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Abstract—In this paper, we study the possibility of throughput
improvement through precoding in OFDMA based wireless
systems with limited channel feedback. Precoding can increase
the overall system throughput by selecting the use of higher
modulation and coding schemes (if there are any) in each physical
resource unit (PRU) under a maximum bit error rate constraint.
For a specific form of precoding that we proposed in [1], we
analytically derive a formula for the maximum PRU throughput.
Sufficient conditions guaranteeing that our proposed technique
outperforms the conventional technique are derived. Finally,
numerical results show the amount of throughput gain achieved
by our proposed technique.

I. INTRODUCTION

Future generation wireless systems, such as mobile WiMAX
[2] and Beyond 3G (B3G) [3] networks, are expected to pro-
vide high speed wireless connectivity. Orthogonal Frequency
Division Multiple Access (OFDMA), with a large number of
subcarriers, has been chosen as the multiple access technique
in these systems to achieve high rate wireless transmission.
The choice of OFDMA arises due to its excellent performance
in combating various wireless channel impairments such as
multipath fading and inter-symbol interference. Moreover,
OFDMA is very efficient in exploiting multiuser diversity by
employing adaptive resource allocation [4]–[8] to different
mobile receivers according to their instantaneous channel
qualities.

Since resource scheduling in OFDMA wireless networks
is performed at the base stations (BS), adaptive subcarrier
allocation and bit loading techniques cannot be implemented in
downlink without the knowledge of downlink channel qualities
for all connected receivers. This necessitates the feedback
of all this information to the BS, which results in a huge
overhead. To reduce the amount of this feedback, current
standards [2] [3] partition their spectral and temporal resources
into physical resource units (PRUs) and allow receivers to
report their channel qualities only once for the PRUs sharing
the same subcarriers. In general, the subcarriers spanning both
the spectral and temporal dimensions of the PRU are referred
to as transmission units (TUs). To unify scheduling in both
downlink and uplink, current standards assume that a PRU is
the smallest allocatable unit. It must be assigned to only one
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receiver and only one modulation and coding scheme (MCS)
is allowed to be used over all its TUs.

The MCS employed over the TUs of each PRU is de-
termined from the average signal-to-interference-noise ratio
(SINR) reported by the receiver that was granted this PRU,
so as to satisfy the bit error rate requirement imposed by the
network. If distinct symbols are sent over all the TUs (to which
we will refer to as the conventional scheme), it is impossible
to employ a higher MCS without violating the bit error rate
constraint. The only way to use a higher MCS is then to reduce
the number of distinct symbols transmitted in the PRU and
introduce other alternatives to receive them. This procedure
is generally referred to as precoding. In [9], [10], it has been
shown that precoding can reduce the symbol error probability.
Thus, we can employ precoding for any higher MCS to
achieve a lower symbol error rate than the one achieved by the
conventional scheme for the same MCS and SINR. Obviously,
if the symbol error probability is reduced, the bit error rate will
also decrease and can attain the desired level. At this point, two
questions arise: Which precoding scheme should be employed?
and would that lead to a throughput improvement?

The answer to the first question is obviously the precoding
scheme that can achieve both the lowest symbol error reduc-
tion and an equal error probability to all transmitted symbols.
We refer to the former property as the best improvement prop-
erty and the latter as the symmetry property. The justification
for the latter property is quite intuitive since it is necessary not
to favor symbols over others in terms of error probability. The
former property is justified by the fact that the stronger the
ability of the scheme to reduce the symbol error probability,
the lower the number of TUs needed to introduce redundancy
and thus the higher the achieved throughput. In [1], we
proved that a specific class of symmetric precoding schemes
outperforms most other known symmetric precoding classes.
In this paper, we will consider this precoding class and study
its ability to improve the overall PRU throughput compared
to the conventional scheme in such multicarrier environment
with limited channel quality feedback. We show that we can
indeed achieve throughput improvement for practical WiMAX
and B3G systems using this precoding scheme proposed in [1].

The rest of the paper is organized as follows. Section II
illustrates the system model. In Section III, we introduce
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the precoding class we explore in this paper. In Section IV,
we derive an expression for the maximum PRU throughput
achieved by this precoding scheme and sufficient conditions
for that throughput to outperform the one achieved by the
conventional scheme. Section V shows numerically the amount
of throughput gains that can be achieved using our proposed
technique. Section VI concludes the paper.

