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ABSTRACT

In this paper we propose a novel wide-band spectrum sensing

scheme using compressive sensing. The wide-band signal is fed

into a number of wide-band filters and the outputs of the filters

are used to reconstruct the vector of channel energies through the

compressive sensing’s ℓ1 norm minimization. An energy detection

is then performed by comparing the obtained vector to a vector of

energy thresholds to decide about the occupancy of each channel.

Performance of the proposed approach is compared to the cur-

rent wide-band spectrum sensing algorithms as well as the conven-

tional channel-by-channel scanning method.

Index Terms— compressive detection, compressive sensing,

wide-band spectrum sensing

1. INTRODUCTION

With the rapid growth in wireless applications, spectrum resource

becomes scarce. Although the current static spectrum management

avoids interference effectively, this comes with the price of very low

spectrum utilization. While some frequency bands are overcrowded,

other bands are rarely used. Cognitive radio (CR) promises to in-

crease the utilization of frequency bands that are under-utilized by

providing opportunistic spectrum access. This is done through au-

thorizing the unlicensed users (secondary users) to access the band

assigned to the licensed user (primary user) when it is unoccupied.

spectrum sensing plays an essential role in cognitive radio since sec-

ondary users need to detect primary signals in order to make deci-

sions about the occupancy of the spectrum bands.

When a wide-band spectrum is assigned to a number of primary

users, secondary users can search for unoccupied channels (spectrum

holes) within the wide-band spectrum and communicate in that band.

The traditional way for detecting holes in a wide-band spectrum is

channel-by-channel scanning.

In order to implement this, an RF front-end with a bank of tun-

able and narrow bandpass filters is needed. The occupancy of each

channel can be determined by measuring the energy of the signal at

the output of each filter. The high complexity encountered by such

approach is a major challenge as numerous RF components are re-

quired for the implementation. Furthermore, such method introduces

large latency to the spectrum sensing process.

Alternative techniques have been proposed in the area of wide-

band spectrum sensing. A wide-band spectrum sensing technique

called multi-band joint detection has been proposed in [1]. In this

method, signal energy levels over multiple channels are jointly de-

tected. The problem is formulated as a class of optimization prob-

lems in which the opportunistic aggregate throughput is maximized

subject to practical constraints. It has been shown that multi-band

joint detection outperforms the approach that searches for threshold

levels that maximize the aggregate throughput.

In [2], maximum likelihood estimation of the signal and noise

power has been used to detect the primary signals. An iterative

asymptotic ML estimate has been proposed that can be simplified to

obtain an efficient least squares estimator. The performance of this

approach has been studied through simulations for different number

of channels and different SNRs.

Compressive sensing theory has also been considered in wide-

band spectrum sensing techniques [3, 4]. In [3], an analog-to-digital

converter has been used to transform the analog received signal into

a digital signal by sampling at the Nyquist rate. Next, compres-

sive sampling is applied to the sampled vector to compress it into

a smaller vector and then the spectrum is reconstructed by solving

an ℓ1 norm minimization problem. In [4] the received analog signal

is sampled at the information rate of the signal using an analog-to-

information-converter (AIC). Here, the compressive sensing is em-

bedded in the AIC. The same ℓ1 norm minimization method is used

to estimate the original spectrum. In both [3,4], wavelet edge detec-

tor has been used to detect the channel borders in the estimated spec-

trum and the detection’s performance has been evaluated in terms of

mean square error through simulations. It has been shown that MSE

performance of [3] outperforms that of [4] for all compression rates,

but their detection performances are comparable. In both [3, 4], the

signal needs to be sampled at the Nyquist rate and then compressed

based on its sparsity.

In this paper, we propose a novel method of compressive detec-

tion for wide-band spectrum sensing. In the proposed method, the

signal is fed into a number of filters, much less than the number of

channels within the wide-band spectrum. The energies of the filter

outputs are used as the compressed measurement to reconstruct the

signal energy in each channel. The energy vector is then compared

with a threshold vector to detect the spectrum holes.

The effect of noise on the received signal is investigated through

simulations. Numerical results suggest that the compressive sens-

ing method enhances the detection performance of the receiver by

suppressing the noise energy in the unoccupied bands.

2. COMPRESSIVE DETECTION, THE PROPOSED

APPROACH

In this section, we introduce the novel method of wide-band com-

pressive channel occupancy detection. First, compressive sensing

basics are briefly introduced. Second, the design and the approach

of each CR to obtain the channel occupancy estimate is discussed.

