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Abstract— In this paper, a novel compressive sensing
for manifold learning protocol (CSML) is proposed for
localization in wireless sensor networks (WSNs). Inter-
sensor communication costs are reduced significantly by
applying the theory of compressive sensing, which indicates
that sparse signals can be recovered from far fewer samples
than that needed by the Nyquist sampling theorem. We
represent the pair-wise distance measurement as a sparse
matrix. Instead of sending full pair-wise measurement
data to a central node, each sensor transmits only a
small number of compressive measurements. And the full
pair-wise distance matrix can be well reconstructed from
these noisy compressive measurements in the central node,
only through an ℓ1-minimization algorithm. The proposed
method reduces the overall communication bandwidth re-
quirement per sensor such that it increases logarithmically
with the number of sensors and linearly with the number
of neighbors, while achieves high localization accuracy.
CSML is especially suitable for manifold learning based
localization algorithms. Simulation results demonstrate the
performance of the proposed protocol on both the local-
ization accuracy and the communication cost reduction.
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I. INTRODUCTION

Accurate and low cost sensor localization is one

of the fundamental and crucial challenges in Wireless

Sensor Networks (WSNs) [1]. In various applications,

including environmental monitoring, vehicle tracking

and emergency response, it is often necessary to know

each sensor’s location in advance for its data to be

meaningful [2]. In addition, location-awareness routing

protocols can save energy significantly by eliminating

route discovery. In designing protocols for localization,

low communication costs with a high level of accuracy

should be especially considered.

Manifold learning (ML)-based algorithms (e.g, mul-

tidimensional scaling (MDS) [3][4], and isometric map-

ping (Isomap) [5]) formulate the localization problem

from pair-wise measurements as a dimensionality re-

duction problem on a Riemann manifold. Compared
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with other measurement-based algorithms (e.g, time-of-

arrival (TOA) or angle-of-arrival (AOA) measurements

of ultra-wideband (UWB) [6]), ML-based algorithms

avoid expensive devices, since the only requirement for

learning in a central node is pair-wise measurements,

which could be any of the physical readings that indicate

distance information among sensors, such as the received

signal strength (RSS) or the hop-count. However, with

the increasing number of sensor nodes, the scale of pair-

wise measurements becomes very large. Communication

cost between each sensor node and the central node is a

bottleneck in these cases. Patwari et al. [7] showed the

accuracy and robustness of ML algorithms, but neglected

the large communication costs when obtaining the pair-

wise measurements by assuming them to be known.

In [8], it has been realized that, with the help

of choosing landmark sensor nodes, a computationally

efficient approximation to MDS-based algorithms can

be achieved. The fundamental insight was that, MDS

was only applied on a few landmark points. Then, a

relative position map was obtained with high accuracy,

by formulating the localization problem of rest of the

sensor nodes as a triangulation problem. However, due

to the constraints of getting connectivity between each

sensor node to these landmark nodes, as well as getting

large pair-wise measurements among them, this method

is still energy exhausted to be applied in large scale

networks.

Shang et. al. [9] use an MDS-MAP(P) strategy as a

variant of MDS to solve the communication cost problem

by using patches of relative maps. The main idea is

to build a local map at each node of the immediate

vicinity and then merge these maps together to form

a global map. However, since each node computes a

local MDS algorithm individually, it leads to high error

accumulation, large energy costs for measuring and

computing at each sensor side, as well as large delay

from the root node to the last leaf node.

In this paper, with the goal of addressing this open

but important problem, our original contributions are

as follows. First, we propose compressive sensing for

manifold learning (CSML), a new approach to reduce
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the communication cost. In this algorithm, each sensor

transmits only a small number of compressive mea-

surements to a central node by a local random projec-

tion. The central node reconstructs a sparse pair-wise

distance matrix, through an ℓ1-minimization algorithm.

The overall communication bandwidth requirement per

sensor is reduced logarithmically. Second, we derive the

least sparsity level that could be achieved in ML-based

algorithms, under different large network densities. Sim-

ulation results demonstrate the performance of CSML

on both the localization accuracy and the communication

cost reduction. For simplicity, our methods are illustrated

with 2-D sensor networks and they can easily be ex-

tended to 3-D cases under the same methodology.

