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Abstract—In this paper, we address the problem of gesture
recognition using the theory of random projection (RP) and by
formulating the whole recognition problem as an ¢, -minimization
problem. The gesture recognition system operates primarily on
data from a single 3-axis accelerometer and comprises two main
stages: a training stage and a testing stage. For training, the system
employs dynamic time warping as well as affinity propagation to
create exemplars for each gesture while for testing, the system
projects all candidate traces and also the unknown trace onto the
same lower dimensional subspace for recognition. A dictionary of
18 gestures is defined and a database of over 3700 traces is created
from seven subjects on which the system is tested and evaluated.
To the best of our knowledge, our dictionary of gestures is the
largest in published studies related to acceleration-based gesture
recognition. The system achieves almost perfect user-dependent
recognition, and mixed-user and user-independent recognition
accuracies that are highly competitive with systems based on sta-
tistical methods and with the other accelerometer-based gesture
recognition systems available in the literature.

Index Terms—Affinity propagation, compressive sensing, dy-
namic time warping, gesture recognition, random projection (RP).

I. INTRODUCTION

ESTURE recognition refers to the process of under-
G standing and classifying meaningful movements by a
human’s hands, arms, face, and sometimes head. It has be-
come one of the hottest fields of research since it is of great
significance in designing artificially intelligent human-com-
puter interfaces for various applications which range from
sign language through medical rehabilitation to virtual reality.
The proliferation in technology, and in microelectronics more
specifically, has inspired research in the field of accelerom-
eter-based gesture recognition. Three-axis accelerometers are
being increasingly embedded into many personal electronic
devices like the Apple iPhone, Apple iPod touch, Apple iPad,
wiimote, and Lenovo laptops, to name a few.

The majority of the available literature on gesture or action
recognition combines data from a 3-axis accelerometer with
data from another sensing device like a biaxial gyroscope [1]
or EMG sensors [2] in order to improve the system’s perfor-

Manuscript received September 28, 2010; revised February 02, 2011 and May
28, 2011; accepted July 31, 2011. Date of publication August 22, 2011; date
of current version November 16, 2011. The associate editor coordinating the
review of this manuscript and approving it for publication was Prof. Piotr Indyk.

The authors are with the Edward S. Rogers Sr. Department of Electrical
and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4
Canada (e-mail: ahmad.akl@utoronto.ca; chenfeng@comm.utoronto.ca;
valaece @ comm.utoronto.ca).

Digital Object Identifier 10.1109/TSP.2011.2165707

mance and to increase the recognition accuracy. Accelerom-
eter-based gesture recognition system using continuous hidden
Markov models (HMMs) [3] has been developed. However, the
computational complexity of statistical or generative models
like HMMs is directly proportional to the number as well as
the dimension of the feature vectors [3]. Therefore, one of the
major challenges with HMMs is estimating the optimal number
of states and thus determining the probability functions asso-
ciated with the HMM. Besides, variations in gestures are not
necessarily Gaussian and perhaps, other formulations may turn
out to be a better fit.

The most recent gesture recognition system that is solely ac-
celerometer-based is the uWave [4]. uWave is a user-dependent
system that supports personalized gesture recognition. uWave
functions by utilizing only one training sample, stored in a tem-
plate, for each gesture pattern. The core of the uWave is dynamic
time warping (DTW) and the system’s database undergoes two
types of adaptation: positive and negative adaptation. However,
uWave’s database adaptation resembles continuous training and
in some cases, if thorough examination of templates is ignored,
removing an older template every other day might lead to re-
placing a very good representative of a gesture sequence, which
is best avoided. Although uWave demonstrates computational
as well as recognition efficiency, being user-dependent limits
the applications of uWave. Besides, judging from systems like
Nintendo Wii, Apple iPhone, and other devices, researchers on
accelerometer-based gesture recognition are envisaging a uni-
versal system that, given a dictionary of gestures, can recognize
different gesture traces with a competitive accuracy and with the
minimal dependence on the user.

