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Abstract—MAC layer random network coding (MRNC) was
proposed in [1] as an alternative to HARQ for reliable data
transmission in WiMAX unicast. It has been shown that MRNC
achieves a higher transmission efficiency than HARQ as it avoids
the problem of ACK/NAK packet overhead and the additional re-
dundancy resulting from their loss. However, [1] did not address
the problem of restricting the number of transmissions to an
upper bound which is important for delay sensitive applications.
In this paper, we investigate a more structured MAC layer coding
scheme that achieves the optimum performance in the delay
sensitive traffic context while achieving the same overhead level as
MRNC. We first formulate the delay sensitive traffic satisfaction,
in such an environment, as a minimax optimization problem
over all possible coding schemes. We then show that the MAC
layer Systematic Network Coding (MSNC), which transmits the
packets once uncoded and employs random network coding for
retransmissions, achieves the optimum performance for delay
sensitive applications while achieving the same overhead level as
MRNC.

Index Terms—WiMAX, MAC Layer Random Network Coding,
Delay Sensitive Applications.

I. INTRODUCTION

WiMAX [2] systems have been designed to provide high
speed connectivity and highly reliable wireless transmission
over metropolitan areas. To achieve transmission reliability,
the Hybrid Automatic Repeat reQest (HARQ) [3], [4] has
been introduced in WiMAX standards as a combination of
the ARQ protocol [5] and forward error correction mecha-
nisms. Packets of a data block are first transmitted with a
certain modulation and coding scheme (MCS), then HARQ
is employed to retransmit packets that are lost in the first
transmission phase with a more robust MCS [6]. This retrans-
mission phase is continued until all the packets are correctly
decoded in delay tolerant applications or a maximum number
of retransmissions is reached in delay sensitive applications.
However, this process incurs some overhead for ACK/NAK
packet transmissions. Moreover, lost ACK/NAK packets result
in some retransmissions of correctly received packets which
reduces the transmission efficiency.

In [1], MAC layer Random Network Coding (MRNC) has
been introduced to mitigate the problems of HARQ. In MRNC,
the U packets of a given data block are linearly combined with
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random non-zero coefficients and the resulting coded packets
are transmitted. It is assumed that the coding is performed
over a large finite field such that any generated combination
is linearly independent of all previous ones almost surely [7].
This process is repeated until the receiver correctly detects
U combinations of the original packets. In this case, the
receiver needs to send one ACK packet when all the U packets
are received correctly thus avoiding the problems incurred in
HARQ [8].

This solution is feasible for delay tolerant applications
where the receiver does not have any restrictions on latency.
However, delay sensitive applications impose a maximum
delay on packet reception beyond which their reception is
useless. This imposes a maximum number of transmissions
per data block. Packets belonging to this block that are not
correctly received by the end of this deadline are thus dropped.
In such scenarios, the receiver will be more satisfied if it
could correctly detect as many packets as possible before that
deadline to reduce the number of dropped packets. Even if
the deadline is not reached, it is better, for the receiver, that
each retransmission minimizes the worst case loss probability
of the original packets. In the deadline violation case, where
the receiver is not able to correctly detect U coded packets by
the end of the transmission deadline, it is obvious that all the
original packets are lost if MRNC is employed.

Unfortunately [1] did not study whether MRNC was the best
technique in terms of minimizing the packet loss probability
for each retransmission. This motivated us to explore a more
structured MAC layer network coding scheme that can achieve
a better performance in terms of worst case packet loss during
retransmissions and packet drop rate in deadline violation
events. This performance must be achieved with the same
overhead level as MRNC (one ACK packet per block) to avoid
the problems found in HARQ.

In this paper, we first define the conditions for the optimality
of coding for delay sensitive traffic, then show that the MAC
layer Systematic Network Coding (MSNC) scheme is the opti-
mum network coding scheme for delay sensitive applications
in WiMAX unicast. MSNC is a variant of MRNC where
each of the original packets is sent uncoded only once and
linearly independent combinations of these packets with non-
zero coefficients are sent next. Linear independence of these
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combinations can be achieved almost surely by performing the
coding operation over a sufficiently large finite field [9], [10].

The rest of the paper is organized as follows. In Section II,
the system model and optimality conditions are illustrated. We
then formulate an optimization problem for the first optimality
condition in Section III and prove MSNC is the optimum
solution for this optimization problem for the given condition
in Section IV. Numerical results depicted in Section V confirm
the results obtained in Section IV and show that MSNC is still
optimum even if the condition in Section IV is violated. In
Section VI, we show that MSNC also satisfies the rest of the
optimality conditions defined in Section II which means that
it is indeed the optimum coding scheme for delay sensitive
traffic. Section VII concludes the paper.