The remainder of this paper is organized as fol-

lows. Problem statements and mathematical models are

described in Section II. In Section III, we describe the

CSML algorithm, presenting and analyzing the idea of

reducing communication cost based on the CS theory,

including the measurement stage at each sensor node

and the learning stage at the central node. The effective-

ness of CSML is demonstrated through simulations in

Section IV. Finally, Section V concludes the paper.

II. PROBLEM STATEMENT

We consider a scenario that sensors are randomly

deployed on an area, taking distance measurements (by

RSS readings) from their neighbors, and passing the

measured data to a central node through multi-hops,

as Fig. 1 illustrates. Based on the RSS measurements,

the goal is to determine locations of all sensor nodes

simultaneously in the central node with a high level of

accuracy, while reducing the total communication costs

within the network.

Unknown Location

Wireless Sensors

Known Location

Data

link

Central Node

Fig. 1. The scenario of localization in WSNs.

We assume that the number of unknown location

sensors is p, while the number of anchor nodes with

known locations is q, with q ≪ p, and p + q = n.

The known locations of anchor nodes are assumed to

be: [(xp+1, yp+1), (xp+2, yp+2), ..., (xp+q, yp+q)]. The

pair-wise distance measurement matrix is represented

by: D = [D1, ...,Di, ...,Dn], i = 1, 2, ..., n, where

[Di]n×1 = [di1, di2, ..., dij , ..., din]T , j = 1, 2, ..., n,

where AT returns the transpose of matrix A. The random

projection operator Φm×n is a matrix with i.i.d Gaussian

random entries, with m ≪ n.

The objective is to determine the physical posi-

tions of the n sensor nodes simultaneously in a central

node, i.e., [(x1, y1), (x2, y2), ..., (xn, yn)], with a high

level of accuracy, while reducing the communication

cost between each sensor node and the central node

significantly.

III. CSML: PROTOCOL DESIGN

Manifold learning algorithms (e.g, MDS, Isomap)

are based on a full pair-wise measurement matrix, which

indicates the distance information among sensor nodes.

However, they ignore the large communication cost for

obtaining this matrix in large scale networks. In this

paper, we introduce a new protocol, referred to as CSML,

to solve this problem. Based on the CS theory, it uses an

ℓ1-minimization algorithm to recover a sparse pair-wise

distance matrix.

The block diagram of CSML is shown in Fig. 2 with

two stages. On the measurement stage, random projec-

tions are conducted locally at each sensor node, and only

a small number of noisy compressive measurements are

transmitted to the central node. In the learning stage, a

sparse pair-wise distance matrix, indicating neighboring

connectivity, is reconstructed at the central node through

an ℓ1-minimization algorithm, and Isomap is applied on

this reconstructed matrix to learn the locations of all the

sensor nodes.

The calculation is in the centra node
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Fig. 2. The framework of CSML protocol.

A. Measurement stage

Let Dk ∈ Rn be a sparse representation of the

full pair-wise distance matrix D. Dk = [Dk1,Dk2, ...,
Dki, ...,Dkn], where each Dki is a k-sparse vector,

namely, ||Dki||0 ≤ k, i ∈ {1, 2, ..., n}. Thus, for each

sensor node i, Dki represents the pair-wise distance

measurement from its k nearest neighbors, and leaves the

other entries to be zeros. It is noted that the positions of

the k non-zero entries in the sparse vector are unknown.

According to the CS theory, noisy compressive

measurements in an m-dimensional space are needed
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at each sensor node, with m ≪ n. The CS theory

indicates that, rather than designing a sensor to measure

a signal [Di] ∈ Rn, it often suffices to measure a much

smaller vector Yi = ΦDki [10] to [11]. If Φ is properly

designed, from only m noisy compressive measurements,

it is possible to recover D with the quality comparable

to its proximity to the nearest k-sparse signal (Dk). If D
itself is k-sparse, then the reconstruction is almost exact.

The quality of the recovered signal is as good as if the

position of the k largest values of each Di is known

ahead of time and can be measured directly. Based on

the CS theory, the number of compressive measurements

m should be larger than c0k log(n/k)), where c0 is a

constant. Our simulations show that with c0 = 1, we

can estimate the locations of sensors with a very small

error.