In this paper, we propose an accelerometer-based gesture
recognition system that uses only a single 3-axis accelerometer
to recognize gestures, where gestures here are hand movements.
The work of this paper is built upon a preliminary version of
our gesture recognition system [5]. A dictionary of 18 ges-
tures is created for which a database of 3780 traces is built
by collecting data from 7 participants. Some of the gestures
defined in the dictionary are taken from the gesture vocabulary
identified by Nokia [6]. The core of the recognizer’s training
stage is an amalgamation of Dynamic Time Warping (DTW)
and Affinity Propagation (AP). For recognition, as this paper
shows, one-nearest neighbor DTW does not always suffice
and therefore, the recognition problem is formulated as an
{1 -minimization problem after projecting all candidate gesture
traces onto the same lower dimensional subspace. The system
achieves an accuracy of 98.71% for mixed-user recognition for
a dictionary of 18 gestures compared to 98.6% recorded accu-
racy by uWave for user-dependent recognition for a dictionary
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of 8 gestures. As for user-independent recognition, the system
achieves accuracies of 96.84% and 94.6% for dictionaries of 8
gestures and 18 gestures, respectively, which is very competi-
tive with other statistical models or other available techniques.

The rest of the paper is organized as follows: Section II sets up
the problem and introduces a general overview of the proposed
gesture recognition system. Section III describes the clustering
algorithm employed to train the system. Section IV describes the
recognition process and how random projection (RP) is utilized
to classify an unknown gesture trace. Section V describes an im-
plementation of the gesture recognition system and evaluates the
system’s performance through simulations. Finally, Section VI
concludes the paper.

II. PROBLEM SETUP

Suppose that a system consists of N hand gestures and
for each gesture M traces are stored in a database. Gesture
complexity ranges from very simple ones, as simple as the hand
moving either to the right or to the left or up or down, to more
complex ones such as gestures representing letters or numbers.
The acceleration of the hand is used as the data to represent
a gesture rather than the hand position. The acceleration of
the hand is measured at different times ¢ using a single 3-axis
accelerometer. Therefore, a trace of a gesture is basically a
three column matrix representing the acceleration of the hand in
the x-, y-, and z-directions. However, hand gestures inherently
suffer from temporal variations. In other words, they differ
from one person to another and even the same person cannot
perfectly replicate the same gesture. This entails that gesture
traces can be either compressed or stretched depending on the
user and the speed of the hand movement. Consequently, traces
of the same gesture are of different lengths which poses the first
major challenge in developing a gesture recognition system.

Mathematically, the gesture recognition problem can be for-
mulated as follows: The system consists of NV gestures, each
having M traces, tabulated as the following sets:

G1=1{G11,G12,...,G1,m},

Gy ={Gn1,GnN2,.-..GN M}

Each G; ; is a l; ; x 3 matrix, where each column represents
the acceleration in the x-, y-, or z-direction. Notice that /; ; is
different even for traces of the same gesture G; since traces of
the same gesture can have different durations and thus different
number of rows.

Fig. 1 shows the acceleration waveforms for moving the hand
in a clockwise circle. The accelerations have been acquired
using a Wii Remote (wiimote for short) [7], [8], which has a
built-in 3-axis linear accelerometer.

The gesture database (1) is produced in an off-line procedure
and stored for later use, which constitutes the training stage. In a
test stage, a user moves his/her accelerometer-equipped device,
such as a smart phone or a wiimote, to signal a particular gesture
from the above database in (1). The accelerometer readings are
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Fig. 1. Acceleration waveforms defining the gesture of moving the hand in a
clockwise circle.
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Fig. 2. General overview of the gesture recognition system.

formed into an [, X 3 matrix Y. Again, note that [, may not be
equal to any /; ;. The objective of a gesture recognition system
is to find out which gesture is intended by the user.

Fig. 2 depicts the general overview of the proposed gesture
recognition system. Notice that the block diagram implicitly
represents a two-stage system: the first stage being the training
stage is represented by the top part of the block diagram,
whereas the second stage being the testing stage is represented
by the bottom part of the block diagram.

The training stage comprises two parts. A sliding window,
which acts as a moving average filter, is applied to the acquired
data to remove any noise that might have been accumulated due
to internal sampling, accelerometer calibration or sensitivity, or
hand shaking during gesture acquisition. The smoothing step
is followed by a clustering process which is broken into two
subblocks. The first clustering subblock deals with the unequal
durations of the gesture traces G; ;. This subblock uses DTW
to compute a measure of similarity between vectors of unequal
lengths. The measure of similarity is then used in the AP
subblock to decompose the training data into multiple clusters.
Clustering in essence represents the core of the training stage.
Members of the same cluster should share the same character-
istics; coming from the same gesture is the most desirable one.
Each cluster is represented by one of its members called an
“exemplar”. So, the output of the clustering stage, and in turn
the training stage, is a set of exemplars & each representing
a cluster of gesture traces. The details of each subblock are
discussed in the following section.
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Fig. 3. Two time sequences P and Q that are similar but out of phase.

