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Abstract— The sparse nature of location finding prob-
lem makes the theory of compressive sensing desirable
for indoor positioning in Wireless Local Area Networks
(WLANs). In this paper, we address the received signal
strength (RSS)-based localization problem in WLANs us-
ing the theory of compressive sensing (CS), which offers
accurate recovery of sparse signals from a small number
of measurements by solving an ℓ1-minimization problem.
A pre-processing procedure of orthogonalization is used
to induce incoherence needed in the CS theory. In order
to mitigate the effects of RSS variations due to channel
impediments, the proposed positioning system consists of
two steps: coarse localization by exploiting affinity prop-
agation, and fine localization by the CS theory. In the
fine localization stage, access point selection problem is
studied to further increase the accuracy. We implement
the positioning system on a WiFi-integrated mobile device
(HP iPAQ hx4700 with Windows Mobile 2003 Pocket PC)
to evaluate the performance. Experimental results indicate
that the proposed system leads to substantial improvements
on localization accuracy and complexity over the widely
used traditional fingerprinting methods.

Keywords- Indoor positioning, Compressive sensing,

Affinity propagation, WLANs

I. INTRODUCTION

Recent technological achievements have made it fea-

sible to deliver indoor Location-Based Services (LBSs)

using Wireless Local Area Network (WLAN) infrastruc-

tures, for personal and commercial applications, such

as indoor positioning, navigation for the disabled, and

location-based security [1][2][3]. However, due to the

complexity of indoor environment, it is usually difficult

to provide a satisfactory level of accuracy in most

applications. Thus, one of the key challenges arises: how

to design an accurate indoor positioning system that

can be easily deployed on commercially available mobile

devices without any hardware modification.

Received Signal Strength (RSS)-based localization

algorithms have been extensively studied as an inexpen-

sive solution for indoor positioning systems in recent
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years [4][5]. Compared with other measurement-based

algorithms (e.g., time-of-arrival (TOA) or angle-of ar-

rival (AOA) measurements of ultra-wideband (UWB)

signal) [6], RSS can be easily obtained by a WiFi-

integrated mobile device, without any additional hard-

ware modification. However, the key challenge for such

systems comes from the variations of RSS due to the

radio channel impediments such as shadowing, multi-

path, and the orientation of the wireless device, etc.

This increases the difficulty of designing accurate indoor

positioning systems.

In general, two approaches are used by the exist-

ing WLAN positioning techniques to model the RSS-

position dependency for location estimation. Early po-

sitioning systems use a prior theoretical or empirical

radio propagation model to formulate the RSS-position

relationship [7]. However, these models are unreliable

due to the dynamic and unpredictable nature of indoor

radio propagation [8]. Therefore, another method known

as fingerprinting is proposed [9]. The position of a

mobile user is estimated by comparing its online RSS

readings with offline observations. One simple solution is

the k-nearest neighbor algorithm (kNN), which estimates

the mobile user’s location by computing the centroid of

the k closest neighbors that have the smallest Euclidean

distance with respect to the online RSS readings [10].

Such system is easy to implement but the estimation is

not very accurate. Another solution to the fingerprinting

approach is to solve the problem by a statistical method,

in which the probability of each potential position is

analyzed using the Bayesian theory or kernel functions

[5][11]. However, an explicit formulation of RSS dis-

tribution is challenging in real environment and thus,

these probabilistic based systems often have high com-

putational complexity.

Compressive sensing (CS) provides a novel frame-

work for recovering signals that are sparse or compress-

ible under a certain basis, with far fewer noisy measure-

ments than that needed by the Nyquist sampling theorem

[12][13]. The sparse signal can be reconstructed exactly

with high probability by solving an ℓ1-minimization
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problem [14]. The sparse nature of location finding in the

spatial domain motivates us to exploit the CS theory for

indoor positioning system [15][16], which offers exact

deterministic recovery under certain conditions [12].

With these new insights in mind, in this paper, we

propose a RSS-based localization scheme composed of

two phases: an offline phase, during which clustering by

affinity propagation is performed to address the effects of

RSS variations; and an online phase, which consists of

a coarse localization stage using cluster matching and a

fine localization stage using compressive sensing. In the

fine localization stage, AP selection schemes are studied

to further improve the accuracy of the estimation. We

have implemented the proposed positioning system on

a Personal Digital Assistant (PDA, HP iPAQ hx4700

with Windows Mobile 2003 pocket PC) to evaluate the

localization accuracy. From the implementation, we have

shown that the proposed system is able to estimate the

location accurately by using only a small number of RSS

measurements. In addition, such system does not require

to collect a huge number of RSS time samples, and thus

it consumes less memory and computation resources.