II. SYSTEM MODEL

Our model consists of a WiMAX or a B3G base station
that employs OFDMA as the multiple access technology. Our
focus is on downlink transmission but all our results apply to
uplink transmission as well. The number of subcarriers in the
cell can be as large as 2048 [2] [3] and even higher in newer
standards. Each Nf of these subcarriers are grouped together
into subchannels. The subcarriers in each subchannel can
be adjacent or distributed according to the subchannelization
mode. Each subchannel is generally allocated to a receiver for
Ns symbols, which we generally term as PRU. Thus, each
PRU includes N = Nf ×Ns TUs. Current standards and pre-
standards set the value of Nf between 10 and 25 subcarriers
and the value of Ns between 8 and 16 OFDMA symbols [2]
[3], which makes practical PRU sizes (N ) in the range of 80
to 400 TUs.

The PRU allocation among different receivers is out of the
scope of this paper. We only focus on the MCS determination
for a PRU allocated to a given receiver. In current standards,
the MCS is determined according to the SINR reported by the
receiver, to which this PRU was granted, so as to transmit N
distinct symbols over the PRU TUs with a maximum threshold
bit error rate P th

b . The number of bits in each symbol is
determined by the spectral efficiency of the MCS employed
in this PRU.

In the rest of the paper, we will use the following terminol-
ogy and notation. The Spectral Efficiency (SE) of a MCS is
defined as the effective number of information bits this MCS
transmits on one TU. We define bc as the SE of the MCS
allowed in the conventional scheme, B as the set of MCSs
whose SE are higher than bc. Define i as an index to the
elements of B, bi as the SE of the ith MCS in B, Ri as the
PRU throughput achieved by the ith MCS and Rmax as the
maximum PRU throughput achieved over all i ∈ B.

III. PRECODING SCHEME

Precoding has been introduced in the literature [9], [10]
as a symbol protection scheme against fading conditions. In
the context described in Section II, the idea of precoding can
be introduced as reducing the number of distinct transmitted
symbols in a PRU below N , and exploiting the remaining TUs
in transmitting redundancy of these symbols. A symbol can
thus be recovered through different alternatives which reduces
the symbol error probability. One simple form of precoding
is simple diversity in which the original symbols are simply
repeated. In this case, the number of distinct symbols per
PRU should be a divisor of the number of TUs. This diversity
precoding is employed in several current standards. However,

it is intuitively not suitable for the purpose of this study since
a huge decrease in the transmitted distinct symbols will result
as the employed diversity order is increased which will not
lead to the desired throughput improvement.

Other forms of precoding can be obtained by performing
finite field operations on the distinct data symbols. To explain
this idea, assume that we send the 1 × N vector s of coded
symbols that is derived from the 1 × U vector u of original
distinct symbols (U ≤ N ) as s = u∗A. In this case, A is a U×
N matrix that is generally referred to as the precoding matrix.
The previous multiplication is performed over a finite field
of suitable dimension. A non-zero entry ai,j in the precoding
matrix determines the involvement of the original symbol ui

in the coded symbol sj . Note that the conventional scheme
can be regarded as a special case of precoding where U = N ,
A is the N × N identity matrix and the SE is set to bc.

In [1], we defined different classes of precoding matrices
that satisfy the symmetry property, defined in Section I, and
proved that a specific class of precoding matrices A∗ achieves
the lowest symbol error probability among these classes. The
matrices of this class must include all the columns of the U×U
identity matrix and the rest of the columns must be linearly
independent vectors having no zero entries. In other words,
any matrix of this class A∗ must be a column permutation of
the following matrix:⎛

⎜⎜⎜⎝
1 0 . . . 0 a1,U+1 a1,U+2 . . . a1,N

0 1 . . . 0 a2,U+1 a2,U+2 . . . a2,N

...
...

. . .
...

...
...

. . .
...

0 0 . . . 1 aU,U+1 aU,U+2 . . . aU,N

⎞
⎟⎟⎟⎠

where ai,j �= 0 ∀ i ∈ {1, . . . , U}, j ∈ {U + 1, . . . , N} and
are chosen so that any U columns of A∗ are linearly inde-
pendent. In [11], it has been proved that the aforementioned
precoding matrix is also the optimum precoding matrix among
all matrices having the symmetry property. Consequently, this
is the best matrix that serves our purpose since the stronger
the ability of the precoding matrix to reduce the symbol error
probability, the lower the amount of redundancy needed for a
MCS in B to satisfy the bit error rate constraint. In the next
section, we will provide an analysis of the maximum PRU
throughput achievable by applying this precoding scheme on
the MCSs in B and derive the sufficient conditions needed for
our scheme to outperform the conventional one in terms of
PRU throughput.