III. CLUSTERING ALGORITHM

Recall that gesture traces suffer from inherent temporal vari-
ations, and therefore the conventional Euclidean distance is not
applicable as a similarity measure between the gesture traces.
Consequently, in our gesture recognition system, we resort to
dynamic time warping to compute the similarities between the
different gesture traces. In this sequel, we represent vectors by
bold lower case letters, e.g., r, matrices by bold upper case let-
ters, e.g., R, and sets by calligraphic upper case letters, R.

A. Dynamic Time Warping

Dynamic time warping (DTW) matches two time signals,
possibly of different durations, by computing a temporal trans-
formation causing the signals to be aligned. The alignment is
optimal in the sense that a cuamulative distance measure between
the aligned samples is minimized [9].

Assume that two time sequences, p and g, are similar but are
out of phase and are of length n and m, respectively, where
p = [p1,...,pn) and ¢ = [q1,...,qm] as shown in Fig. 3.
The objective is to compute the matching cost: DTW(p, q).
The matching cost is computed based on dynamic programming
using the following formulation:

D; ;j =d(pi,q;) +min{D; j_1,D;_1 j,Di_1;-1} (2

where the distance function d(-, -) varies with the application.
In our gesture recognition system, d(p;, ¢;) is defined as

d(pi,aj) = (pi — 4;)° (3)

and consequently
DTW(p.q) = Dn.m “
In the proposed 3-axis accelerometer gesture recognition
system, since each gesture trace is defined by three acceleration

waveforms, the similarity cost between gesture trace G; of size
n X 3 and gesture trace G of size m x 3 is computed as

DTW(Gi, Gj) = /D2,.u(2) + D3 () + D2(2) (5)
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where D, 1, (%), Dnm(y), Dn,m(2) are the DTW costs com-
puted between the traces in the x, y, and z axes respectively.

Dynamic programming can potentially render the training
stage a slow process since a similarity cost is computed be-
tween all gesture traces in the database. As far as our system
is concerned, training is done off-line and therefore, the speed
is not an issue of concern. However, for other systems designed
with online training, speed can be crucial especially with large
databases. Therefore, many generic data editing algorithms have
been proposed to speed up DTW [10], [11] and alleviate its
speed predicament.

B. Affinity Propagation

Affinity propagation (AP) [12] is an algorithm that simultane-
ously considers all data points as potential exemplars and recur-
sively exchanges real-valued messages among data points until a
good set of exemplars and clusters emerges. Clustering is based
on the exchange of two types of messages: the “responsibility”
message to decide which traces are exemplars, and the “avail-
ability” message to decide which cluster a trace belongs to. The
responsibility message is given by

max {a(i,j') +s(i,5")}  (6)

r(i,7) = s(2,7) —
(i,5) = 5(i,5) = max

where i # j, and s(4, j) is the pairwise similarity that indicates
how well the trace G is suited to be the exemplar for the trace
G; and is defined as

s(i,j) = DTW(G;,G,) Vi,j € {1,2,....L} (7

where L is the total number of gesture traces, and the availability
message is given by

>

ils.til i j

a(i,j) = min 0,7(4,7) + max{0, (i, j)}
®)
In addition to the measure of similarity, AP takes as input a
set of real numbers, known as self-similarity or preference (p)
for each gesture trace, so that traces with larger values of p are
more likely to be chosen as exemplars. For the proposed gesture
recognition system, the self-similarity p is proportional to the
median of the input similarities, that is

p = [ x median {s(4,7), Vi,j € {1,2,...,L}} ©)

where [ is a constant that controls the number of clusters to be
generated in an inversely proportional manner. In other words,
as the value of (§ decreases, more clusters will be generated.
AP is chosen as the clustering technique because it does not
operate on feature vectors or raw data but rather operates on a
matrix of similarities between data points. The similarity costs
are computed between the gesture traces which means that clus-
tering is done based on the temporal characteristics of the traces.
This configuration of AP utilizes the sparse nature of the gesture
traces and eliminates the need for forcing all traces to be of the
same length or generating feature vectors of equal lengths as is