II. SYSTEM MODEL AND OPTIMALITY CONDITIONS

The model we employ consists of a base station (BS) in
a WiMAX cell that transmits unicast sessions to its receivers.
We assume that delay sensitive traffic is partitioned into blocks
such as frames in video streaming. The U original packets p =
[p1, . . . , pU ] of each block should be recovered at the receiver
before a certain deadline defined by a maximum number of
transmissions per block that we will denote by N , N > U . In
each transmission, the BS transmits a coded packet sh such
that:

sh =
U∑

i=1

aihpi (1)

where aij are referred to as the “coding coefficients” and
have either zero or non-zero values. The multiplications in the
above equation are performed over Galois field of appropriate
dimensions. If aij is non-zero for only one i, then the packet pi

is sent uncoded. Thus, by adjusting these coding coefficients
for each transmission, the BS can transmit an uncoded packet,
a linear combination of some of the packets, or a linear
combination of all the packets.

Note that the receiver can never detect the whole block
before receiving at least U packets. If this does not occur in the
first U transmissions, then N−U retransmissions are allowed.
The order by which the BS transmits uncoded, partially coded,
or fully coded packets defines the set A of all transmission
combinations that we will refer to as “coding schemes”.

A coding scheme is called “optimum” for delay sensitive
applications if it satisfies the following conditions:

1) It must achieve the lowest worst case loss probability of
original packets by the end of F transmissions, ∀ F > U .

2) It must guarantee that each coded packets is linearly
independent of all the previous ones.

3) It must preserve the overhead level achieved by MRNC
(one ACK packet per block) to avoid encountering the
same problems found in HARQ.

Note that, if Condition 1 is satisfied by a certain coding
scheme, then it is guaranteed that this scheme will satisfy this
condition for F = N and will thus achieve the lowest packet
drop rate in case of deadline violations.

Now, since a large variety of coding schemes can achieve
Conditions 2 and 3, we will focus on finding the coding
scheme that can achieve Condition 1, and only then make sure
it also satisfies the last two conditions. In the following section,
we will assume that we will reach the F -th transmission and
formulate the problem of minimizing the maximum loss rate
of original packets over the set of all possible U × F coding
matrices.

III. PROBLEM FORMULATION

In this section, we only assume the events when the F -
th transmission is reached without the receiver being able to
achieve full block recovery. Thus, the transmitter generates F
coded packets sh, 1 ≤ h ≤ F from the original U packets as
follows:

s = p × A (2)

where A = [aih] is a matrix of dimension U × F whose
elements are chosen from a Galois field of proper size q
and × is the matrix multiplication operation. The rows of A
correspond to the original packets and its columns correspond
to the resulting coded packets. If aih is non-zero (zero), it
means that pi is (is not) combined in sh. As an example,
assume F = 8, U = 4 and matrix A1 is

A1 =

⎛
⎜⎜⎝

1 2 0 3 4 1 2 1
3 2 2 3 0 3 2 2
1 1 1 0 1 3 3 1
2 0 1 2 2 3 4 3

⎞
⎟⎟⎠ (3)

In this matrix, all packets are combined together in s1, s6, s7

and s8 while packets p1, p2, p3 and p4 are not involved in the
third, fifth, fourth and second “coded packets”, respectively.

Definition 1. P i
L(A) is defined as the probability of the

original packet pi not recovered at the destination side.

Based on the above definition, we formulate our problem
as

arg min
A∈A

max
i

P i
L(A) (4)

where A is the set of all matrices of dimension U × F with
the elements selected from the corresponding Galois field. In
other words, we want to find the coding matrix that minimizes
the maximum of P i

L(A).
The above minimization can be transformed into a mini-

mization of individual original packet loss probabilities over
symmetric matrices defined as follows.

Definition 2. A “symmetric matrix A” is defined in this paper
as a matrix for which P i

L(A) is the same for all 1 ≤ i ≤ U .

Note that the above definition is different from the con-
ventional definition of symmetric matrices known in linear
algebra.

In the light of Definition 2, the problem in (4) can be
simplified to:

arg min
A∈AS

PL(A) (5)
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where AS is the set of all symmetric matrices with dimension
U × F .

