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Abstract— In this paper, we consider the problem of minimiz-
ing the mean completion delay in wireless multicast for instantly
decodable network coding. We first formulate the problem as
a stochastic shortest path (SSP) problem. Although finding
the optimal selection policy using SSP is intractable, we use
this formulation to draw the theoretical properties of efficient
selection algorithms. Based on these properties, we propose a
simple online selection algorithm that efficiently minimizes the
mean completion delay of a frame of multicast packets with
a similar computational complexity as the random and greedy
selection algorithms. Simulation results show that our proposed
algorithm indeed outperforms these random and greedy selection
algorithms.

Index Terms—Wireless Multicast; Instantly Decodable Net-
work Coding; Online Algorithms; Stochastic Shortest Path Prob-
lem; Maximal Weighted Clique Search

I. INTRODUCTION

Network coding (NC) has shown great abilities to substan-
tially improve transmission efficiency, throughput and delay
over broadcast erasure channels. These merits can greatly
impact the performance of current and emerging applications
that require content to be downloaded quickly and reliably
from a sender over possibly unknown channels, such as
satellite imaging, roadside to vehicle communication, internet
TV and wireless downlink broadcasting. In these applications,
transmissions are subject to packet losses due to network or
channel impairments such as network congestion, wireless
fading and interference. These losses are perceived as packet
erasures at higher layers, and are usually modeled by inde-
pendent erasure channels for different receivers. Consequently,
network coding can play a big role in exploiting the diversity
of received and lost packets by different receivers to improve
the system performance.

The design of online NC packet selection algorithms that
optimizes throughput and delay performances over single-hop
broadcast erasure channels, has been an intensive area of
research [1]–[6]. In [1], the authors propose an online selection
algorithms for the three-receiver case, prove it is rate-optimal
and conjecture that it achieves an asymptotically optimal
average delay. In [2], [3], several greedy online NC selection
algorithms minimizing a given notion of unordered delay were
compared for i.i.d. erasure channels. However, these proposed
algorithms performed un-prioritized packet selection for each
NC transmission and did not consider the channel conditions

in their selection procedures. In [4], a first approach for NC
selection algorithms with packet prioritization and channel
awareness was proposed. The authors proposed an algorithm
that minimizes the same notion of delay in [2], [3] for
instantly decodable network coding (IDNC) over Markovian
ON-OFF channels. In [7], we proposed an ID-NC algorithm
based on a maximal clique search over a graph defining all
possible instantly decodable packet combinations. However,
we assumed that the clique search is done randomly without
considering delay minimization nor channel conditions.

On the other hand, [5], [6] employed of Markov Deci-
sion Processes (MDP) [8] to find the optimal NC selection
policy that minimizes the distortion of video streams over
a finite transmission horizon. However the dimensionality of
the MDP’s state and action spaces makes the computation of
these optimal policies intractable. In [6], a simulation based
dynamic programming algorithm was proposed to reduce the
computational complexity. However, the resulting complexity
of the proposed algorithm is still intractable.

In this paper, we address the following question: Given
the knowledge of received and lost packets at different re-
ceivers and their packet loss rates, how can we design an
efficient online packet selection algorithm for IDNC that can
minimize the mean completion delay of a frame of packets?
We consider IDNC for due its desirable property of simple
decoding. Indeed, IDNC can be implemented using binary
XOR (operations over GF(2)), and thus each receiver can
simply cancel out the packets it already knows. This eliminates
the need for matrix inversion at the receivers, which is a
computational bottleneck in linear network coding [4].

To answer the above question, we first formulate the prob-
lem as a stochastic shortest path (SSP) problem, which is a
special case of MDP that has an absorbing state. Although
this formulation suffers from the same curse of dimensionality
as in [5], [6], we mainly employ it to draw the theoretical
properties of efficient packet selection algorithms. Based on
these properties, we propose a simple yet efficient online
IDNC selection algorithm that finds the packet selection using
a maximum weight vertex search over the graph employed
in [7]. Simulation results show that this proposed algorithm
achieves a lower mean completion delay compared to the
random selection algorithm (that selects served receivers arbi-
trarily at each step) and the greedy selection algorithm (that



serves the maximum number of receivers at each step) while
the computational complexity stays similar to the random
algorithm.