The remainder of this paper is organized as follows.

Section II sets up the problem that will be used through

the paper. Section III proposes the overall positioning

system, and describes the interactions between the server

and the mobile device. Section IV to Section VI de-

scribe the individual blocks of the proposed system,

including offline phase using affinity propagation, coarse

localization using cluster matching, and fine localization

using compressive sensing. The performance is evaluated

through simulations and implementations in Section VII.

Finally, Section VIII concludes the paper.

II. PROBLEM SETUP

We start with a typical WLAN positioning scenario,

where a user carries a mobile device equipped with

a WLAN adapter, taking RSS measurements from L

WLAN Access Points (APs) in an indoor environment.

It is noticed that the location of these APs is unknown

to the positioning system.

Due to the time varying characteristic of radio

propagation caused by multipath, shadowing, and inter-

ference, a training-based method known as fingerprinting

is widely used in positioning systems in WLANs [9].

During an offline phase, time samples of RSS readings

are collected at known locations, which are referred to

as the Reference Points (RPs). The τ th time sample

of RSS reading recorded for AP i at RP j is denoted

as {ψi,j(τ), τ = 1, ..., q, q > 1}, with q being the

total number of time samples collected. The average

of these time samples is computed and stored in a

database, known as a radio map on the server. Such

radio map gives a sufficient representation of the spatial

RSS properties in the given environment. The radio map

database is represented by Ψ:

Ψ =











ψ1,1 ψ1,2 · · · ψ1,N

ψ2,1 ψ2,2 · · · ψ2,N

...
...

. . .
...

ψL,1 ψL,2 · · · ψL,N











(1)

where ψi,j = 1

q

∑q

τ=1
ψi,j(τ) is the average of RSS

readings over time domain from AP i at RP j, for i =
1, 2, ..., L, and j = 1, 2, ..., N . L is the total number of

APs and N is the total number of RPs. The columns

of Ψ, radio map vectors, can be referred to as ψj =
[ψ1,j , ψ2,j , · · · , ψL,j ]

T , j = 1, 2, ..., N , which represent

the RSS readings at each RP j, where the superscript T

denotes transposition. In addition, the server also stores

the variance of these time samples, which can be used

for selecting proper APs in the fine localization stage

(see Section VI-A). For each RP j, j = 1, 2, ...N , a

variance vector is defined as

∆j = [∆1,j ,∆2,j , · · · ,∆L,j ]
T (2)

where ∆i,j = 1

q−1

∑q

τ=1
(ψi,j(τ)−ψi,j)

2 is the unbiased

estimate of the variance of RSS time samples for AP i

at RP j.

The radio map is then the table of

(xj , yj ;ψj ,∆j), j = 1, ..., N , where (xj , yj) is

the coordinates of the jth RP. If no RSS reading is

found for an AP at a RP, the corresponding RSS entity

in the radio map is set to a small value (−110dBm in

our case) which implies zero power reading.

III. OVERALL INDOOR POSITIONING SYSTEM

Different from traditional fingerprinting approaches,

in which a large number of RSS time samples are

required to formulate the RSS distribution, the CS-based

localization scheme, proposed in this paper, offers accu-

rate indoor location estimation from far fewer number of

RSS measurements by solving a linear program, while

no RSS distribution is needed. To mitigate the effects of

RSS deviations, a coarse localization using clustering by

affinity propagation [17] is introduced before applying

the CS-based localization scheme to weed out outliers,

increase the accuracy and reduce the communication

costs.

The overview of the proposed indoor positioning

system is shown in Fig. 1. It consists of two phases: an

offline phase which collects the radio map database and

performs clustering using affinity propagation; and an

online phase which performs the localization. During the

online phase, the system consists of two stages: coarse

localization using cluster matching and fine localization

using compressive sensing. The individual blocks of the
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system model in Fig. 1 will be explained in details in

the following sections.