6200

the case in [1], [2], [6]. AP can generate better clusters, com-
pared to other clustering techniques like K -means clustering,
because of its initialization-independent property [12].
The output of AP is a set of exemplars & for the N gestures
in our system, such that
€ ={E\,Es,...,.Eg} (10)
where H > N. Notice that the number of exemplars H obtained
is greater than or equal to the number of gestures N. The reason
is due to the fact that the gesture traces are collected from dif-
ferent subjects, and as a result, there is a large variance in the
data for one gesture. Consequently, a unique exemplar cannot
be extracted per gesture. On the contrary, the number of exem-
plars per gesture, H;, satisfies
1<H;,<PVie{l,2,...,N} (11)
where P is the number of subjects included in training the
system.

IV. RECOGNITION USING RP

In order to recognize an unknown gesture trace Y, it is intu-
itive to compare it to the set of exemplars in £ and classify Y
to the gesture whose exemplar gives the lowest cost. However,
since our clustering algorithm does not yield a unique exem-
plar for each gesture, this approach solely does not suffice in
yielding a high recognition accuracy. We make the following
observations on the clustering technique used above.

First, we note that, although not observed in our simulations,
the affinity propagation technique does not guarantee that all
members of a cluster and its exemplar are traces of the same
gesture. The problem becomes more significant when gesture
traces from different subjects are combined in the same data-
base.

Second, although an exemplar is a representative of its cluster,
it cannot be used to detect the corresponding gesture of a testing
trace due to the fact that a unique exemplar cannot be extracted
per each gesture. However, exemplars are useful in removing
outliers, and reducing the size of the search space, hence re-
ducing the computational complexity.

The proposed recognizer comprises two steps. In the first
step, the set of exemplars that are closest to the observed data
are selected. Then, in the second step, the best match among the
members of the clusters chosen in the first step is selected.

To carry out the second step, we still need to address the dif-
ferent gesture trace duration problem. A very efficient solution
is to project all the traces onto the same lower dimensional sub-
space and thus solve the problem of different durations and si-
multaneously reduce the computational cost. This proposition is
motivated by the premise that, as seen in Fig. 1, the defined hand
gestures appear to be sparse since the hand follows a smooth
trajectory while performing a gesture. Therefore, gesture traces
can be represented using fewer samples as per the theory of com-
pressive sensing [13].

Compressive sensing (CS) is a method that allows to recover
signals from far fewer measurements than the traditional sam-
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pling methods. Assume that the received signal can be repre-
sented as an M X 1 vector x = Ws where ¥ is an M x M
basis matrix and s is an M x 1 sparse vector that has only
Ls; < M nonzero elements. Signal x is compressed using a
K x M sensing matrix ®, which yields the measurement vector
y of dimension K as follows:

y = &z = ®Us. (12)
It has been shown that s can be recovered exactly if K satisfies
the following:

K > cLslog <L%> (13)

where c is a constant and L is the sparsity level [13]. The signal
can be reconstructed by solving the following #; norm mini-
mization problem:

min ||s|x
S

subjectto 'y = ®Us. (14)

CS has been successfully used for image recovery. It has been
shown that CS is a powerful technique in the field of face recog-
nition and very robust in the presence of noise and occlusion
[14]. Although the method discussed in [14] shows a great po-
tential to be extended to other problems beyond face recogni-
tion, it does not entirely fit in the gesture recognition problem
since the method does not address the issue of different gesture
trace length.

Accordingly, one solution is to augment CS with a projec-
tion feature. In other words, one solution to overcome the dif-
ferent gesture trace sizes is to project all the traces onto the same
lower dimensional subspace. An ideal dimensionality reduction
technique has the capability of efficiently reducing the data into
lower-dimensional subspace while preserving the properties of
the original data. RP is the only technique that renders this so-
lution feasible. Other dimensionality reduction techniques, like
principal component analysis (PCA) or singular value decompo-
sition (SVD) necessitate that gesture traces be of the same dura-
tion for eigenvector and eigenvalue decomposition [15]. RP, on
the other hand, does not require traces to be of the same duration
as the following sections demonstrate. Furthermore, it has been
empirically shown that that RP outperforms the aforementioned
dimensionality reduction techniques.