The rest of the paper is organized as follows. In Section II,
we introduce the system model and parameters. The ID-NC
graph is illustrated in Section III. We present the problem
formulation using SSP in Section IV and draw from it the
properties of efficient NC selection algorithms in Section V.
Our proposed NC selection algorithm is introduced in Sec-
tion VI and its performance is compared against random
and greed algorithms in Section VII. Finally, Section VIII
concludes the paper.

II. SYSTEM MODEL AND PARAMETERS

The model consists of a wireless sender that is required to
deliver a frame N of N packets to a set M of M receivers.
Each receiver is interested in receiving either a subset or all
the packets of N . The sender initially transmits the N packets
of the frame uncoded in an initial transmission phase. Each of
the receivers stores all correctly received packets its memory
even if it did not request it. For each lost packet, each receiver
instantaneously sends a NAK packet to the sender. At the
end of the initial transmission phase, 3 sets of packets can
be attributed to each receiver i:

• The Has set (denoted by Hi) is defined as the set of
packets correctly received by i. This set includes both
desired and undesired packets by this receiver.

• The Lost set (denoted by Li) is defined as the set of
packets that were not correctly received by i whether
requested or not by this receiver. In other words, Li =
N \Hi.

• The Wants set (denoted by Wi) is defined as the set of
packets that are both requested and lost by mi in the
initial transmission phase of the current MBS frame.

The sender stores this information in a state feedback matrix
(SFM) F = [fij ] , ∀ i ∈M, j ∈ N such that:

fij =





0 j ∈ Hi

1 j ∈ Wi

2 otherwise
(1)

After the initial transmission phase, a recovery transmission
phase starts. In this phase, the sender exploits the SFM
to transmit network coded combinations of source packets
containing at most one source packet from the Wants set
of each of the receivers. This NC scheme is referred to as
Instantly decodable network coding. For each transmission, the
receivers send ACK/NAK packets that are used by the sender
to update the SFM. This process is repeated until all receivers
obtain their demanded packets. We define the completion delay
of a frame as the number of recovery transmissions required
until all receivers obtain all their requested packets.

Finally, let p = [pi] i ∈ M be the packet loss rate vector.
We assume that the entries of p do not change during the
frame transmission period. Also, let µi be the demand ratio

of receiver i defined as the ratio of demanded packets of i in
the frame to the total frame size.

III. THE INSTANTLY DECODABLE NETWORK CODING
GRAPH

The IDNC graph is a graph that defines all possible instantly
decodable packet combinations. It was first introduced in the
context of a heuristic algorithm design solving the index
coding problem [9], [10]. The IDNC graph G is constructed
by first generating a vertex vij in G for each packet j ∈ Wi,
∀ i ∈ M. Two vertices vij and vkl in G(s) are connected if
one of the following conditions is true:
• j = l ⇒ The two vertices are induced by the request and

loss of the same packet j by two different receivers i and
k.

• j ∈ Hk and l ∈ Hi ⇒ The requested packet of each
vertex is in the Has set of the receiver that induced the
other vertex.

let K be a maximal clique in G (a maximal clique is a
clique that is not a subset of any larger cliques). From the
construction of G, it can be easily inferred that any packet,
generated by XORing the source packets identified by the
vertices of any maximal clique in G, is an instantly decodable
packet. Consequently, IDNC packets can be generated by
maximal clique search over G.

In [7], we employed an IDNC algorithm that randomly
selects a maximal clique for each transmission. When the
ACK/NAK of this transmission is received by the sender, it up-
dates the graph and the procedure is repeated until all receivers
obtain their requested packets. One can intuitively suppose that
the best selection strategy is to select any maximum clique
in G at each step (a maximum clique is a clique that has the
largest number of vertices). We refer to this approach as greedy
selection. In this paper, we aim to find a more strategic clique
selection approach in order to minimize the mean completion
delay over both the random and greedy selection algorithms.