Online Phase

Offline Phase

Clustering

Affinity Propagationoffline

radio map

Coarse Localization

cluster matching

Fine Localization

Compressive Sensing
online RSS

readings

Estimated

Location

Orthogonalization

L1-norm

minimization

AP selection

Fig. 1. Block diagram of the proposed indoor localization system.

When the server for the system is first set up, an

offline stage, also referred to as the training period, is

carried out to collect the radio map database for the

area of interest. The mobile device collects a small

number of RSS time samples from APs at specific

RPs and then passes the information to the server. The

server creates the radio map matrix Ψ according to (1)

and records the coordinates and the variance vectors

of the corresponding RPs. Then, affinity propagation is

operated on the radio map database through message

exchanges between neighboring RPs at the server, until

cluster information are generated (see Section IV). Fig.

2 shows the operations for the system during the offline

phase.

The actual localization of the mobile device takes

place in the online phase. Fig. 3 shows the interaction

between the mobile device and the server for location

estimation. First, the mobile device collects the online

RSS readings. Then, the device communicates with the

server to perform the coarse localization by cluster

matching as described in Section V. This stage helps

to reduce the area of interest into a smaller group of

RPs and thus reduce the complexity as well as the

computation time for the following localization stage.

The fine localization stage is explained in Section VI.

It can accurately estimate the device’s location by using

the result from the previous stage to obtain relevant radio

map database from the server for the CS-based position

estimation.

IV. AFFINITY PROPAGATION FOR CLUSTERING IN

OFFLINE PHASE

Since the indoor propagation channel varies over

time, online RSS measurements may deviate from those

stored in the radio map database. Fig. 4 gives an example

Mobile Device Server

Collect RSS time samples from APs 

at RP j

Compute the average and variance of 

RSS readings over time, _j, _j

Send RP i’ s  information:

_j, _j & RP j’s coordinates
Collect fingerprint for RP j

Create overall radio map matrix: 

= [ _1, _2,…, _N]

SEND

Implement affinity propagation

and generate set of exemplars H and 

their corresponding members C_j

Use the device to collect

N RPs

Fig. 2. Interaction between the server and the mobile device during
the offline phase.

Coarse

Localization

(cluster

matching)

Fine

Localization

(CS-theory)

Mobile Device Server

Collect online RSS readings

Request and obtain map and RSS

values of exemplars.

Find best matched 

cluster exemplars, S

AP selection

Retrieve map and RSS readings of

exemplars

Use the received matched cluster 

exemplars S to obtain the matched 

cluster members C and generate a 

smaller radio map matrix

It contains: , _j, H, C_j

- list of RPs coordinates

- map

REQUEST

SEND

SEND S

Orthogonalization

l1-norm minimization

Interpret device’s location

using relevant RPs coordinates.
Retrieve relevant RPs’ coordinates

REQUEST

RPs’ coordinates

SEND

RPs’ coordinates

Send , _jObtain  , _j
SEND

Fig. 3. Interaction between the server and the mobile device during
the online phase.

of the histogram of RSS variation with time at a certain

RP. In order to mitigate the effects of such deviations

and to remove potential outliers, a coarse localization

by exploiting affinity propagation is performed to confine

the localization problem into a smaller region, a subset of

RPs that have similar RSS readings to the online mea-

surements, where the fine localization can then be ap-

plied. Instead of randomly selecting K initial exemplars

in the K-means clustering algorithm [18], the affinity



4

−60 −55 −50 −45 −40
0

5

10

15

20

25

RSS Readings (dBm)

F
re

q
u
en

cy
 (

%
)

Fig. 4. An example of RSS variation with time at a certain reference
point.

propagation algorithm takes a set of real numbers, known

as preference (p) for each RPs as input, so that RPs with

larger values are more likely to be chosen as exemplars.

This algorithm can generate better clusters because of

its initialization-independent property [17] and thus, it

is used in our coarse localization stage.

Affinity propagation takes an input measures of

similarity between pairs of RPs. The pairwise similarity

s(i, j) indicates how well the RP j is suited to be the

exemplar for RP i. Based on the observation from Fig.

4, we can assume that the radio map vector for each RP

j is indeed ψj +δj , where δj is the measurement noise.

