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Abstract—The recent research in cluster-based MAC and rout-
ing schemes for Vehicle Ad Hoc Networks (VANETs) motivates
the necessity for a stable VANET clustering algorithm. Due to the
highly mobile nature of VANETs, mobility must play an integral
role in cluster formation. We present a novel, mobility-based
clustering scheme for Vehicle Ad hoc Networks, which utilizes
the Affinity Propagation algorithm in a distributed manner.
The proposed algorithm considers typical vehicular mobility
during cluster formation to garner clusters with high stability.
Simulation results confirm the superior performance of the
proposed algorithm, when compared to other accepted mobility-
based clustering techniques, in terms of average cluster head
duration, average cluster member duration, and average rate of
cluster head change.

I. INTRODUCTION

Research in vehicular communications, specifically Vehic-
ular Ad Hoc Networks (VANETs), is playing a vital role
in the future safety and ease of our roads. VANETs will
enhance driver safety and reduce traffic deaths and injuries
by implementing collision avoidance and warning systems. In
addition, VANETs can relieve traffic congestion by providing a
driver with live routes that avoid road hazards and bottleneck
areas. The vast sensor network that VANETs will create, is
inciting countless other applications, and making VANETs a
hot topic in ad hoc networking today.

The VANET scenario has various difficult challenges for
communication, many of which can be addressed by a clus-
tered network. VANETs have a highly-mobile environment
with a rapidly changing network topology. By clustering the
vehicles into groups of similar mobility, the relative mobility
between communicating neighbor nodes can be reduced. Both
delay-intolerant (e.g. safety messages) and delay-tolerant (e.g.
road/weather information) data will need to be transmitted, ne-
cessitating Quality-of-Service (QoS) requirements. Clustering
has been shown to effectively reduce data congestion [1], and
can support QoS requirements [2]. In addition, traffic jams and
high node density in urban areas will be inevitable. This leads
to contention and the hidden terminal problem, which are the
performance limiting factors in a dense network and can be
effectively alleviated by a clustered topology.
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There has been much research on cluster-based VANETs in
the recent literature, which has been focused on developing
cluster-based MAC protocols, as in [3 – 9]. and cluster-based
routing protocols, as in [10] and [11]. In [4] and [9], the cluster
head (CH) takes on a managerial role and facilitates intra-
cluster communication by providing a TDMA schedule to its
cluster members. In [9], adjacent clusters are assigned different
CDMA codes to avoid interference between clusters. The work
in [9] shows a substantial reduction in probability of message
delivery failure, when compared to traditional 802.11 MAC.

The recent research discussing cluster-based MACs and
routing schemes for VANETs, present many similar low-
maintenance clustering algorithms. In these schemes nodes
are required to transmit periodic HELLO beacons to indicate
their present state of either Undecided, Cluster Head or Cluster
Member. An undecided node will join the first CH that it hears
a HELLO beacon from, and if the node does not hear from a
CH within a given time period, it will become a CH itself. In
these schemes, the first node to declare CH status wins.

Node mobility should play an integral part in cluster cre-
ation in order to achieve stability. In [4], mobility is addressed
during cluster collision; when two cluster heads come within
range, the winning CH will be the one with both lower relative
mobility and closer proximity to its members. Alternatively,
[8] addresses mobility by first classifying nodes into speed
groups, such that nodes will only join a CH of similar velocity.
The above clustering techniques are lacking in cluster stability,
because they do not attempt to select a stable CH during initial
cluster head election.

Although there is not a VANET clustering scheme focused
on cluster stability, there are many mobility-based clustering
techniques for ad hoc networks. A well-known mobility-based
clustering technique is MOBIC [12], which is an extension
of the Lowest-ID algorithm [13]. In Lowest-ID, each node is
assigned a unique ID, and the node with the lowest ID in
its two-hop neighborhood is elected to be the cluster head.
In MOBIC, an aggregate local mobility metric is the basis
for cluster formation instead of node ID. The node with
the smallest variance of relative mobility to its neighbors is
elected as the cluster head. The relative mobility for a certain
node is estimated by comparing the received power of two



consecutive messages from each neighboring node. Cluster
head re-election only occurs when two cluster heads move
within range of one another for a certain contention interval.
When a cluster member moves out of range of its cluster head,
it joins any current cluster head in its neighborhood, or forms
a new cluster.