IV. PROBLEM FORMULATION USING SSP
A. The SSP Problem

The stochastic shortest path (SSP) problem is a special
case of the infinite horizon MDP that can model decision
based stochastic dynamic systems with a terminating state.
In SSP, the different possible situations that the system could
encounter are modeled as states s ∈ S (where S denotes the
state space of SSP). In each state s ∈ S , the system can
take different actions a ∈ A(s) ⊆ A that will charge it an
immediate cost c(s, a) (where A denotes the action space of
SSP). The terminating condition of the system can be thus
represented as a zero-cost absorbing goal state (sg). Once an
action a is taken at state s, the system can move to a state s′

with probability Pa(s, s′), which only depends on the current
state and the taken action. An SSP policy π = [π(s)] is a
mapping from S → A that specifies a given action to each
of the states. The optimal policy π∗ of an SSP is the one
that minimizes the cumulative mean cost until the goal state
is reached.
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The algorithms solving SSPs define a value function Vπ(s)
as the expected cumulative cost until absorption when the
system starts at state s and follows policy π. It can be
recursively expressed ∀ s ∈ S as:

Vπ(s) = c(s, π(s)) +
∑

s′∈S(s,a)

Pπ(s)(s, s′) Vπ(s′) (2)

where S(s, a) is the set of successor states to s when action a
is taken (i.e. S(s, a) = {s′|Pa(s, s′) > 0}). Consequently, the
optimal policy at state s can be defined ∀ s ∈ S as:

π∗(s) = arg min
a∈A(s)



c(s, a) +

∑

s′∈S(s,a)

Pa(s, s′) Vπ∗(s′)




(3)

B. Problem Formulation

The packet selection problem that minimizes the mean
completion delay for IDNC can be formulated as an SSP
problem as follows:

1) State Space S:
States are defined by all possibilities of SFM F(s) that may
occur during the recovery transmission phase. For state s,
the matrix represents the content of Has and Wants sets in
s (i.e. Hi(s) and Wi(s) ∀ i ∈M) as defined by (1). For each
state s, we define the wants vector λ(s) = [λi(s)], such that
λi(s) = |Wi(s)|. Note that, based on this state definition, the
cardinality of the state space |S| = O

(
2MN

)
.

2) Action Spaces A(s):
For each state s, the action space A(s) consists of all possible
maximal clique in the graph G(s) constructed from the Has
and Wants sets of different receivers in state s. We define C(s)
as the set of maximal cliques in G(s) and K(s) = |C(s)|.
Consequently, the cardinality |A(s)| = K(s).

3) State-Action Transition Probabilities:
To define the state-action transition probability Pa(s, s′) for an
action a = K(s) ∈ C(s), we first introduce the two following
sets:

X = {i ∈M|λi(s) > λi(s′)} (4)
Y = {i ∈M|λi(s) = λi(s′) and ∃ vij ∈ k(s)} (5)

Based on the definitions of these sets, Pa(s, s′) can be ex-
pressed for action as follows:

Pa(s, s′) =
∏

i∈X
(1− pi) ·

∏

i∈Y
pi (6)

4) State-Action Costs:
The mean completion delay is defined in SSP terms as the
expected number of transitions in the process before arriving to
the goal state. Since any transition (due to any action) take one
packet transmission, the cost payed by the process is one time-
slot. Consequently, the costs of all actions in all sets should
be set to 1. In other words, c(s, a) = 1 ∀ a ∈ A(s), s ∈ S .

C. SSP Solution Complexity

The optimal policy of an SSP problem can be computed
using the famous policy iteration and value iteration algo-

rithms. The complexity of these algorithms are Θ(|S|n|A(ss)),
where ss is the starting state and the value of n depends
on employed version of the algorithms. According to the
dimensions of S and A(s) described in Section IV-B, we
conclude that obtaining the optimal policy is impossible in
real-time for typical values of M and N . Even the simulation
based technique proposed in [6] will not be able to compute
the optimal policy in real-time since its complexity still scales
with |S|.
V. PROPERTIES OF EFFICIENT IDNC SELECTION POLICY

In this section, we explore the properties of the SSP formu-
lation described in Section IV-B and draw some properties
that characterize an efficient policy minimizing the mean
completion delay. From Section IV-B, we can infer that the
SSP formulation has the following two properties:
• Non-singleton acyclicity: This property arises from the

fact that no state can be revisited once the process moves
to a next state. Indeed, if some packets are received by
some receivers when an action is taken at a given state,
there is no means of going back with these receivers not
having these packets. However, a state can revisit itself
(singleton cycles) if all the receivers targeted by the taken
action do not receive the IDNC packet.