Third, the compressive detection algorithm is introduced. In this

algorithm, CRs estimate the signal energy of all channels compres-

sively and decide on the occupancy of the channels. Application of



the proposed method in ad-hoc networks and the advantages of the

approach over current wide-band spectrum sensing algorithms are

also discussed.

2.1. Compressive Sensing Basics

Compressive sensing is a method to recover signals from far fewer

measurements than needed for traditional sampling. Assume that an

N × 1 vector x is to be measured. Also suppose that there is a basis

Ψ in which x is sparse. Mathematically, x can be written as

x = Ψs (1)

where the N × 1 vector s is the representation of x in the basis Ψ

and has just Ls ≪ N non zero elements.

Compressive sensing theory states that x can be accurately re-

covered from K ≪ N measurements of the signal. Assume that we

use a set of K linear combinations of the signal as the measurement

vector y

y = Φx. (2)

where Φ is the sensing matrix. Then by properly choosing K and

Φ, and based on sparsity of the representation of x in the Ψ basis,

x can be recovered from y. The value of K depends on N , Ls

and a measure of coherence (correlation) between the sensing matrix

Φ and the basis matrix Ψ. As the basis matrix is determined by

the nature of the problem, choosing a sensing matrix having a low

coherence with Ψ will lead to a smaller K. This suggests choosing

Φ to be a totally random matrix [5].

If the above conditions apply, then the sparse vector s can be

recovered from the measurement vector y through an ℓ1 norm min-

imization

min
s

∥s∥1

Subject to y = ΦΨs (3)

2.2. System Model and Problem Statement

Suppose that a total spectrum of W Hz is considered to be shared

among a number of primary and secondary users. This can be either

an ad-hoc network sharing a total of W Hz spectrum among its nodes

or a secondary network of cognitive radios trying to use the licensed

spectrum opportunistically for secondary communication.

Assume that each node in the ad-hoc network in the first scenario

or each cognitive radio in the second scenario needs a bandwidth of

B Hz for the communication. Define N ≜ W
B

to be the number

of available channels and denote by fi the center frequency of the

ith channel. Also assume that each node is using a wide-band an-

tenna listening to the whole spectrum and providing the node with

the wide-band time domain signal x(t).
Each node is also provided with a filter bank {Hk(f)}

K
k=1 con-

sisting of K ≪ N wide-band filters with a bandwidth equal to the

total spectrum W . Alternatively, a K × N totally random complex

matrix Φ can be assigned to the nodes. This matrix is used to design

the K filters so that the frequency response of the kth filter at the ith

channel is [Φ]ki, or equivalently

Hk(fi) = [Φ]ki, k = 1, 2, . . .K, i = 1, 2, . . . N. (4)

Here, Hk(f) represents the transfer function of the kth filter. The Φ

matrices can be generated once and stored in the nodes (equivalently

the filters can be generated and stored). Assume that, the wide-band

signal at the input of the node, x(t), is sampled to obtain the time

sequence vector xt. The node then feeds the wide-band signal into

the filters and the output at the kth filter is

zk = Conv(xt,hk) (5)

where Conv(⋅, ⋅) denotes the convolution operation and hk is the

impulse response sequence of the kth filter. The energy of the output

signal of each filter is then measured to get the K × 1 energy vector

y

yk = zk
H
zk, k = 1, 2, . . . ,K (6)

y = [y1, y2, . . . yK ]T (7)

where (⋅)T and (⋅)H represent transpose and complex transpose of a

matrix respectively. Lets denote the portion of the received signal’s

energy in the ith channel by Ei. Mathematically,

Ei =

∫ fi+B/2

fi−B/2

ℱx(t)df. (8)

Here ℱ denotes the continuous Fourier transform of a signal. Sup-

pose that the frequency response of each filter is approximately con-

stant throughout each channel and equals Hk(fi) = Φki for the kth

filter and the ith channel. Hence the energy at the output of the kth

filter can be represented as

yk =

N
∑

i=1

∣Hk(fi)∣
2
Ei, k = 1, 2, . . .K

In the vector form, we can write the above set of equations as

y = Φ̄e (9)

where

Φ̄ =

⎡

⎢

⎢

⎢

⎣

∣H1(f1)∣
2 ∣H1(f2)∣

2 . . . ∣H1(fN )∣2

∣H2(f1)∣
2 ∣H2(f2)∣

2 . . . ∣H2(fN )∣2

...
...

. . .
...