Compressive measurements are obtained by taking

incoherent projections on the original signal.

Yi = ΦDki + εi, Yi ∈ Rm,∀i = 1, 2, ..., n (1)

where Φm×n is the measurement matrix, which is prop-

erly designed such that it is incoherent with the signal

basis, and εi is the measurement noise. It has been

shown that incoherence holds with very high probability

between an arbitrary basis and a random matrix with

i.i.d. Gaussian distributed entries [10]. Therefore, we

choose Φ as an m×n random matrix with i.i.d. Gaussian

distributed entries for applying the CS theory.

By multiplying a random projection Φm×n locally

on the measurement vector at each sensor node, a noisy

compressive vector Yi is measured and sent to the central

node. Compared to sending a vector of [Di]n×1, or

sending k measurements from k nearest neighbors with

large overheads to indicate the nodes, only an m × 1
vector Yi is transmitted, where m = O(k log(n/k)).
Note that m ≪ n.

B. Learning stage

By applying the CS theory, a sparse pair-wise dis-

tance matrix could be recovered at the cental node based

on the random seeds Φm×n through an ℓ1-minimization

algorithm. Thus, the traditional ill-posed recovery prob-

lem through far fewer samples is solved here only by

using the following linear algorithm, which is effectively

solved in polynomial time.

D̃k = arg min
D̃k∈Rn

‖ D̃k ‖1,

s.t. Ỹ = ΦDk + ǫ.
(2)

Minimization (2) is the Basis Pursuit (BP) algorithm

[12], which formulates the problem with equality con-

straints, and solves the problem by a primal-dual interior

point method. Furthermore, the recovery error of signal

D̃k compared to the full pair-wise signal D is proved to

be bounded as [10]:

‖ D − D̃k ‖2≤ c1k
−1/2 ‖ D − Dk ‖1 +c2ε (3)

where c1 and c2 are constants, and ε is the measurement

noise.

Next, the ML-based algorithm (Isomap) can be ap-

plied on this well recovered D̃k matrix, and this process

is undertaken in the central node. Basically, three steps

of Isomap are conducted.

1) A geodesic distance matrix D′

k is computed based

on the recovered sparse pair-wise distance matrix

D̃k, by using either Dijkstra’s or Floyd’s shortest

path algorithm. The near-zero entries in D̃k are set

to a large value which implies large distances.

2) Classical MDS algorithm is applied on the

geodesic distance matrix D′

k;

a) We square and double centeralize matrix D′

k,

and obtain the Gram matrix B by: B =
− 1

2JD′2
k J , where J = In×n − 1

ne× eT , and

e = (1, 1, ..., 1)T ;

b) We eigen-decompose matrix B, i.e., B =
UV UT , and keep the largest d positive eigen-

values (Vi) and the first d columns of eigen-

vectors (Ui), i = {1, 2, ..., d};

c) Finally, we learn the relative low dimen-

sional coordinates by: (xi, yi) = UiV
1/2
i , i =

{1, 2, ..., d}.

3) The output of step 2 is a 2-D or 3-D relative

position map, thus global position of all the sensor

nodes is obtained by a position alignment, i.e.,

mapping the relative coordinates into global coor-

dinates through scaling, rotating and shifting based

on the prior location knowledge of the q anchor

nodes.

IV. SIMULATIONS

The effectiveness and properties of CSML are stud-

ied through simulations. Sensors are randomly placed

in a unit square region. The number of sensors is 50,

100, and 200 respectively. Sensors only hear from their

neighbors, while the data transmission between sensors

and the central node can take place through multi-hops.

The ML error with respect to the number of nearest

neighbors is computed to determine the necessary num-

ber of neighbors (parameter k), under different network

densities. The ML error is defined by the residual vari-

ance, which is the sum of residual eigenvalues in step

2 of Sec. III-B. It represents how well the Isomap is

applied for localization.

R =

rank(B)
∑

i=d+1

Vi. (4)

The recovery rate of CS is defined as the ratio of

the number of correctly recovered non-zero entries in D̃k
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to the overall number of non-zero entries in Dk. A non-

zero element in D̃k is assumed to be correctly recovered

if |dij − d̃ij | < δ, where δ is a design parameter, (in our

simulation, δ = 1e − 3).

r = c/C (5)

c =

{

1 if |dij − d̃ij | < δ

0 else
.