IV. ANALYSIS OF THE PRU THROUGHPUT

A. Derivation of the Maximum Throughput

In this section, we aim to find an expression for the
maximum throughput achieved by our proposed precoding
scheme using A∗. To make the problem general, precoding
can be performed by either coding on all the N TUs of the
PRU or partitioning these TUs into K subsets, each of size
Fk

(∑K
k=1 Fk = N

)
, and employing precoding on each of

them using Uk symbols (Uk < Fk). One can infer that the
former option is a special case of the latter with K = 1. In
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the following analysis, we will consider the general case and
derive an expression for Rmax. For notation simplicity, we
will replace Fk by F and Uk by U when we derive formulae
for one precoding block.

Defining Pei
as the symbol error probability for a single

transmission on a TU using the ith MCS, the overall proba-
bility of receiving an original symbol in error, denoted by Pe,
can be expressed as:

Pe = Pei
·

F−1∑
j=F−U

(
F − 1

j

)
P j

ei
(1 − Pei

)F−j−1 (1)

In words, an original symbol is received in error if symbol
errors occur on both the TU carrying the original symbol and
more than F − U − 1 TUs from the remaining F − 1 ones.
Since error occurrences on individual TUs are independent
of each other, we can use the central limit theorem (CLT) to
approximate this probability as:

Pe ≈ Pei
· Q

(
(1 − Pei

)(F − 1) − U√
(F − 1)(1 − Pei

)Pei

)
(2)

Since the Q-function is a decreasing function with the increase
of its argument, the lower U , the lower Pe. Thus, for any
i ∈ B, we can reduce U until the symbol error probability is
reduced such that the corresponding bit error probability drops
below the threshold bit error rate. We denote U satisfying this
condition on F TUs using the ith MCS by Ui,F . To ensure
that the bit error rate achieved by our scheme is always below
the threshold bit error rate, we assume that if a symbol is
received in error, all its bits are lost. Thus, defining Pet

as the
maximum allowed symbol error probability for the ith MCS,
then Pet

= P th
b .

Using the CLT approximation defined in (2), we can calcu-
late an approximate value of Ui,F as follows:

Pe ≈Pei
· Q

(
(1 − Pei

)(1 − F ) − U√
(F − 1)(1 − Pei

)Pei

)
≤ Pet

U
′
i,F =� (1 − Pei

) (F − 1)

− θi

√
Pei

(1 − Pei
) (F − 1)

1
2 	 ∀ F > 1

(3)

where θi = Q−1(Pet
/Pei

). Note that Ui,F should be upper
bounded by F − 1. Since in (3), θi can be negative for Pei

∈
(Pet

, 2Pet
) which may lead to an increase in U

′
i,F above its

upper bound F − 1, we can express Ui,F as:

Ui,F = min
{

U
′
i,F , F − 1

}
(4)

We can thus express the PRU throughput for the ith MCS as:

Ri = bi

K∑
k=1

Ui,Fk
(5)

Proposition 1. For practical values of N and Pet
such that

N ∈ {1, . . . , Nu} where Nu = 1 + 1
2Pet

, the maximum value
for Ri is achieved when K = 1. In other words, Rmax

i =
bi Ui,N .

To prove this proposition, we first need to introduce the
following two lemmas. The proofs of these lemmas are found
in the appendices.

Lemma 1. If Pei
≥ 2Pet

, then Ui,F is a superadditive
function in F on its domain (F ≥ 1).

Lemma 2. For Pei
∈ (Pet

, 2Pet
), if F ≤ Fu, where Fu =

1 + 1
2Pet

, then Ui,F is superadditive in F ∈ {1, . . . , Fu}.

Proof of Proposition 1:
Since Fk ≤ N ≤ 1 + 1

2Pet
⇒ Ui,Fk

is superadditive (from
Lemmas 1 and 2). Thus

Ri{K = 1} = bi Ui,N

= bi Ui,
∑ K

k=1 Fk
∀ K > 1

≥ bi

K∑
k=1

Ui,Fk
∀ K > 1

= Ri{K > 1}

Thus, we are always sure that “no partitioning” results in the
maximum value of Ri and that Rmax

i = bi Ui,N .