∣HK(f1)∣
2 ∣HK(f2)∣

2 . . . ∣HK(fN )∣2

⎤

⎥

⎥

⎥

⎦

.

Here Φ̄ is a matrix whose elements are square absolute values of the

elements of the random matrix Φ and e = [E1, E2, . . . EN ]T is the

vector of energies of the received signal in different channels. The

goal of the node is to estimate the length N vector e using the length

K measurements vector y.

2.3. Compressive Detection

It is now straightforward to establish the correspondence between

our filter-based node design and the compressive sensing theory. We

assume that at each node and at each instance of time, only a small

portion of the channels are occupied. This is equivalent to assuming

that the energy vector e is sparse. Therefore, by properly choos-

ing the number of the filters, K, based on the compressive sensing

theory, the channel energy vector e can be recovered from the mea-

surement vector y as

e = argmin
e

∥e∥1

Subject to y = Φ̄e



This is the base for the compressive detection receiver. Each

node reconstructs the energy vector e from the vector of measure-

ments y. Next, a threshold is adopted and the values of e are com-

pared with the threshold to decide on the occupancy of the channels.

In the cognitive radio scenario, the threshold adopted in each

channel depends on the maximum level of interference allowed by

the primary user. Assume that the distance from the primary trans-

mitter to the primary receiver is denoted by R. If the guaranteed

signal to interference ratio (SIR) for the primary communication is

, the interference range of the primary receiver, D, can be deter-

mined by

PpL(R)

PsL(D) + Pb
=  (10)

where Pp and Ps are the primary transmitter and the cognitive ra-

dio’s transmit powers, Pb is the power of background interference

at the primary receiver and L(d) is the function of total path loss

at distance d [6]. Consequently, the cognitive radio should be able

to sense any signal coming from a distance of maximum R + D or

equivalently any signal with power equal to or grater than Pmin =
PpL(D+R). So in each channel, if Pmin > BNo, where No is the

noise spectral density, the threshold should be set above the noise

level and below Pmin. Otherwise the cognitive radio is not in the

interference range of the primary receiver and can always transmit

in the underlying channel. The parameters , R and Pb should be

provided by the regulator or the corresponding primary system [6].

2.4. Cooperative Spectrum Sensing in Ad-hod Networks

The compressive detection method proposed could be adopted by

ad-hoc networks for efficient spectrum utilization. Assume a num-

ber of nodes communicating within an ad-hoc network and spectrum

of W Hz is assigned to the whole network. This spectrum is divided

into N service channels and a low bandwidth control channel. The

control channel is used to convey control commands such as con-

nection initialization commands and channel occupancy estimation.

One-to-one communication is assumed so whenever one node in the

network has information to share with another, an empty channel has

to be selected and used for the transmission.

A major challenge in such scenario is the hidden terminal prob-

lem. Suppose that node A wants to transmit data to node B. Node

A senses the spectrum and chooses a channel for the transmission.

However, if node C which is out of the detection range of A but in

the interference range of B, uses the same channel for transmission,

then the signals of A and C interfere in B and the transmission fails.

In order to prevent the hidden terminal problem, the nodes com-

municating in an ad-hoc network should cooperate in finding the

empty channels. Whenever data is available at one node intended to

be sent to another, the destination is also notified through the control

channel and then both nodes sense the spectrum and exchange their

estimates of the available channels through the control channel. The

estimates made at the two nodes might be different since each may

pickup signals from close by nodes that are communicating through

one of the N channels that are not detected by peer node. Next,

based on the two estimates of the occupancy pattern, they agree on

one or a number of channels that are empty on the location of both

nodes.

Exchange of spectrum estimates can be performed by sending

N bits over the control channel in which ones show the locations

of occupied channels. Upon receiving this decision bit stream, each

node can use bitwise OR operation to obtain the channels available

at both ends.

To find the thresholds that nodes should adopt in the channel oc-

cupancy detection, assume that a minimum frequency reuse distance

D is determined for the network. In other words, the same channel

can be re-used to connect two other nodes if both are in a distance

of at least D from the nodes initially using the channel. Using the

same path loss function L(⋅), the threshold at each channel can be

set to  = PL(D) where P denotes the maximum transmit power

of the nodes. As both nodes detect the channel occupancy using the

proposed compressive detection approach, it is guaranteed that no

interference or hidden terminal problem occurs.