We also assume that δj is nearly Gaussian distributed, so

that the Euclidean distance between two RPs is a good

decision rule. Thus, we define the similarity function

to be the squared Euclidean distance between the RSS

readings of the two RPs, that is

s(i, j) = −‖ψi −ψj‖
2,∀i, j ∈ {1, 2, ..., N} (3)

There are two kinds of real-valued messages trans-

mitted between the RPs for affinity propagation: the re-

sponsibility message to decide which RPs are exemplars

and the availability message, to decide to which cluster

an RP belongs.

• the responsibility message r(i, j), sent from RP i to

candidate exemplar RP j, reflects the accumulated

evidence for how well-suited RP j is to serve as

the exemplar for RP i, taking into account of other

potential exemplars j′ for RP i, that is

r(i, j) = s(i, j) − max
j′ 6=j

{a(i, j′) + s(i, j′)} (4)

where i 6= j, and s(i, j) is the similarity between

RP i and RP j and a(i, j) is the availability message

defined later. In our implementation, we define the

self-responsibility r(i, i), which is known as pref-

erence (p) as the median of the input similarities,

resulting in a moderate number of clusters, that is

p = median{s(i, j),∀i, j ∈ {1, 2, ..., N}} (5)

• the availability message a(i, j), sent from candidate

exemplar RP j to RP i, reflects the accumulated

evidence for how appropriate it would be for RP i

to choose RP j as its exemplar, taking into account

the support from other RPs that RP j should be an

exemplar:

a(i, j) = min







0, r(j, j) +
∑

i′ 6=i,j

max{0, r(i′, j)}







(6)

The self-availability a(j, j) reflects accumulated

evidence that RP j is an exemplar, based on the

positive responsibilities sent to it from other RPs:

a(j, j) =
∑

i′ 6=j

max{0, r(i′, j)} (7)

The messages are passed recursively between neigh-

boring RPs and the above updating rules are followed

until a good set of exemplars and corresponding clusters

emerges. This process is conducted at the server when

the fingerprints are collected during the offline phase. Let

H be the set of exemplars and for each RP j ∈ H, let

Cj denote the set of RPs for which RP j is an exemplar.

Using the set of exemplars and their corresponding

radio map vector, we will propose a coarse localization

procedure to select the best clusters that match the online

RSS observation, and then the RPs of these candidate

clusters will be used to localize the mobile device during

fine localization stage.

V. COARSE LOCALIZATION STAGE BY CLUSTER

MATCHING

During the online phase, an online RSS measure-

ment vector, denoted as

ψr = [ψ1,r, · · · , ψL,r] (8)

where {ψk,r, k = 1, ..., L} is the average online RSS

readings over time from AP k, is collected by the mobile

device at unknown location. A coarse localization is then

operated on the device by downloading RSS values of

the exemplars from the server, ΨH = {ψj |∀j ∈ H}
and computing the similarity between its current RSS

readings and each exemplar to decide which cluster it

belongs to. Instead of selecting one cluster, we keep a

few set of best-matched clusters for the following fine

localization to avoid the edge problem, which can lead

to inaccurate estimation when the location of the mobile

device is at the boundaries of clusters. We define S as

the set of best-matched exemplars which have the highest

similarities with the online readings. We also define C
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as the set of cluster members whose exemplars appear

in S,

S = {j : s(r, j) > α, j ∈ H} (9)

C =
⋃

j∈S

Cj (10)

where s(r, j) = ‖ψr − ψj‖
2 and α is a pre-defined

threshold to obtain a moderate number of clusters in S.

In order to limit the number of matched clusters, we

set α to be a high fixed percentage of the maximum

similarity difference, that is

α = 0.95max
l∈H

{

s(r, l) − min
j∈H

s(r, j)

}

(11)

The mobile device determines the matched exem-

plars set S, and then requests the server to transmit the

part of the database corresponding to C. Then the device

downloads from the server the L × Ñ matrix Ψ̃, with

Ñ = |C|, which corresponds to the RPs that appear in

C, namely,

Ψ̃ = [ψj ,∀j ∈ C]. (12)

The matrix Ψ̃ will be used by the following fine local-

ization stage.