The previous cluster-based VANET research motivates the
need for a stable VANET clustering scheme. In this paper,
we propose a distributed mobility-based clustering algorithm
focused on cluster stability, where stability is defined by
long cluster head duration, long cluster member duration,
and low rate of cluster head change. We achieve this al-
gorithm by utilizing a new data clustering technique called
Affinity Propagation (AP) [14]. Our clustering scheme will
form clusters with both minimum distance and minimum
relative velocity between each cluster head and its members.
We assume position information is provided by the vehicles
GPS. We validate our proposed algorithm by comparing it
to the mobility-based ad-hoc clustering scheme, MOBIC [12].
MOBIC is well-established and stability driven, thus providing
a good benchmark for our algorithm’s success.

The rest of this paper is organized as follows. Section
II presents the Affinity Propagation algorithm. Section III
proposes our distributed, mobility-based, VANET clustering
algorithm. Section IV presents our simulation results, and
finally this paper concludes with Section V.

II. AFFINITY PROPAGATION

Thus far, we have discussed clustering from an ad hoc
networking perspective, however clustering is also used in
scientific data analysis, where it aims to process and detect
patterns in data. Data clustering is a static, one-shot process
that searches data for a set of centers, or exemplars, which best
describe the data. In this context, clustering aims to minimize
the distance between each data point and its assigned exemplar,
where distance could be Euclidian distance, or any other
application-specific function. A revolutionary new technique
for data clustering is the Affinity Propagation (AP) algorithm
[14], which has been shown to produce clusters in much less
time, and with much less error than traditional techniques
(such as K-means clustering [15]). Here, clustering error refers
to the application-specific distance between each data point
and its assigned exemplar. In Affinity Propagation, data points
pass messages to one another, which describe the current
affinity that one data point has for choosing another data point
as its exemplar.

This algorithm takes an input function of similarities, s(i, j),
where s(i, j) reflects how well suited data point j is to be
the exemplar of data point i. Affinity Propagation aims to
maximize the similarity s(i, j) for every data point i and
its chosen exemplar j, therefore an application requiring a
minimization (e.g. Euclidean distance) should have a negative
similarity function. Each node i also has a self-similarity,
s(i, i), which influences the number of exemplars that are
identified. Individual data points that are initialized with a
larger self-similarity are more likely to become exemplars. If

all the data points are initialized with the same constant self-
similarity, then all data points are equally likely to become
exemplars. By increasing and decreasing this common self-
similarity input, the number of clusters produced is increased
and decreased respectively.

There are two types of messages passed in this technique.
The responsibility, r(i, j), is sent from i to candidate exemplar
j and indicates how well suited j is to be i’s exemplar, taking
into account competing potential exemplars. The availability,
a(i, j), is sent from candidate exemplar j back to i, and
indicates j’s desire to be an exemplar for i based on supporting
feedback from other data points. The self-responsibility, r(i, i)
and self-availability, a(i, i), both reflect accumulated evidence
that i is an exemplar.

The update formulas for responsibility and availability are
stated below:

r(i, j) ← s(i, j)− max
j′s.t.j′ 6=j
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Responsibility and availability message updates must be
damped to avoid numerical oscillations that will prevent the
algorithm from converging. This is done by updating new
messages as follows: mnew = λmold + (1 − λ)mnew, where
λ is a weighting factor between 0 and 1. In AP, the clustering
is complete when the messages converge. Another feature
of the algorithm is the ability to determine when a specific
data point has converged to cluster head status in its given
cluster. When a point’s self-responsibility plus self-availability
becomes positive, that point has become the cluster head.

Upon convergence, each node i’s cluster head is:

CHi = arg max
j
{a(i, j) + r(i, j)} (4)

III. PROPOSED VANET CLUSTERING SCHEME

The proposed clustering technique uses the fundamental
idea of Affinity Propagation from a communications per-
spective and in a distributed manner. We call this algorithm,
Affinity PROpagation for VEhiclar networks, (APROVE). In
our algorithm, each node in the network transmits the respon-
sibility and availability messages to its neighbors, and then
makes a decision on clustering independently. This results, in
a distributed algorithm, where every node is only clustering
with those in its one-hop neighborhood.