A. RP

RP has recently emerged as a powerful technique for dimen-
sionality reduction [16], [17] . In RP, the original d-dimensional
data is projected onto a k-dimensional (k < d) subspace using a
k x d random matrix A whose columns have unit lengths. Using
matrix notation, let X, be the original set of n d-dimensional
observations, then the projection problem can be formulated as

Xikn = AkxaXaxn (15)
where X,f‘f » Tepresents the projected data onto the lower
k-dimensional subspace.The concept of RP is inspired by the
Johnson-Lindenstrauss theorem [18].
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Strictly speaking, (15) is not a projection because the projec-
tion matrix A is generally not orthogonal and such a linear map-
ping can result in significant distortion to the original data set.
One solution is to orthogonalize A but this can be computation-
ally very expensive. Alternatively, we can resort to the fact that
in a high-dimensional space, the number of almost orthogonal
directions is much larger than the number of orthogonal direc-
tions [19]. Therefore, vectors having random directions can be
sufficiently close to orthogonal and thus can offer the necessary
preservation of the original data set after projection.

Another way to view A is as a sampling operator for X, and is
invertible if each £ € X is uniquely determined by its sampled
or projected data Ax; this means if for every u,v € X, Au =
Av then w = w. In other words, A is a one-to-one mapping
between X®¥ and X and this allows a unique identification for
each z € X from Az. However, practically, we want that a
small change in z only result in a small change in its sampled or
projected data Ax. Therefore, we consider a stricter condition
given by

allu—vl3< | Au—Av [l =" [(u—v,90)
nek

<Bllu-vll

where « and (3 are a constants with « > 0 and 3 < oo, and 'H
is an ambient Hilbert space [20].

The sampling condition (16) on A is related to the impor-
tant concept of restricted isometry property (RIP) [21], and is
interestingly the same as RIP if X has sparse columns and the
columns come from the same subspace [20], [22] . The choice of
the sampling matrix A is one of the key points of interest. Fun-
damentally, any distribution of zero mean and unit variance sat-
isfies the sampling condition in (16). Most works use Gaussian
distribution. However, simpler distributions such as

(16)

+1 withprobability
0 with probability
—1 with probability

aij = V3 (17)

[SALaVH [ SN g

have also been reported that result in further computational sav-
ings since computations can be done using integer arithmetics
[23]. The proposed gesture recognition system will be tested
against both forms of the sampling or projection matrix A: the
Gaussian distribution and the distribution in (17).

For recognition, the following approach is followed. As per
earlier notation, let Y represent an unknown gesture trace to be
recognized, which is a matrix of size I, x 3, and let y denote
one of the columns of Y and let R be the set of all traces that
are of close resemblance to Y. This resemblance is determined
by computing the DTW cost between Y and every exemplar
E; € &, and choosing the clusters whose DTW cost is below a
certain threshold «. In other words

R ={C;|Vj:E; € & and DTW(E;,Y) < a} (18)

where C; is any member of the jth cluster with the exemplar

E;. By empirical examination, we have found that the threshold
o =2-min {DTW (E;,Y), VE; €6} (19)

gives the best results.
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In order to proceed with the recognition process, the set R is
converted into three matrices by forcing all traces as well as the
unknown gesture trace Y to be in the same space. This is done
by finding the maximum length [, to be

lmax = max {l,,l1,...,I} (20)

where L is the total number of traces in R and [y, . .., [, repre-
sent their lengths, i.e., the number of rows in each trace. After
Imax 18 found, all the traces including the unknown gesture trace
Y, which are shorter than [, are padded by zeros forcing them
to be of length [,,,.«. In other words, all traces are transformed
to the largest subspace by assuming that the shorter traces have
zero components in the higher subspaces. Zero padding can take
any possible form, i.e., adding zeros to the beginning of the
trace, adding zeros in between the trace samples, or adding zeros
to the end of the trace. This is due to the fact that the RP matrix
A satisfies the RIP condition and therefore, it makes no differ-
ence which columns of A are chosen to compress the trace [21].
However, for simplicity of application, we pad zeros to the end
of the traces, and in this case

€T T €T
11 T21 L1
xT xr xr
T2 T22 L2
_ T T x1
R, =[r{,r3,...,r{] = (21)
T T2 oo TLu
0, 0» ... 0f
and
xTr
Y
€T
Y2
Yp = | ¢ (22)
Y,
0y

where R, is a matrix whose columns represent the x-compo-
nents of the padded traces, y,. is the x-component of the padded
unknown gesture trace, and 0; and 0,, are zero vectors of length
(lmax — ;) and (Imax — ), respectively. Ry, R, y,,and y,
are constructed in a similar manner.