• Non-increasing successor value functions: Since there are
no cycles of size more than one, successor states of a
given state are all closer to the goal state than itself.
Consequently, the expected cost to absorption starting
from a given state is always greater than or equal to the
expected costs to absorption starting from all its successor
states.

These two properties can be employed to draw the properties
of the optimal policy π∗ minimizing the mean completion
delay as follows. If the system is at state s, we have:

π∗(s) = arg min
a∈A(s)



1 +

∑

s′∈S(s,a)

Pa(s, s′) Vπ∗(s′)





= arg min
a∈A(s)





∑

s′∈S(s,a)

Pa(s, s′) Vπ∗(s′)





= arg min
a∈A(s)

{Ea (Vπ∗(s′))} , (7)

where Ea is the expectation operator over the different tran-
sition possibilities when action a is taken. Thus, the optimal
action at state s is the action minimizing the expectation of
the optimal value functions of the successor states. Due to the
two properties of the SSP explained above, all successor states
are closer to the goal state (thus having less mean completion
delays) expect for itself. Thus, the optimal action at state s is
the one that has high probabilities of moving to states with the
least expected residual completion delay. To evaluate the right
hand expressions, we can exploit the results is in [11], [12] to
find expressions for the expected residual completion delays
of successor states. In these references, the mean completion
time for a set of receivers to successfully receive a sufficiently
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large number N of packets using instantly decodable network
coding can be expressed as:

MCT =
N

1−maxi∈M {pi} . (8)

This expression was derived in [11], [12] while assuming that,
for large N , the receiver with the worst channel condition will
always have the largest Wants set over the whole recovery
transmission phase. The derivation also assumed that this worst
channel receiver is addressed by one of its missing packets
in each recovery transmission. In other words, if the receiver
was not addressed in each recovery retransmission, the mean
completion time would have been larger. Consequently, this
expression is approximately the optimal mean completion time
for large N and one worst channel receiver, which is achieved
when the worst channel receiver is addressed in each instantly
decodable packet.

Extending this argument to the case of multiple worst chan-
nel receivers, an efficient policy would be the one addressing
the maximum number of these receivers in each instantly
decodable packet. Now extending this argument to the case
when N is not large, an efficient policy would be the one
addressing the maximum number of receivers, having the
largest individual mean completion times, in each instantly
decodable packet. We define the individual mean completion
time (τi(s)) for receiver i at state s as the expected time for
this receiver to receive all its missing packets if considered in
all future transmissions. Based on this definition, τi(s) can be
expressed as:

τi(s) =
λi(s)
1− pi

. (9)

Having this argument illustrated, we are now ready to present
our proposed packet selection algorithm to minimize the
multicast mean completion delay.

VI. PROPOSED ALGORITHM

We previously stated that the IDNC packet selection in
state s is performed by a maximal clique selection from
the state’s IDNC graph G(s). According to the properties
illustrated in the previous section, an efficient IDNC packet
selection algorithm should select, at each visited state, the
maximal clique that includes the maximum number of vertices
belonging to receivers having the largest τi(s) values. One
way to do so is to list all maximal cliques in G(s) and select
the clique satisfying this property. However, maximal clique
listing is in general computationally complex. Consequently,
it is preferable to design a simpler algorithm that performs a
maximal clique selection through a maximum weighted vertex
search. In this search, the weights of vertices must reflect the
required property illustrated in Section V.

To design the vertices’ weights, we first define aij,kl(s) as
the adjacency indicator of vertices vij and vkl in G(s) such
that:

aij,kl(s) =

{
1 vij is connected to vkl in G(s)
0 otherwise .