We design a similarity function for our algorithm with the
goal of creating stable clusters, and tailored to the VANET
environment. Our similarity function, shown below in (5), is a
combination of the negative Euclidean distance between node



positions now and the negative Euclidean distance between
node positions in the future. This is a simple way to consider
both node position and node mobility in cluster creation.

s(i, j) = − (‖xi − xj‖+ ‖x′i − x′j‖
)

(5)

xi =
[
xi

yi

]
x′i =

[
xi + vx,iτf

yi + vy,iτf

]

where xi is a vector of node i’s current position, and x′i is
a vector of node i’s predicted future position. The function
predicts each node i’s future position in τf seconds from now,
based on node i’s current velocity vx,i in the x direction and
velocity vy,i in the y direction. The Time Future parameter,
τf , can be tuned for different types of mobility.

The self-similarities were initialized to the same value
and was set such that the number of clusters produced was
minimized. We gave equal preference to each node, however
it is possible to assign certain vehicles (such as large trucks)
a higher preference, making them more likely to become the
cluster head.

A. Message Passing and the Neighbor List

Every node i will maintain a neighbor list, Ni, which has
a neighbor list entry, Nj

i, for every neighbor j. Each neighbor
list entry, Nj

i contains the following fields:

(x, y)j : position vector of node j
(vx, vy)j : velocity vector of node j
s(i, j): similarity for i and j
a(i, j): last availability received from j
a(j, i): last availability transmitted to j
r(j, i): last responsibility received from j
r(i, j): last responsibility transmitted to j
CHcnvg,j : cluster head converge flag for node j
CHj : Index of j’s current cluster head
texpire: Time that node j expires

Each node j will periodically broadcast a HELLO beacon
containing its ID, position, velocity and current cluster head.
The hello broadcast period is defined as TH , where we have
used TH = 1s in our simulations. Upon reception of a
HELLO beacon from node j, node i will calculate its current
similarity with j, s(i, j), using (5) and update its neighbor list
with the new information. A node only considers neighbors
moving in the same direction, and ignores broadcasts from
traffic in the opposite direction. This procedure is outlined in
Procedure 1.

Procedure 1 Broadcast and Reception of Hello Beacons
1) Every TH , each node j broadcasts HELLO beacon:

〈j, (x, y)j , (vx, vy)j , CHj〉
2) Each receiving neighbor, i, checks if j is traveling in

the same direction
3) If true, i calculates similarity with j, s(i, j)
4) Node i adds/updates j’s neighbor list entry, Nj

i’s:
〈j, (x, y)j , (vx, vy)j , s(i, j), texpire, CHj〉

The broadcast period for availability and responsibility
messages is defined as TM , which we set to 1s in our
simulations. Each node i will calculate its responsibility with
each neighbor j using (1). This value is damped with the
previous transmitted responsibility (where λ = 0.5), and stored
as r(i, j). Node i then accumulates r(i, j) for each neighbor
j in the responsibility array, Ri, and broadcasts the array in
the RESP packet. Each node i will calculate the availability
with each neighbor j using the update equation (2). Node i
will store j’s damped availability in a(j, i) and accumulates
all a(j, i)’s in the availability array, Ai. This array is broadcast
in the AVAIL packet.

The AVAIL packet also includes the flag CHcnvg . Due to
the nature of the AP algorithm, a node’s self-responsibility
plus self-availability will become positive when it has con-
verged to cluster head status. For every iteration of the
algorithm, each node i checks for this condition, and then
sets the CHcnvg flag accordingly. This flag indicates to i’s
neighbor nodes whether or not they should consider i as
a potential cluster head. The responsibility and availability
broadcast procedure is outlined in Procedure 2.