In order to project the data onto the lower dimensional sub-
space, the projection matrix A is constructed based on the distri-
butions defined earlier and would be of size I, X [ ,,,., Where [}, is
the dimension of the new common lower dimensional subspace.
According to Fig. 1, gesture waveforms are smooth curves, and
one of the transformations which would give a sparse represen-
tation of the waveforms is the Fourier transform. So, for a sparse
sequence , let 7 and ks denote the Fourier transform and the
sparsity level of the sequence r, respectively. Moreover, let r,,,
denote the maximum magnitude in 7. The sparsity level ky of
is defined as

kr = K - B, (23)
where K is a constant and B, is the number of samples in 7 that
are greater than a threshold ~ defined as

(24)

YT=C"Tm



6202

where ¢ is a constant € (0,1) to preserve only the significant
samples. In practice, K can be either 3 or 4 making the sparsity
level kg three or four times B, [13]. Accordingly, the Fourier
transform of a trace R is defined as

R = [f,7,7.]. (25)
The sparsity of R is then given by
kR = max {k‘rz s k"ry7 k"rz } . (26)

The sparsity level kg is computed for each trace in (1) and
stored in the database as well. Consequently

lp = max {kg,; Vi€ {1,2,...,L}}. (27)

After A is constructed, the data in the x-direction is projected
as

and

Y, = Ay, (29)
where R, represents the projected data in the x-direction onto
the new subspace and y,, represents the projected x-component
of the unknown gesture trace.

The relationship between R, and g, can be formulated as

7, = R.0, (30)

where . is theoretically a 1-sparse L x 1 vector whose elements
are all zeros except 0, (n) = 1, such that 7Z best resembles y,,.
Namely,

€29

where T denotes transposition. However, gesture traces suffer
from inherent temporal variations and therefore, the above ideal
scenario of having a perfect match to the unknown gesture trace
is impossible and therefore, the problem can be reformulated as

¥, = R0, +e, (32)

where €, is the measurement noise.
Using the same formulation as in [24], we introduce the pre-
processor W, which is defined as

W, = Q.R{ (33)

where Q.. = orth(RI)T, and orth(R..) is an orthogonal basis

for the range of R, and R, is the pseudoinverse of the matrix
R... The gesture recognition problem takes on a new formula-
tion as,

where &/, = W,¢,. 0, can be well recovered from h, with a
high probability through the following ¢;-minimization formu-
lation:

0, = argmin || 0, ||1, s.t-h, = Q,0, + €. (35)
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Fig. 4. Block diagram of testing stage.

This represents recognition of the unknown trace based on data
in the x-direction only. 8, and @ are solved for using the same
approach.

In order to recognize the unknown gesture trace, the three
99[, @y, 6. vectors are combined together in the following
manner,

By =0, +0, +0. (36)
The unknown gesture trace is then recognized as the gesture to
which the trace R; belongs such that 984(2') is maximum. Fig. 4
shows a complete block diagram of the testing stage.

V. IMPLEMENTATION RESULTS

The acceleration data corresponding to the different gestures
is collected using a wiimote, which has a built-in 3-axis ac-
celerometer. A gesture trace is segmented using the “trigger”
button or “B” button on the bottom of the remote. In other words,
a trace starts by pressing and holding the “B” button and ends
by releasing it. This manner of acquiring the gesture traces over-
comes the challenging problem of gesture spotting.

A dictionary of 18 gestures is created as shown in Fig. 5.
To the best of our knowledge, our dictionary of gestures is the
largest in published studies for accelerometer-based gesture
recognition. The defined gestures are not limited to one plane
only as is the case in other studies [4], [6], but span the two
planes: X Z and Y Z planes. The dictionary contains a variety of
gestures ranging from the simple right, left, up, down gestures
to more complex gestures resembling letters and numbers. In
terms of sample length, gesture trace size ranges from about 35
samples up to 200 samples depending on the complexity of the
gesture. This definition of gestures is to increase the robustness
of the gesture recognition system.