(10)

Algorithm 1 Maximum Weight Vertex Search Algorithm
Require: F(s) and τi(s)

Initialize K∗(s) = ∅.
Construct G(s) and A(s).
while G(s) 6= ∅ do

Compute ∆ij(s) and wij(s) using (11) and (12).
Select v∗ = arg maxvij∈G(s) {wij(s)}.
Add v∗ to K∗(s)
Set G(s) ← Gv∗(s) and A(s) ← Av∗(s)

end while

We then define the weighted degree ∆ij(s) of vertex vij as:

∆ij(s) =
∑

∀vkl∈G(s)

aij,kl(s) τk(s) . (11)

Thus, a large weighted vertex degree reflects its connection
to a large number of vertices belonging receivers with large
values of τi(s). We finally define the vertex weight wij(s) as:

wij(s) = τi(s) ∆ij(s) . (12)

Consequently, a vertex vij has a large weight when it both
belongs to a receiver with large τi(s) value and is connected to
a large number of vertices having large τi(s) values. Let Gv(s)
be the subgraph in G(s) including only vertices connected to
vertex v. We finally define A(s) and Av(s) as the adjacency
matrices of G(s) and Gv(s), respectively.

Based on these definitions, we can introduce our proposed
packet selection algorithm as follows. The algorithm operates
only for visited states. In each visited state s, the algorithm
computes a maximal clique K∗(s) in G(s) as depicted in
Algorithm 1. At first, K∗(s) is an empty set. The algorithm
starts by selecting the maximum weight vertex in G(s) to be
the source node in K∗(s). For each of the following iterations,
the algorithm first recomputes the new vertex weights within
the subgraph connected to all previously selected vertices in
K∗(s), then adds the new maximum weight vertex to it. The
algorithm stops when there is no further vertex connected to all
vertices in K∗(s). We refer to this algorithm as the maximum
weight vertex search algorithm. Once the clique is computed,
the sender forms and sends an IDNC packets by XORing the
source packets identified by the vertices in K∗(s). According
to the received feedback, a new state is visited and the process
is re-executed until the absorbing goal state is reached.

VII. SIMULATION RESULTS

In this section, we compare thought simulations the perfor-
mance of our proposed algorithm to the random and greedy
clique selection algorithms. In our simulations, we assume
that the receivers have packet loss rates that change from
frame to frame in the range [0.05,0.3]. We also assume the
demand ratios of different receives change while maintaining
the average demand ratio (µ) constant.

Figure 1 depicts the comparison of mean completion delays
achieved by the random, greedy and proposed clique selection
algorithms against M , for N = 40 and µ = 0.6. Results show
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Fig. 1. Comparison of Mean Completion Delays against M
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Fig. 2. Comparison of Mean Completion Delays against N

that our proposed algorithms achieves a percentage improve-
ments of 11%− 24% and 6%− 14% compared to the random
and greedy algorithms, respectively, as M increases. Figure 2
depicts the same comparison against N for M = 40 and
µ = 0.6. Results show that our proposed algorithms achieves
a percentage improvements of 15% − 24% and 8% − 13%
compared to the random and greedy algorithms, respectively,
as N increases. Finally, Figure 3 depicts the same comparison
against µ for M = 40 and N = 40. Results show that our
proposed algorithms achieves a percentage improvements of
9%−30% and 3%−20% compared to the random and greedy
algorithms, respectively, as µ increases.

VIII. CONCLUSION

In this paper, we aimed to design an IDNC packet selection
algorithm that minimizing the mean completion delay in
wireless multicast. We first formulated the problem as an SSP
problem and showed that an efficient algorithm would service
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Fig. 3. Comparison of Mean Completion Delays against µ

the maximum number of receivers with larger individual mean
completion times. Based on this property, we proposed a sim-
ple online selection algorithm that employs a maximum weight
vertex search approach over the IDNC graph to determine the
best packets to encode at each state. The vertices’ weights were
designed to reflect the property inferred from SSP. Simulation
results show that our proposed algorithm indeed outperforms
these random and greedy selection algorithms.
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