VI. FINE LOCALIZATION STAGE BY COMPRESSIVE

SENSING

The localization problem setup in Section II has a

sparse nature, as the position of the mobile user is unique

in the discrete spatial domain at a certain time. Ideally,

assuming the mobile user is located at one of the RPs, the

user’s location can be formulated as a 1-sparse vector,

θ, where θ is a Ñ × 1 vector with all elements equal to

zero except θ(n) = 1, where n is the index of the RP at

which the mobile user is located, namely:

θ = [0, ..., 0, 1, 0, ..., 0]T (13)

The online RSS reading measured by the mobile

device can then be expressed as:

y = ΦΨ̃θ + ε (14)

where Ψ̃ is defined in (12), and ε is an unknown

measurement noise. The M × L matrix Φ is an AP

selection operator as defined in the following subsection.

Note that the measurement vector y relates to the online

RSS reading (8), as

y = Φψr (15)

Next we discuss how Φ can be selected.

A. Access Point Selection

Due to the wide deployment of APs, the total

number of detectable APs, L is generally much greater

than that required for positioning, which leads to biased

estimates and redundant computations [5]. This moti-

vates the use of AP selection techniques to select a

subset of available APs used for positioning. According

to (1), the set of APs covering the RPs can be denoted

as L, with | L |= L. The objective of AP selection is to

determine a set M ⊆ L such that | M |= M ≤ L.

This process is carried out by using the AP selection

matrix Φ. Each row of Φ is a 1 × L vector with all

elements equal to zero except φ(ℓ) = 1, where ℓ is the

index of the AP that is selected for positioning:

φm = [0, ..., 0, 1, 0, ..., 0],∀m = 1, 2, ...,M. (16)

Here we investigate two different approaches to select

Φ.

• Strongest APs (S) [19]

In this approach, the set of APs with the highest

RSS readings is selected, arguing that the strongest

APs provide the highest probability of coverage

over time. Here, the measurement vector (8) is

sorted in the decreasing order of RSS readings, and

the access points corresponding to the least indices

are used. Since Φ is created based on the current

online measurement vector y, this criterion may

create different Φ at different runs.

• Fish Criterion (F) [20]

The Fish criterion is used to quantify the dis-

crimination ability for each AP across RPs. By

comparing the matric ξi, i = 1, ..., L, defined as

ξi =

∑

j∈C(ψi,j − ψ̄i)
2

∑

j∈C(∆i,j)
(17)

where ψ̄i = 1

Ñ

∑

j∈C ψi,j and the variance vectors,

{∆j ,∀j ∈ C}, are retrieved from the server. The

access points with the highest ξi are selected for

fine localization. The denominator of ξi ensures that

RSS values do not vary much over time so that

the offline and online values are similar; while the

numerator represents the discrimination ability of

each AP by evaluating the strength of variations of

mean RSS across RPs.

B. Orthogonalization and Signal Recovery using ℓ1-

minimization

Since Φ and Ψ̃ are in general coherent in the spatial

domain, which violates the incoherence requirement for

the CS theory, an orthogonalization process is applied

to induce such property [15] [16]. The required steps to

recover the sparse vector θ is stated below.

The measurement vector y obtained from (15) is

pre-processed by an orthogonalization operator, T, such

that z = Ty. Such operator is defined as

T = QR† (18)
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where R = ΦΨ̃, and Q = orth(RT )T , where orth(R)
is an orthogonal basis for the range of R, and R† is a

pseudo-inverse of matrix R. It is proven in our previous

work [15] [16] that if M is in the order of log(Ñ), θ
can be fully recovered from z with very high probability,

through the following ℓ1-minimization program.

θ̂ = arg min
θ∈RÑ

‖ θ ‖1, s.t. z = Qθ + ε′. (19)

where ε′ = Tε, and ‖ . ‖1 is the ℓ1-norm.

On a special note, the complexity of the ℓ1-

minimization algorithm grows proportional to the di-

mension of the location vector over potential RPs, θ.

Thus, the coarse localization stage, which reduces the

location problem into a subset of Ñ RPs over all N RPs

(Ñ < N ), also helps to relive the computational burden

for solving the ℓ1-minimization problem, in addition to

removing outliers.