The database consists of 3780 traces and is built by acquiring
gestures from seven subjects (two females and five males) using
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Fig. 5. The dictionary of 18 gestures.
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the wiimote. Each subject is asked to repeat each gesture 30
times resulting in a total of 540 traces for all gestures per par-
ticipant or a total of 210 traces from all participants per ges-
ture. A gesture acceleration waveform from the same person can
differ drastically if the tilting angle of the accelerometer is large.
Therefore, all participants are asked to try their best to perform
the gestures without any, or with minimal, tilting of the remote.

For system evaluation, the database is split into two datasets:
a training set and a testing set. The training dataset is gener-
ated by choosing traces from three users (two males and one
female) out of the seven users, i.e., P = 3. Specifically, five
traces are randomly chosen for each gesture from each of the
three users resulting in a total of 15 traces per gesture, i.e.,
M = 15. The testing dataset comprises all the remaining traces
from the three users plus the entire set of traces from the re-
maining four users (3 males and 1 female). Simulations are run
for N = {8,10,12,14, 16, 18} gestures. A typical value of [, is
about 20 samples and the system uses £; MAGIC toolbox, avail-
able online: http://www.acm.caltech.edu/l1magic/, to solve the
£1 minimization problem 35 using basis pursuit.

The system’s performance is compared to a baseline model
where recognition is carried out using one-nearest-neighbor
DTW. Furthermore, the system is compared to a system of
continuous hidden Markov models (HMMs), the system in [4],
and finally, to a system in literature developed using discrete
HMMs [25]. Figs. 6 and 7 show the system’s performance in
terms of recognition accuracy against the number of gestures
for a projection matrix A, formed with a Gaussian distribution
and the sparse distribution in (17), respectively. Each of Figs. 6
and 7 also show a comparison of performance between our
system and the baseline model as well as a system of continuous
HMMs. In order to develop the system of continuous HMMs,
the system is set up in an identical manner to [3]: a left to
right HMM with a continuous gaussian distribution is used to
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Fig. 6. System’s performance against the number of gestures using a Gaussian
RP matrix compared to the baseline model and HMM.
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Fig.7. System’s performance against the number of gestures using a sparse RP
matrix compared to the baseline model and HMM.

model each gesture. The output distributions are assumed to
have diagonal covariance matrices. Consequently, each HMM
can be described as an 8m-parameter model, where m is the
number of states. The eight parameters comprise the two state
transition probabilities, and one Gaussian output distribution
which constitutes a mean vector g € R? and the three diagonal
elements of the covariance matrix. For comparison, simulations
are run with m = 10.

Figs. 6 and 7 show that the system’s performance is almost
identical for both definitions of the projection matrix A which
confirms that the sparse distribution in (17) is a very good ap-
proximation of the Gaussian distribution. The system yields a
very competitive performance for a system of 8§ gestures, giving
a recognition accuracy of 96.84%. The dashed lines show the
system’s performance only on traces in the testing dataset from
the three subjects whose data is used in training the system. In
other words, this type of recognition can be referred to as mixed-
user recognition. The solid lines show the system’s performance
on the entire testing dataset which includes traces from all the
seven subjects, and this type of recognition is referred to as user-
independent recognition. As shown, the system greatly outper-
forms the baseline model and the continuous HMM-system for
all dictionary sizes. As highlighted in [4], one-nearest neighbor
DTW is very effective with small dictionary sizes and that is
why the baseline model’s performance drops sharply for a dic-
tionary size of 12 gestures or more. Fig. 8 depicts the cumula-
tive density functions (cdfs) of the system’s performance using a
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TABLE 1
COMPARISON OF PERFORMANCE OF PROPOSED SYSTEM AND OTHER SYSTEMS IN THE LITERATURE

. Accuracy(%)
Technique no. of gestures _
User-Dependent ~ Mixed-User  User-Independent
Proposed System 8- 18 100 - 99.81 99.98 - 98.71 96.84 - 94.60
Continuous HMM-System 8- 18 99.97 - 99.54  99.61 - 98.11 75.96 - 71.50
uWave 8 98.6 - 75.4
System of discrete HMMs in [25] 5 89.7 89.7 -
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