From Proposition 1, the maximum PRU throughput is:

Rmax = max
i∈B

{bi Ui,N} (6)

B. Improvement Conditions

Defining Rc as the throughput achieved by the conven-
tional technique, an improvement in the PRU throughput is
obtained by our precoding scheme over the conventional one
iff Rmax > Rc. That occurs iff:

∃ i ∈ B : Ui,N bi > Nbc ⇒ Ui,N >
Nbc

bi
(7)

Defining βi = bc/bi, αi = θi

√
Pei

(1 − Pei
) and νi =

1 − Pei
− βi, the following proposition provides sufficient

conditions on the range of N to guarantee the satisfaction
of the improvement condition in (7)

Proposition 2. For practical values of N and Pet
such that

N ≤ Nu, a throughput improvement is achieved by our
proposed technique (i.e. Rmax > Rc) if νi > 0 and if:

N >

⎧⎪⎨
⎪⎩

2
1−βi

Pei
∈ (Pet

, 2Pet
)

1 +
(

αi+
√

α2
i +4νi(1+βi)

2νi

)2

Pei
≥ 2Pet

(8)

Proof:
Case 1: Pei

∈ (Pet
, 2Pet

)
If N > 2(1 − βi)−1 ⇒ N − 2 > Nβi. But since
N ≤ Nu ⇒ Ui,N ≥ N − 2 (from proof of Lemma 2), then
Ui,N > Nβi.
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TABLE I
NUMERICAL VALUES OF θi , νi AND Nimin FOR P th

b = 10−3, 10−4 AND

DIFFERENT VALUES OF SINR

P th
b SINR bc bi θi νi Nimin

10−3 7 dB 2 4 1.8849 0.4664 6
6 2.4245 0.5362 8
8 2.6046 0.5326 10

10−3 15 dB 4 6 − 0.3786 0.3318 7
8 1.9515 0.4608 7

10−3 20 dB 6 8 − 2.3170 0.2490 9

10−4 10 dB 2 4 1.9029 0.4965 5
6 2.8927 0.6143 6
8 3.2079 0.6004 9

10−4 15 dB 4 6 1.5161 0.3318 7
8 2.8006 0.4608 8

10−4 20 dB 6 8 1.2874 0.2490 9

Case 2: Pei
≥ 2Pet

If the condition holds, then:

(N − 1)
1
2 >

αi +
√

α2
i + 4νi (1 + βi)

2νi

Since νi > 0

Thus νi (N − 1) − αi (N − 1)
1
2 − (1 + βi) > 0

⇒ Ûi,N > Nβi + 1 ⇒
⌊
Ûi,N

⌋
> Nβi

⇒ Ui,N > Nβi

In the following section, we will show that the practical
PRU sizes (ranging from 80 to 400) satisfy these sufficient
conditions for different system settings.

V. NUMERICAL EVALUATION

In this numerical evaluation, uncoded modulations were
employed. The allowed constellations are (BPSK, QPSK, 16-
QAM, 64-QAM, 256-QAM) corresponding to spectral effi-
ciencies of (1, 2, 4, 6, 8), respectively. The value for P th

b is set
to 10−3 or 10−4 for which Nu > 501, 1001 TUs respectively.
Since practical PRU sizes range from 80 to 400 TUs, the upper
bound set by Propositions 1 and 2 is already satisfied.

Defining Nimin
as the smallest PRU size satisfying the

sufficient conditions provided in Proposition 2, Table I depicts
the values of θi, νi and Nimin

for P th
b = 10−3 and 10−4 and

for different SINR values.
We can clearly observe that the values of νi are always

positive and that the values of Nimin
are very low compared

to practical PRU sizes that range from 80 to 400 TUs. This
shows that our proposed technique guarantees throughput
improvement in practical systems.

For P th
b = 10−3, Figure 1 depicts a comparison between

the throughput performance of the conventional and precoding
schemes against SINR for N = 200 TUs. Figure 2 depicts the
same comparison against the PRU size (N ) for SINR = 17
dB. In both figures, the percentage increase of the precoding
scheme over the conventional one is also illustrated. The

Fig. 1. Comparison between Rc and Rmax against SINR for N = 200
TUs and P th

b = 10−3.