We argue in [15] [16] that if the mobile user is

located at one of the RPs, the recovered position is

almost exact. However, the mobile user may not be

necessary located at an RP. In such cases, the recovered

location θ̂ is not an exact 1-sparse vector, but with a few

non-zero coefficients [15]. In order to compensate for the

error induced by the grid assumption, a post-processing

procedure is conducted. We choose the dominant coef-

ficients in θ̂ whose values are above a certain threshold

λ, and take the centroid of these RPs as the location

indicator. Let R be the set of all indexes of the elements

of θ̂ such that

R = {n|θ̂(n) > λ}. (20)

These are potential candidate points for the estimate

of the location of the mobile user. The device will

then request the server to retrieve the corresponding

coordinates, {(xi, yi)|∀i ∈ R}. The location of mobile

user can be estimated by finding the centroid of these

candidate points, that is

(x̂, ŷ) =
1

|R|

∑

i∈R

(xi, yi). (21)

VII. EXPERIMENTS AND RESULTS

This section provides details on the experimental

evaluation of the proposed positioning system using

both simulations and implementations. Real data were

obtained from an office building as well as a large

shopping center. Specifically, the experiments were first

carried out on a 12m × 36m area of the fourth floor

of an eight-story building (Bahen Center at University

of Toronto), which is comparable to those reported

in [7], [9], and [5]. A total of 17 APs were detected

throughout the spatial domain. A PDA (HP iPAQ hx4700

with Windows Mobile 2003 pocket PC) was used to

measure WLAN signal strength value, and a software

was developed in Visual Studio C# to implement the

CS-based localization system on the device. The RSS

values were collected on the device by using the open

source library OpenNetCF, which provides access to

MAC address and RSS values of WLAN APs [21]. The

RSS observations from 17 APs were recorded for a

period of 20 seconds (one reception per second) over

118 RPs with an average grid spacing of 1 m during

the offline phase. Besides the office building, we also

tested the system in a public area, the Bayview Village

shopping center in Toronto. In our experiments, the

orientation of the PDA remained the same during both

the offline phase and the online phase.

Both the simulation and experimental implementa-

tion on the PDA used the collected radio map database

for their localization estimation. The two evaluation

methods are different in the way they use the online

RSS observations. In simulations, the 118 RPs with

prior known positions were chosen as the testing points.

We then added white Gaussian noise to the observation

vector y to evaluate the system’s performance under

different signal-to-noise ratio (SNR). In the implemen-

tation study, the online observations were collected on a

different day by the device at unknown locations as the

testing points to evaluate the actual performance of the

system under time-varying environment.

In the following subsections, the performance of the

localization system is evaluated by the localization error,

which is measured by averaging the Euclidean distance

between the estimated locations of the mobile user and

its actual location over the testing points. Section VII-A

to Section VII-D provide both simulation results and the

corresponding implementation results for the two phase

localization scheme.

A. Offline Stage: Clustering by Affinity Propagation

This subsection evaluates the performance of clus-

tering using affinity propagation with respect to the

specified parameter (preference, p), by comparing with

the K-means clustering algorithm.

In order to mitigate RSS variations and to remove

potential outliers for coarse localization, affinity prop-

agation is used on the overall radio map to generate

exemplars and their corresponding clusters during the

offline phase at the server side. Fig. 5 demonstrates

the number of generated clusters with respect to the

preference parameter (p) specified for the affinity prop-

agation algorithm. It is shown that a larger p results in

a smaller number of clusters. Since all the RPs have the

same probability for being an exemplars, we first set the

preference p as the median of the input similarities to

generate a moderate number of clusters. We will tune

the parameter shortly for a better performance.
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Fig. 5. The number of clusters with respect to parameter p.

Fig. 6 shows the clustering result on the PDA. Each

circle represents one RP collected on the map, and each

color represents one cluster. It shows that the 118 RPs

are divided into 10 clusters, and RPs belonging to the

same cluster are geographically close to each other; this

allows the clusters to be used for removing outliers in

coarse localization.

Fig. 6. The clustering result on the PDA, using affinity propagation
in lab environment, (10 clusters are generated).

The performance of clustering is first evaluated by

the clustering accuracy, which is defined as the ratio

of the number of testing data matched to the correct

cluster shown in Fig. 6 to the overall number of testing

data. Fig. 7 compares the affinity propagation with the

K-means clustering approach in terms of the clustering

accuracy, with respect to the number of clusters. Both

the simulation results and the implementation results

show that affinity propagation outperforms the K-means

approach, especially for large database where a large

number of clusters is generated.
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Fig. 7. The clustering accuracy with respect to the number of clusters,
using the affinity propagation and the K-means approaches.