Based on the above definitions of A and PL(A), as long as
the ranks of all submatrices of matrix A are kept intact, PL(A)
is not sensitive to the exact value of the entries of this matrix
and may change only when elements of A switch between
zero and nonzero values. Therefore, we define a characteristic
function X with argument A = [aih] and output C = [cih] as
follows:

C = X (A) :

{
cih = 1 if aih �= 0
cih = 0 if aih = 0

Clearly, this function transforms matrix A into a matrix whose
elements take on binary values. Matrix C will be termed as the
characteristic matrix and tells us which original packets are
combined together in each coded packet. Using this concept,
we can find the characteristic matrix of the example in (3) as
follows:

C1 = X (A1) =

⎛
⎜⎜⎝

1 1 0 1 1 1 1 1
1 1 1 1 0 1 1 1
1 1 1 0 1 1 1 1
1 0 1 1 1 1 1 1

⎞
⎟⎟⎠

Using the fact that the decoding does not depend on the
actal value of the coding coefficients, the problem (5) can be
simplified to

arg min
C∈C

PL(C) (6)

where C is the set of all symmetric characteristic matrices of
proper dimension. Without loss of generality, we consider p1

whenever we require to refer to one of the original packets.
In the following section, we prove that MSNC, defined in

Section I, is the optimum solution for the problem in (6) for all
F ≥ 2U . In the subsequent section, we show numerically that
this is also true for the F values between U + 1 and 2U − 1.

IV. OPTIMUM CODING MATRIX SATISFYING CONDITION 1

Consider packet p1 and all possible sets composed of j
coded packets. We will refer to these sets as j-coded sets.
Based on matrix C, p1 is recoverable from some of these sets.
Let us denote the number of such sets (from which p1 can be
recovered) by bj(C), then we have the following formulation
for PL(C):

PL(C) = 1 −
F∑

j=1

bj(C)(1 − ε)jεF−j (7)

where ε is the probability that a coded packet is not correctly
received at the receiver. To clarify (7), consider the afore-
mentioned matrix C1. The 1-coded sets (consisting of only 1
coded packets) in C1 are {s1}, {s2}, ..., {s7} and {s8}. None
of these sets can be used to recover p1 and therefore, based on
the definition of bj(C), we have b1(C1) = 0. Now, consider
the 2-coded sets (consisting of only 2 coded packets) which
are {s1, s2}, {s1, s3}, ..., {s7, s8}. Again, none of these sets
is enough to recover p1 and we have b2(C1) = 0. The same
applies for the 3-coded sets and thus b3(C1) = 0. Note that

p1 can be reconstructed from any set of four or more coded
packet. Therefore, bj(C1) =

(
8
j

)
for 4 ≤ j ≤ 8. Consequently,

PL(C1) is written as follows:

PL(C1) =1 − [70(1 − ε)4ε4 + 56(1 − ε)5ε3 + 28(1 − ε)6ε2

+ 8(1 − ε)7ε + (1 − ε)8]

Let us define:

b(C) = [b1(C), · · · , bF (C)]

We also define the symbol ≺ as follows:
b(C1) ≺ b(C2) if ∃j : bj(C1) < bj(C2) and bk(C1) = bk(C2)
for j + 1 ≤ k ≤ F.

Proposition 1. For ε → 0, if b(C1) ≺ b(C2) then PL(C1) >
PL(C2).

Proof: If b(C1) ≺ b(C2), then there exits a j for which
bj(C1) < bj(C2) and bj(C1) = bj(C2) for j + 1 ≤ k ≤ F .
From (7):

PL(C1) − PL(C2) =
j∑

i=1

(bi(C2) − bi(C1))(1 − ε)iεF−i (8)

As ε → 0, the right side of the above equality is dominated
by the highest i for which bi(C2)− bi(C1) is non-zero which
in this case is i = j. So,

PL(C1) − PL(C2) → (bj(C2) − bj(C1))(1 − ε)jεF−j > 0.

The last inequality holds since bj(C2)−bj(C1) > 0. Therefore,
PL(C1) − PL(C2) > 0 ⇒ PL(C1) > PL(C2).

Definition 3. Let C∗ be the set of characteristic matrices that
satisfies the properties of MSNC defined in Section I.

According to the definition of MSNC in Section I, for C ∈
C∗, bj(C) =

(
F
j

)
for U ≤ j ≤ F and bj(C) =

(
F−1
j−1

)
for

1 ≤ j ≤ U . We also define

g(x) =
x−1∑
i=1

(
F − 1

i

)
(1 − ε)iεF−i − (1 − ε)xεF−x

For the rest of the paper,
(
a
b

)
= 0 if either a < b or b is

negative.
The following theorem is the main result of this paper:

Theorem 1. If ε ≤ εth, then PL(C) is minimum iff C ∈
C∗, where εth is the solution to g(U) = 0 and is plotted in
Figure 1.

Proof: Due to space limitations, the proofs are not pre-
sented here. Interested readers are referred to [11].

Lemma 1. For small enough ε, PL(C) is minimized for a C
that has at most U − 1 zeros in each row.