Fig. 2. Comparison between Rc and Rmax against N for SINR=17 dB and
P th

b = 10−3
.

percentage increase is defined as:

Percentage Increase =
Rmax − Rc

Rc
× 100 (9)

From both figures, we can observe that a throughput im-
provement is obtained by our proposed technique for different
SINR values and different PRU sizes for the given settings.
Similar improvements are also achievable for other combina-
tions of N , SINR and P th

b . We omitted these results due to
space limitations.

VI. CONCLUSION

In this paper, we proposed the use of the precoding scheme,
we suggested in [1], to increase the MCS level employed in
the PRUs of OFDMA based wireless systems with limited
feedback. We derived a formula for the number of original
distinct data symbols that should be coded in each PRU as
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well as the sufficient conditions for our proposed scheme
to outperform the conventional scheme. Our analysis and
numerical evaluations showed that this technique can indeed
achieve a considerable increase in the PRU throughput when
the conventional technique fails in employing the highest MCS
in this PRU.
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APPENDIX A
PROOF OF LEMMA 1

If Pei
≥ 2Pet

⇒ θi ≥ 0 ⇒ Ui,F = U
′
i,F . Define Ûi,F

as:

Ûi,F = (1 − Pei
) (F − 1) − θi

√
Pei

(1 − Pei
) (F − 1)

1
2

(10)
Clearly, Ui,F =

⌊
Ûi,F

⌋
. The superadditivity of Ûi,F follows

from the linearity and increasing monotonicity of its first term
and the subadditivity of its second term since θi ≥ 0. Thus,
we have:⌊

Ûi,F1+F2

⌋
≥

⌊(
Ûi,F1 + Ûi,F2

)⌋
≥

⌊
Ûi,F1

⌋
+

⌊
Ûi,F2

⌋
⇒ Ui,F1+F2 ≥ Ui,F1 + Ui,F2 .

APPENDIX B
PROOF OF LEMMA 2

For Pei
∈ (Pet

, 2Pet
), θi < 0. So we can re-write the

expression for U
′
i,F in (3) as follows:

U
′
i,F =� (1 − Pei

) (F − 1)

+ |θi| ·
√

Pei
(1 − Pei

) (F − 1)
1
2 	 (11)

Thus, for any value of F > 1,

inf
Pei

∈(Pet ,2Pet)
U

′
i,F = inf

Pei
∈(Pet ,2Pet)

{� (1 − Pei
) (F − 1)

+ |θi|
√

Pei
(1 − Pei

) (F − 1)
1
2 	}

=� inf
Pei

∈(Pet ,2Pet)
{ (1 − Pei

) (F − 1)

+ |θi| ·
√

Pei
(1 − Pei

) (F − 1)
1
2 }	

=� (1 − 2Pet
) (F − 1)	

Since F ≤ 1 + 1
2Pet

⇒ Pet
≤ 1

2(F−1) , then

inf
Pei

∈(Pet ,2Pet)
U

′
i,F = �F − 2	 = F − 2 (12)

Thus, for any value of Pei
∈ (Pet

, 2Pet
), and F ∈

{2, . . . , Fu}, U
′
i,F ≥ F −2. Substituting in (4), we can clearly

see that Ui,F can only be F − 2 or F − 1. The change from
the first to the second formula occurs when:

U
′
i,F = F − 1 ⇒ F ≤ 1 +

θ2
i (1 − Pei

)
Pei

For any value of the right-hand-side of the above inequality
and F ∈ {2, . . . , Fu}, we can only have four possible cases:

1) If Ui,F1 = Ui,F2 = Ui,F1+F2 = F − 1:

Ui,F1+F2 − (Ui,F1 + Ui,F2) = 1 ≥ 0 ;

2) If Ui,F1 = Ui,F2 = F − 1 and Ui,F1+F2 = F − 2:

Ui,F1+F2 − (Ui,F1 + Ui,F2) = 0 ≥ 0 ;

3) If Ui,F1 = F − 1 and Ui,F2 = Ui,F1+F2 = F − 2:

Ui,F1+F2 − (Ui,F1 + Ui,F2) = 1 ≥ 0 ;

4) If Ui,F1 = Ui,F2 = Ui,F1+F2 = F − 2:

Ui,F1+F2 − (Ui,F1 + Ui,F2) = 2 ≥ 0 .

Thus, Ui,F is superadditive for the four possibilities ⇒ super-
additive in F ∈ {2, . . . , Fu}. Finally, for F = 1, Ui,F = 0
which maintains the superadditivity of the function in the
range F ∈ {1, . . . , Fu}. This concludes the proof.
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