B. Online Stage: Coarse Localization

This subsection evaluates the performance of coarse

localization using cluster matching, with respect to the

number of clusters generated. Other than the clustering

accuracy, the performance in terms of the localization

error is studied as well. In simulations, we reduce the

SNR to 10 dB to evaluate the system.

Fig. 8 illustrates the corresponding results for both

simulation and implementation. The coarse localization

scheme operating on clusters generated by affinity propa-

gation achieves a better performance than that generated

by the K-means clustering approach. The experimental

results in Fig. 8 also show that the proposed algorithm

outperforms K-means when the number of clusters is

more than 15. Thus, we tune the preference parameter p

into 0.4p to achieve 21 clusters as shown in Fig. 5 for

our following experiments.
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Fig. 8. The experimental result of coarse localization, localization
error with respect to the number of clusters generated by affinity
propagation, and K-means clustering.

As mentioned in Section V, the similarity function

can be used to reduce the number of APs used in the
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location estimation. Since clustering reduces the area of

interest into a subset C, the dimension of sparse signal

in the CS algorithm is also reduced to Ñ . This allows

the system to reduce the number of APs required for

accurate location recovery. Fig. 9 shows the localization

error as a function of the number of APs used in the

algorithm. Here we have assumed that the strongest

APs are used. As illustrated in Fig. 9, only 5 APs are

needed to achieve about 1.4 m error when 21 clusters are

generated by affinity propagation, and 1.9 m error under

10 clusters. However, 17 APs are needed to achieve the

same level of accuracy if no clustering scheme is applied.
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Fig. 9. The implementation result of reducing the number of APs.

C. Online Stage: Fine Localization

Fig. 10 compares the performance of different

schemes of AP selection, in terms of localization error.

Implementation result shows that AP selection using

the Fish criterion achieves better performance than the

strongest APs selection.

Also, we compare the proposed positioning system

with the traditional fingerprinting approaches, known as

the kNN and the kernel-based methods [5], in terms

of the localization accuracy. The proposed positioning

system used affinity propagation to generate 21 clusters

during the offline phase, and then performed coarse

localization by cluster matching, followed by a fine

localization stage consisting of AP selection by the Fish

criterion and an ℓ1-minimization algorithm in the online

phase. Fig. 11 shows the implementation result on the

PDA. As noticed that once the number of measurements

exceeds the minimum bound as required by the CS

theory, our proposed positioning system achieves the best

performance among the three approaches. The proposed

system implementation on the PDA leads to the location

estimate error improvement of 0.8m (37%) and 1.3m
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Fig. 10. The Implementation result of AP selection, using the
strongest APs, and the Fish criterion.

(48%) over that of the kNN and the Kernel-based meth-

ods, respectively, when 5 APs are used.
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Fig. 11. Comparison of localization accuracy among different
positioning systems in the lab environment.

D. Implementation Result in Public Area

We also tested the system in the Bayview Village

shopping center in Toronto. A total of 69 APs were

detected throughout a 40, 000 square foot area, and RSS

readings at 202 RPs were collected.

Fig. 12 shows the corresponding clustering result on

the PDA, where 15 clusters were generated by affinity

propagation. Fig. 13 compares the performance of the

proposed positioning system with the kNN and the

Kernel-based methods in the Bayview Village. It shows
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that the proposed system leads to an approximate loca-

tion estimate error improvement of 0.8m (20%) and 1.1m

(26%) over the kNN and the Kernel-based methods,

respectively, when 5 APs are used. The redundancy can

be addressed by AP selection, in which only a small

number of APs is used for location estimation and thus

helps to reduce the computation time.

Fig. 12. The clustering result on the PDA using affinity propagation
in the Bayview Village, (15 clusters are generated).
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Fig. 13. Comparison of localization accuracy among different
positioning systems in the Bvayview Village.

VIII. CONCLUSION

In this paper, we have proposed an indoor position-

ing system based on compressive sensing in WLANs.

The intuition behind this technique is that location

estimation is a sparse problem and thus according to

the CS theory, the location can be well recovered from

only a small number of noisy measurements through an

ℓ1-minimization program. We have used a coarse local-

ization to compensate for the complex radio channel.

Experimental results demonstrate that the proposed two-

stage localization method leads to substantial improve-

ments on localization accuracy and reduces complexity

over the widely used traditional fingerprinting methods.
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