

from y′ via an ℓ1-minimization program.

Proof: Note that y′ can be written as

y′ = QR†y = QR†RΘ + QR†ε = QΘ + ε′. (5)

Since Q is an orthogonal matrix, Θ can be well recovered

from y′ via an ℓ1-minimization program based on the CS

theory.

Under the conditions of sparsity and incoherence

stated above, the CS theory indicates that the original

sparse coefficients Θ can be well recovered given the

compressive noisy measurements y′, only via an ℓ1-

minimization program, which can be effectively solved

in polynomial time.

In this paper, three formulations are employed and

compared for the recovery problem from compressive

noisy measurements, i.e., Basis Pursuit (BP) [13], Basis

Pursuit Denoising (BPDN) [14], and Dantzig Selector

(DS) [15]:

• BP formulates the problem with equality con-

straints, and solves the problem by a primal-dual

interior point method,

θ̂ = arg min
θ∈RN

||θ||1, s.t. y′ = Qθ. (6)

• BPDN formulates the problem with quadratic con-

straints, and reformulates it as a second-order cone

program, which can be solved by a log-barrier

algorithm,

θ̂ = arg min
θ∈RN

||θ||1, s.t. ||y′ − Qθ||2 ≤ ǫ. (7)

• DS formulates the problem with minimal residual

correlation (the Dantzig selector), and recasts the

problem as a linear program, which also can be

solved by the primal-dual interior point method:

θ̂ = arg min
θ∈RN

||θ||1, s.t. ||QT (y′ − Qθ)||∞ ≤ µ

(8)

where µ is a constraint relaxation parameter.

For each θ̂k, the output of the three ℓ1 programs

turns out to be a N × 1 vector with all elements equal

to zero except one element equal to one, which exactly

indicates the grid point at which the target is located.

This means that if the targets are exactly located at the

grid points, then the recovery can be precise.

However, the targets may not necessary exactly

located at these grid points. In such cases, the recovered

location θ̂k does not turn out to be an exact 1-sparse

vector, but with a few non-zero coefficients. In order to
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compensate for the error induced by the grid assumption,

a post-processing procedure is conducted. We choose the

dominant coefficients in θ̂k whose values are above a

certain threshold λ, and take the centroid of these grid

points as the location indicator. Let Sk be the set of all

indexes of the elements of θ̂k such that

Sk = {n|θ̂k(n) > λ} (9)

These are potential candidate points for the estimate of

the location of the kth source. Each n ∈ S represents

a point in the two dimensional space (xn, yn). The

location of source k can be estimated by finding the

centroid of the candidate points, that is

(x̂k, ŷk) = centroid{(xn, yn)| for n ∈ Sk} (10)

III. SIMULATION RESULTS AND ANALYSIS

The effectiveness and properties of the proposed

localization approach based on the CS theory are studied

and analyzed through simulations. In order to examine

the performance of position recovery from compressive

noisy measurements, three ℓ1-minimization programs

(i.e., BP, BPDN, and DS) are employed and compared.

Meanwhile, the localization error with respect to the

number of measurements needed, as well as the number

of targets whose positions can be recovered are derived,

under three programs. Furthermore, both measurement

noise and channel noise are considered to demonstrate

the reliability and robustness of the proposed approach.

Finally, we compare our CS approach with some tra-

ditional location estimation schemes on the localization

accuracy.

In our simulations, the RSS dictionary Ψ is obtained

by employing the indoor empirical model defined by the

IEEE 802.15.4 standard [17].

RSS(d) =

{

Pt − 40.2 − 20 log d, d ≤ 8

Pt − 58.5 − 33 log d, d > 8.
(11)

In the first simulation, the effectiveness of posi-

tion recovery from compressive noisy measurements via

three different ℓ1-minimization programs is studied. An

100m2 area is divided into a 23 × 23 grid. There are

4 targets randomly located on the grid, whose positions

are unknown. RSS measurements from these 4 targets

are collected at 12 arbitrary RPs. Assume signal-to-noise

ratio (SNR) is equal to 25dB, which is the ratio of

the transmit power to the noise power at the receiver.

The result in Fig. 3 shows that all of the three ℓ1-

minimization programs can achieve a similar high level

of accuracy on the sparse signal recovery, as long as

the number of measurements M conforms with the CS

theory. A maximum localization error of 0.4m (4%) is

observed using the DS program over 100 simulations.

The error in the other two techniques is smaller.

0 10 m

10 m

x grid

y 
g
ri

d

Original target positions

Recovered positions using BP

Recovered positions using BPDN

Recovered positions using DS

Fig. 3. The performance of position recovery under 4 targets with
only 12 measurements via BP, BPDN, DS, respecitvely.

Next, we increase the number of targets to 20 to

see if the above performance is still achieved. The effec-

tiveness of position recovery shown in Fig. 4 is derived

under the same grid size and the same SNR, while the

number of measurements M is equal to 30, which still

approximately obeys M = O(K log(N/K)) ≈ 28.4. A

maximum localization error of 0.11m (1.1%) is observed

using the DS program over 100 simulations.