2.5. Advantages over Current Algorithms

The proposed algorithm has several advantages over the algorithms

already suggested in the literature. First, unlike methods suggested

in [3, 4], in our compressive detection, the frequency domain repre-

sentation of the signal is not being reconstructed. Instead, just the

vector of channel energies is obtained by solving the ℓ1 norm mini-

mization. This benefits the complexity of the problem in two aspects.

First, the energy vector in our algorithm has exactly N elements and

hence the optimization problem has dimension N , while in spec-

trum reconstruction, the dimension is nN where n is the number of

samples per channel and depends on the resolution of the spectrum

reconstruction.

Second, the optimization variable in spectrum reconstruction is

a complex vector. It is shown that the complexity of the ℓ1 norm

minimization in this case is O(n3) [ref]. In the proposed energy

detection, the optimization variable is a vector of real and nonneg-

ative numbers. Authors of [7] show that in this case, the optimiza-

tion problem can be solved with linear programming. To compare

the complexities of the two methods, as an example, suppose that a

spectrum consisting of 100 channels is being sensed. If just two sam-

ples per channel are used in the spectrum reconstruction scheme, the

proposed method has a lower complexity factor of 80000 (
(nN)3

N
).

It is also worth mentioning that comparing with non wide-band

spectrum sensing methods, i.e. channel-by-channel scanning, the

proposed method outperforms in complexity in spite of the added

compressive sensing algorithm. First, in channel-by-channel scan-

ning, a bank of N narrow-band filters are needed to scan each chan-

nel while the proposed method exploits just K << N filters. Sec-

ond, the filters used in the proposed method are wide-band filters

having a much shorter impulse response and hence lower filtering

complexity. Considering that our K filters have bandwidth N times

larger than a narrow band single channel filter, and the fact that we

have only K filters, leads to the conclusion that the filtering com-

plexity of the proposed method over the conventional channel-by-

channel scanning is
1

N
×

K

N
=

K

N2
.

Another advantage of the proposed method, is the effect of the

compressive sensing algorithm on the performance of the detection

in presence of noise. If there is no noise, the energy vector e has

lots of zeros and a few nonzero elements representing the occupied

channels. This sparse vector hence can be reconstructed based on

the compressive sensing theory. In real situations, the energy of the

unoccupied channels is BNo (the noise energy) and therefore e has

no zeros. In this case, the reconstructed signal is not an exact copy

of the energy vector as the sparsity has changed. Nevertheless, nu-

merical results suggest that as the compressive sensing algorithm

searches for a vector with least number of nonzero elements, in the

reconstructed energy vector, the noise effect has been suppressed

compared to the original energy vector. In other words, as far as a

reasonable signal power is present in the receiver, the output of the
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Fig. 1. PDF of energy in an occupied and an unoccupied channel for

different number of filters K

compressive sensing algorithm has a higher SNR. We hope to be able

to report on rigorous analysis of this result in a follow-up paper.

3. SIMULATIONS

In this section, we evaluate the performance of the compressive

detection algorithm through simulations. The input signal to each

node, is the wide-band noisy signal which is fed into K different

filters and the energy of the output signals are then used in the ℓ1
norm optimization problem to obtain the channel energy vector e

(10).

In the simulations, a spectrum bandwidth of 20 channels is con-

sidered and it is also assumed that at each node and at each instance

of time, not more than 6 channels are occupied. Measurements show

that a minimum of 12 filters (K = 12) is needed for successful re-

construction of the energy vector. Additive white Gaussian noise is

added to the received time signal.

Fig. 1 illustrates the probability density function (PDF) of the es-

timated channel energy e for an occupied and an unoccupied channel

and the signal to noise ratio of 5 dB. As seen in this figure, the PDF

of the detected energies in an occupied channel are very close for

K = 15 and K = 12. On the other hand, for K = 10 the mean of

the detected energy degrades significantly. This shows the threshold

effect of K based on compressive sensing theory. Interestingly, the

mean of the unoccupied channel energy, which is the mean of the

reconstructed noise energy, decreases with K as far as K remains

above the threshold. In other words, the compressive sensing al-

gorithm is suppressing the input noise at the output while keeping

the signal almost constant and hence increasing the SNR. This is of

course true just if K is above the threshold. As seen in Fig. 1, for

K = 10 the noise has been actually amplified.

Fig. 2 depicts the probability of error in channel occupancy de-

tection versus SNR for different number of filters K. As seen in this

figure, for number of filters equal and above K = 12, the perfor-

mance of the detector is almost the same. The degradation is on the

other hand apparent when less than 12 filters are used.
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4. CONCLUSION
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