Meanwhile, the accuracy of the overall CSML local-

ization algorithm is measured by averaging the Euclidean

distances between the estimated locations and their true

locations over the whole area:

Pe =
1

n

n
∑

i=1

√

(x′

i − xi)2 + (y′

i − yi)2. (6)
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Fig. 3. Residual variances with respect to the number of nearest
neighbors.

Figure 3 shows residual variances with respect to

the number of nearest neighbors under different network

densities, from 50 to 200 nodes. Under these situations,

residual variances converge to a small number only

when the number of neighbors is larger than a certain

number. This turning point could be considered as the

least sparsity level (k) achieved with which ML works

well. Thus, when designing random seeds Φm×n, where

m = O(k log(n/k)), the smallest k is constrained by

ML algorithms. We will set k = 10 to achieve a good

performance by ML in the following simulations.

Figure 4 illustrates the recovery rates of the CS

algorithm with respect to the number of compressive

measurements (m) under k nearest neighbors (k = 10
according to Fig. 3) under different scales of networks.

Results indicate that using far fewer number of measure-

ments, it is possible to recover an approximate full pair-

wise measurements matrix with extremely high recovery

rate. To recover at least 90% of the pair-wise matrix,

the communication costs reduced by CSML reaches
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Fig. 4. Recovery rates with respect to the number of compressive
measurements.

10 20 30 40 50 60 70 80
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of noisy compressive measurements

R
ec

o
v

er
y

 r
at

e

 

 

SNR = 30dB

SNR = 20dB

SNR = 10dB

Fig. 5. Recovery rates under noisy compressive measurements.

40%, 60% and 75% respectively, under 50, 100 and

200 sensor nodes. The larger scale of the network, the

more percentage of reduction of the communication cost.

The result also holds in noisy environment. Figure 5

illustrates the corresponding recovery rate under noisy

measurements in the scenario of 100 sensor nodes with

10 neighboring connectivities. Signal-to-noise (SNR)

varies from 10dB to 30dB, which is defined as the

ratio of the transmit signal power to the noise power

at the receiver. Noise is assumed to follow Gaussian

distribution in the simulation.

Figure 6 shows the intuitive effectiveness of CSML

algorithm by locating 100 randomly deployed nodes in a

unit square area. The result is an average output of 100

experiments, each of which is under 50% compressive

measurements from 10 nearest neighbors. Green stars

represent the true locations of these 100 nodes, while

red circles represent the output of the whole CSML

algorithm.
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Fig. 6. CSML localization result under 100 random nodes.
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Fig. 7. The localization error with respect to the number of
compressive measurements.

Figure 7 shows the statistical results of the CSML

localization accuracy with respect to the number of

compressive measurements that each sensor node takes.

With sufficient number of measurements (m ≪ n),

localization error can be less than 1% (defined in (6),

which is well acceptable for corresponding location-

based services.

In classical Isomap approach, each sensor transmits

[Di]n×1 measurements to the central node, which brings

large communication cost problem, especially in large

scale networks; However, by applying the CS theory,

compared to the ambient dimension n, CSML reduces

the overall communication bandwidth requirement per

sensor, such that it increases logarithmically with the

number of sensors and linearly with the number of

neighbors. Meanwhile, with sufficient number of com-

pressive measurements, CSML achieves an extremely

high localization accuracy by applying Isomap directly

on the reconstructed sparse matrix.

V. CONCLUSION

In this paper, we first show that the CS theory

could be applied to solve the large communication cost

problem in the ML-based localization algorithms. The

CSML protocol is proposed to formulate the pair-wise

measurements among neighbor sensors as a sparse ma-

trix, and an approximate full pair-wise matrix from noisy

compressive measurements is reconstructed at the central

node, only through an ℓ1-minimization algorithm. It is

shown that CSML significantly reduces the transmission

costs, while maintaining a high level of localization

accuracy. CSML is especially suitable for ML-based

localization algorithms in wireless sensor networks.
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