Procedure 2 Broadcast of RESP and AVAIL messages
Every TM , each node i will:

1) Calculate responsibility, r(i, j) for each neighbor j
2) Update with damping factor:

r(i, j) = (1− λ)r(i, j)new + λr(i, j)old

3) Store responsibilities, r(i, j), in array: Ri

4) Calculate availability, a(j, i) for each neighbor j
5) Update with damping factor:

a(j, i) = (1− λ)a(j, i)new + λa(j, i)old

6) Store availabilities, a(j, i), in array: Ai

7) Determine if converged to CH status:
if r(i, i) + a(i, i) > 0, then set CHcnvg

8) Broadcast the RESP packet: 〈Ri〉
9) Broadcast the AVAIL packet: 〈Ai, CHcnvg〉

When node i receives a RESP or AVAIL packet from j,
it will search for its id in the Rj or Aj array, and if found,
it reads off its specific responsibility or availability message.
These message are stored in the received message fields, r(j, i)
or a(i, j) of j’s neighbor list entry, Nj

i . If the received packet
is of AVAIL type, node i will also update the CHcnvg,j field
for j according to the CHcnvg flag received. This routine is
summarized in Procedure 3.

Procedure 3 Reception of RESP and AVAIL messages
Upon reception of a RESP or AVAIL packet from node j,
node i will:

1) Search for its id, i in the Rj or Aj array.
2) If a message addressed to i is found, update the r(j, i)

or a(i, j) field in the neighbor list entry, Nj
i

3) Check if CHcnvg flag is set, and update CHcnvg,j field
in j’s neighbor list entry, Nj

i



B. Cluster Formation and Maintenance

Clustering decisions are made periodically with a period of
CI called the Clustering Interval. Note that the TM message
period must be small enough to allow the algorithm to con-
verge within a CI period. Preliminary simulations show that a
neighborhood of 40 nodes can converge in under 10 iterations.
(E.g. A TM of 1s, requires a minimum CI of 10s)

Every CI , node i finds its cluster head using (4). However,
node i only considers its neighbors with the CHcnvg,j flag
set, which confirms node j will become a cluster head. In the
event that none of the neighbors have set their CHcnvg,j flag,
node i becomes its own cluster head.

In between clustering iterations of CI , we perform cluster
maintenance. Every TCM (the period of cluster maintenance),
node i purges its neighbor list of old entries by checking the
texpire fields. After purging, node i checks if its cluster head
is still in its neighbor list. If the CH has been lost, node i
searches through its neighbors for current CHs to join, by
finding neighbors with CHj = j. The CHcnvg,j flag is not
used here because it indicates the potential cluster heads for
the next round, not the current cluster heads. If multiple CHs
are found in the neighbor list, node i uses (4) to select the best
one. If node i can not find another neighbor that is currently
a CH, it becomes its own cluster head.

There are some important notes regarding the passing of
availability and responsibility messages. Firstly, the messages
are not reset between clustering iterations, which gives mem-
ory to the algorithm and provides preference to previous
cluster heads. This feedback results in less frequent cluster
changes. Secondly, our algorithm does not assume synchro-
nization, and each vehicle can run it independently of one
another. In the asynchronous case, the received availability
and responsibility messages will be at most one period old.
Since these messages are averaged over time and a vehicle’s
movement over one time period is small, the algorithm’s
performance will not be effected. In the case of a lossy
channel, messages can be older than one time period, which
may cause the algorithm’s performance to degrade. In this
case, a more reliable MAC (such as [7]) can be used to increase
the message reception probability.

IV. SIMULATION RESULTS

We have implemented the proposed algorithm in NS2,
which has been highly validated by the networking research
community. All simulations were performed with 100 vehicles
on a highway. Each simulation ran for 500s, however only the
last 200s were used for performance metric calculations. This
was to ensure that the algorithm had reached a steady state
before measuring its performance. All of the simulation results
were averaged over 10 different mobility scenarios, and used
the following timing parameters: TH = TM = TCM = 1s.
The 802.11 MAC and the 914MHz Lucent WaveLAN DSSS
network card with a radio range of 250m, have been used
in the NS2 simulations. The MOBIC code was taken from a
legacy version of NS2 provided by [12].

Highway scenarios were created using the VanetMobiSim
traffic simulator [16], which generates realistic mobility pat-
terns, including lane changing. The highway was generated
in a looped formation with a 3km, 3-lane highway moving
in each direction. The vehicles reach their maximum speed
during the main highway pass, and then slow significantly at
the turns, creating a realistic pattern with both low and high
density traffic. The highways moving in either direction were
separated by more than the 250m broadcast range, so that clus-
tering could not occur across them. Our proposed algorithm
will not cluster vehicles moving in opposite directions, but
MOBIC will, which degrades cluster stability. This step was
taken to provide a fair comparison of MOBIC and APROVE.