Lemma 2. Restricting the number of zeros in each row to be
less than U and for ε ≤ εth, PL(C) is minimum if and only
if C ∈ C∗.

In this paper, we give a very general graphical view of the
proof. Given a matrix C, one can rearrange its columns so
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Fig. 1. Different values of εth
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Fig. 2. Hamming weight distribution of a general rearranged matrix C

that from left to right, the Hamming weight of the columns
of matrix C is increasing. For this matrix C, whose column
Hamming weights are increasing, one can make a figure in
which the x-axis represents the column number and the y-
axis represents its Hamming weight. We refer to this figure
by the “Hamming weight distribution” figure. For a general
rearranged C matrix, the Hamming weight distribution figure
is plotted in Figure 2. The very general proof of Lemma 2
is as follows. At first we prove that restricting the number of
zeros in each row to be less than U , the Hamming weight
distribution figure of matrix C has to be like Figure 3 for
PL(C) to be minimum. Then, we prove that restricting the
number of zeros in each row to be less than U , the Hamming
weight distribution figure of matrix C has to be like Figure 4
for PL(C) to be minimum. Obviously, the Hamming weight
distribution in Figure 4 is that of MSNC.

We conclude this section by stating that the above two
lemmas prove that MSNC is the optimum coding scheme that
satisfies Condition 1 in Section II

V. NUMERICAL EVALUATION

We consider all possible symmetric matrices C for the case
of F = 6 and U = 3. All of these matrices can be categorized

Column’s number

Hamming weight

1k

U

1x nx

Fig. 3. Hamming weight distribution

Column’s number

Hamming weight

1

U

U UF

Fig. 4. Hamming weight distribution of MSNC

into six sets. All members of each set are a row/column
permuted version of each other and have the same PL(C).
In the following, from each set one exemplar is chosen. In
[12], we examined PL(C) for these matrices whose results
are depicted in Figure 5.

C1 =

⎛
⎝1 0 0 1 0 0

0 1 0 0 1 0
0 0 1 0 0 1

⎞
⎠ , C2 =

⎛
⎝0 1 1 1 0 0

1 1 0 0 1 0
1 0 1 0 0 1

⎞
⎠

C3 =

⎛
⎝1 0 0 1 1 1

0 1 0 1 1 1
0 0 1 1 1 1

⎞
⎠ , C4 =

⎛
⎝0 1 1 0 1 1

1 1 0 1 1 0
1 0 1 1 0 1

⎞
⎠

C5 =

⎛
⎝1 1 1 0 1 1

1 1 1 1 0 1
1 1 1 1 1 0

⎞
⎠ , C6 =

⎛
⎝1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1

⎞
⎠

Note that C3 ∈ C∗ and as depicted in Figure 5, C3 has
the minimum PL(C) confirming Theorem 1. Matrices C1 and
C2 have more than U − 1 = 2 zeros and we clearly see that
their PL(C) is far from that of the optimal one. Matrices C4,
C5 and C6 have less than U = 3 zeros in each row. But,
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Fig. 5. Comparison of PL(C) for different symmetric matrices when F = 6
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for these cases, b1 or b2 is less than that of the optimum one
and therefore their PL(C) is more than PL(C3). We also have
PL(C5) = PL(C6) and therefore they are overlapping in this
figure.

It is noteworthy to mention that C6 represents MRNC
proposed in [1]. This highlights the fact that MRNC is not
the optimal method.

Throughout all the analysis, F is assumed to be more than
2U . As we see in Figure 6, even for the cases that this
condition is not satisfied, the MSNC matrices have a better
performances compared to MRNC.

VI. OPTIMALITY OF MSNC FOR DELAY SENSITIVE

TRAFFIC

The definition of MSNC in Section I guarantees that any U
coded packets are linearly independent of each other almost
surely which satisfies Condition 2. Also, MSNC needs only
one ACK packet sent by the receiver if it correctly recovers

all the original packets before the F transmissions deadline,
which is the same level of overhead achieved by MRNC. From
these results and the previous section, it is clear that MSNC is
the only coding scheme that satisfies all the desired condition
of the optimum code defined in Section II.

VII. CONCLUSION

We investigated the problem of finding an optimum network
coding for delay sensitive traffic that imposed a restriction on
the maximum number of allowed transmissions. We defined
three conditions for the optimum coding scheme. We then
proved that MSNC was the best in satisfying the first opti-
mality condition when the number of transmissions F was
at least twice the number of packets per block U . Numerical
results justified our proof and showed that MSNC was also
optimal when U < F < 2U . We finally showed that MSNC
also satisfied the remaining optimality conditions which made
it the optimum coding scheme for delay sensitive traffic
transmission.
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