10 m
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x grid

y 
g

ri
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Original target positions

Recovered positions using BP

Recovered positions using BPDN

Recovered positions using DS

Fig. 4. The performance of position recovery under 20 targets with
only 30 measurements via BP, BPDN, DS, respecitvely.

In the second simulation, the localization error

versus the number of measurements needed using the

CS approach via the above three recovery programs

is studied. The number of targets is fixed at 4, and

the number of measurements varies between 2 and 24.

Assume SNR=25dB. The localization error is defined

as the average Euclidean distance between the true

positions and the recovered positions of the 4 targets,
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that is

Pe =
1

K

K
∑

k=1

√

(xk − x̂k)2 + (yk − ŷk)2. (12)
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Fig. 5. The localization error versus the number of measurements
using the CS approach via BP, BPDN, DS, respecitvely.

Fig. 5 shows the localization error versus the number

of measurements needed in the CS approach. As seen,

in all three techniques, the localization error decreases

sharply and becomes very small as the number of

measurements increases. Interestingly, the number of

measurements for which the localization error becomes

negligible is M = 8, which is approximately equal to

K log(N/K) ≈ 8.5. In the BP program, with sufficient

number of measurements M = 20, the positions of these

targets are recovered precisely in most cases, with an

accuracy of almost 100%.

Third simulation investigates the performance of the

CS technique as a function of the number of targets.

The number of targets changes from 1 to 10, and the

number of measurements is fixed at 18. The simulation

is conducted under the same grid size and the same SNR.

Fig. 6 illustrates the sparsity level that can be achieved.

The maximum number of targets whose positions can

be recovered under M = 18 measurements within 0.7m

localization error is approximately equal to 10. It is no-

ticed that for the localization of 10 targets, the number of

measurements is M = 18, which is approximately equal

to K log(N/K) ≈ 17.2, as the CS theory indicates. As

illustrated in the figure, BP achieves better accuracy than

other techniques, and BPDN achieves better accuracy

than DS under the same parameter settings. Thus, we

would use BP recovery program in the following analy-

sis.

In the fourth simulation, the localization error with

respect to the measurement noise using the CS approach

via the BP program is studied. The number of targets

is fixed at 4, and the number of measurements varies
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Fig. 6. The localization error with respect to the number of targets
using the CS approach via BP, BPDN, DS, respecitvely.

from 2 to 24. N = 23 × 23, and SNR changes from

5dB to 30dB. Fig. 7 shows that the CS approach can

tolerate a certain level of measurement noise. When the

number of measurements conforms with the CS theory,

the localization error is below 0.58m (5.8%) for SNR

above 5dB, and below 0.19m (1.9%) for SNR above

20dB.
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Fig. 7. The localization error with respect to the measurement noise.

In the fifth simulation, the localization error with

respect to the channel noise using the CS approach via

the BP program is studied. The number of targets is fixed

at 4, and the number of measurements varies from 2 to

42. N = 23 × 23, and SNR=25dB. A random noise

matrix ∆ is added on the channel Ψ. We define the

perturbation of channel by η = ||∆||
||Ψ|| , which is set to

be 31.6%, 10.0%, 5.0%, 1.0%, 0.1%, 0.0% respectively

in our simulations. Fig. 8 shows that the CS approach

can tolerate a certain level of channel perturbation. With

sufficient number of measurements that conform with the

CS theory, the localization error is less than 1m when

the channel perturbation is below 31.6%. In addition, the
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CS approach is quite stable, with an error of less than

0.2m (2%) if the channel perturbation is below 10%.
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Fig. 8. The localization error with respect to the channel perturbation.

Finally, we compare our CS approach with some

traditional localization estimation schemes, based on the

prior work in [10]. Fig. 9 depicts the cumulative average

error distribution. A percentage of localization error is

used as a criterion, in which the absolute error in meter

(defined by (12)) is divided by the overall localization

area. Although the kernel method with spatial filtering

and access point selection leads to improvements of

accuracy over the K Nearest Neighbours (KNN) and

the histogram methods, RSS measurements on each

grid point are needed. The number of measurements

M increases linearly with the grid size N . While in

the CS approach, only a small M is needed, which

is logarithmic to the grid size N . Furthermore, the

CS approach outperforms the other three methods by

30% ∼ 50% for the localization error about 5%.
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Fig. 9. Cumulative average error for KNN, histogram, kernel, and
the CS approach.

IV. CONCLUSION

In this paper, we have proposed a multiple target

localization scheme based on compressive sensing. The

intuition behind this technique is that location finding is

a sparse problem and that in the CS theory, the locations

can be well recovered from only a small number of noisy

measurements through an ℓ1-minimization program. We

have used pre-processing to induce incoherence needed

in the CS theory, and post-processing to compensate

for the spatial discretization caused by grid assumption.

Simulation results demonstrate that the proposed CS

method outperforms the earlier algorithms that RSS for

wireless node localization.
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