A. Clustering Performance Metrics

To evaluate the cluster stability and overall performance of
our algorithm, we use the following metrics:

1) Average Cluster Head Duration: Long cluster head
duration is important for MAC schemes where the cluster head
is the central controller and scheduler.

2) Average Cluster Member Duration: This metric judges
the overall stability of the initial clustering.

3) Average Rate of Cluster Head Change: This metric is
useful since it takes into account both cluster head duration
and the number of clusters formed.

4) Average Number of Clusters: To effectively decrease
network contention, fewer clusters is desirable.

B. Performance Analysis

In the first set of simulations, the maximum velocity of the
vehicles was 40m/s (144km/h). The Cluster Interval, CI , was
swept from 10s to 150s and Time Future, τf , was swept from
0s to 120s. Figure 1 plots the effect of CI and τf on the
clustering performance.

It can be seen from Figures 1a, 1b, and 1c that APROVE’s
cluster stability far exceeds that of MOBIC. Figure 1d in-
dicates that MOBIC performs better in terms of number
of formed clusters. However, the cluster change rate, which
involves the joint effect of CH duration and the number
of clusters, proves that APROVE’s overall performance is
superior. Notice that average cluster change rate is proportional
to the number of clusters formed, and inversely proportional
to the CH duration. From Figure 1c we can see that there is
an optimal τf setting for each setting of CI . Based on this
plot, a τf of 30s was chosen for future simulations, as it gave
the best performance for this mobility scenario.

By sweeping over different velocities, we compare the clus-
tering performance of APROVE and MOBIC. Using VanetMo-
biSim, highway scenarios were generated with approximate
maximum velocities of 15, 25, 35, 40, and 50m/s. The perfor-
mance results are displayed in Figure 2. Figure 2d shows that
MOBIC generates a smaller number of clusters, however, it
can be observed from Figures 2a, 2b, and 2c, that APROVE’s
stability performance far exceeds that of MOBIC. Figure 2c
allows us to judge overall clustering performance, and when
comparing APROVE and MOBIC at a typical highway speed



(a) (b)

(c) (d)

Fig. 1. The impact of τf on cluster performance for different CI settings. Simulations run with 100 nodes and maximum velocity = 40m/s. τf = 0, 10, 30,
50, 70, 90, and 120s, and CI = 10, 30, 60, 90, 120, and 150s. MOBIC’s performance is also plotted. (a) The average cluster head duration. (b) The average
cluster member duration. (c) The average rate of cluster head change. (d) The average number of clusters

of 40m/s, APROVE shows 300% improvement in average rate
of cluster head change. It is also evident that while MOBIC’s
performance degrades at higher mobility, APROVE’s perfor-
mance degrades at lower mobility. A possible explanation
for this trend is that parameter optimization was done for
40m/s, thus the timing parameters have been tuned to higher
velocities.

MOBICs lesser stability performance could be caused by
error in the mobility metric and cluster member suitability.
The use of received power in the mobility metric can lead
to inaccuracies in the relative mobility calculation due to
channel fluctuations. In addition, the MOBIC algorithm does
not consider cluster member suitability when forming clusters.
Although the CH will initially have the lowest relative mobility
in its neighborhood, a cluster member with high relative
mobility will enter and exit the cluster quickly, and will choose
a new cluster head without regard for the mobility metric.

V. CONCLUSION

Motivated by the ample research in cluster-based MACs
and routing schemes for VANETs, we have proposed a novel
and stable mobility-based clustering algorithm. Our algorithm
elects cluster heads periodically, by using affinity propagation
from a communications perspective, and in a distributed man-
ner. The algorithm finds clusters that minimize both relative
mobility and distance from each cluster head to its cluster
members. The clusters created are stable and exhibit long
average cluster member duration, long average cluster head du-
ration, and low average rate of cluster head change. APROVE’s
high stability makes it a suitable candidate for clustering in a
mobile and dynamic environment, such as VANETs.
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