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Abstract— In this paper, a new information theoretic al-
gorithm is proposed for signal enumeration in DS-CDMA
networks. The approach is based on the predictive descrip-
tion length (PDL), which is the length of a predictive code
of observations. The PDL cost is computed for the candi-
date models and is minimized to determine the number of
signals. The proposed technique uses the maximum like-
lihood (ML) estimate of the correlation matrix. The only
information used in the ML estimation of the correlation
matrix is the multiplicity of the smallest eigenvalue, there-
fore the method is applicable to blind multiuser detection.
The PDL algorithm has a signal-to-noise ratio resolution
threshold that is smaller than that of the minimum descrip-
tion length (MDL). The proposed method can be used on-
line and can be applied to time-varying and non-stationary
systems.
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I. INTRODUCTION

Most wireless networks, such as 3G cellular systems and
IEEE 802.11 WLANS, use the DS-CDMA signalling. A
DS-CDMA signal is formed by multiplying each data bit
by the signature waveform of the modulating sequence.
In practice, the signature waveforms of different users ob-
served at each receiver are not orthogonal. In such systems,
the performance of the conventional receivers—in terms of
bit-error-rate (BER)—is very poor. To combat the degra-
dation of performance, multiuser detectors [1] are usually
used. A Multiuser detector should know the true number
of signals.

In various applications, the true number of signals is not
known at the receiver. Here, we present two such examples.
In wireless cellular networks, the true number of signals is
not known at mobile terminals. Therefore, if a blind mul-
tiuser detector is used, the true number of signals should be
estimated. In the IEEE 802.11b standard, several WLANs
can coexist in a common environment. In such cases, since
each WLAN is a distinct network, it is very difficult to de-
termine the total number of transmitters and communicate
it to all wireless terminals. Several other applications can
be found where the true number of transmitters is not know
at the receiver. Therefore, effective passive signal enumer-
ation techniques should be developed to detect the number
of signals by observing the waveform of the received signal.
In passive signal enumeration, transmitters are unaware
of the detection process and no coordination between the
transmitters and the receiver is assumed.
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In this paper, we introduce a novel technique to enu-
merate DS-CDMA signals that are used in both cellular
networks and WLANs. We use an information theoretic
approach to detect the number of DS-CDMA signals. Re-
cently, much attention has been given to information theo-
retic criteria [2]-[7]. A popular information theoretic tech-
nique is the minimum description length (MDL) that is
based on minimizing the length of the code required to de-
scribe data. Codelength minimization is appropriate for
model selection since the model, which best fits the data,
is the one that gives the most information about it; having
more information results in a smaller codelength.

In this paper, we propose the predictive description length
(PDL) algorithm. The PDL criterion is the cumulative log-
likelihood function of the observation vectors such that at
each time instant, the mazimum likelihood (ML) estimate
of the parameter based on the past data is used in the
probability distribution function. PDL achieves the short-
est codelength for data relative to the generating model
class and has a structure that is suitable for on-line track-
ing of time-varying systems.

II. DS-CDMA SIGNALS

In DS-CDMA, the waveform received at a wireless ter-
minal can be represented by

M
z(t) = Z b () hi (t — KT — 7)) + n(t) (1)

where M is the number of signals, a,, is the received sig-
nal amplitude, b, (k) is the kth transmitted data symbol
of the mth user, T is the symbol interval, h,,(¢), 0 <t < T
is the mth received signal waveform, 7, is a random delay,
and n(t) is the additive noise. The transmitted data sym-
bol b, (k) belongs to the set of equiprobable {+1} random
variables. In DS-CDMA, the received signal waveforms are
of the form

N-1
hm (t) = Z h‘;np(t - JTC) (2)

j=0
where A, ..., h{"_, are the signature sequences of the mth

user selected from the binary alphabet {+1}, p(¢), 0 <t <
T, is the normalized chip signal, 7, is the chip period, and
N is the total number of chip signals used for the trans-
mission of a single data bit.

The receiver usually uses a matched filter for each chip
signal and a sampler at the chip frequency to detect the
sequence of +1 chips extended over the symbol interval
T. The detected sequence is then used to estimate the



transmitted data bit. If we represent the output of the
matched filter for the jth chip by z;(k), we will have

ET+(j+1)Te
w) = [ et - kT - T e
JLe
M
= Y ambu(R)umh} +n;(k) (3)
m=1

where pi,, is a random number representing the uncertainty
due to unknown 7,,, and n;(k) is the sampled noise com-
ponent at the output of the matched filter. In vector form,
(3) is represented by

M
Xk = Y mfimbm (k)hm + 1y, (4)
m=1

where x; is the N x 1 observation vector at the kth time
instant, h,, = [hZ*,..., AR _,]T is the N x 1 signature wave-
form of the mth user, and nj = [no(k),...,nn_1(k)]? is
the N x 1 additive noise vector at the kth time instant; the
superscript T' denotes transposition. Now define

Sm (k) e O Y bm (K), (5)

and get
xy = Hsp + ny, (6)

where si = [s1(k), ..., sm (k)] is the M x 1 signal vector,
and H = [hy,...,hy] is the N x M matrix of signature
waveforms.

Throughout this paper, we assume that the columns of
the signature waveform matrix H are linearly independent.
We further assume that the signal snapshots form an i.i.d.
sequence of Gaussian random vectors with an unknown co-
variance matrix SM™. The noise samples are assumed to
be independent from the signal samples and form an i.i.d.
sequence of Gaussian random vectors with an unknown
covariance matrix o2Ix where Iy is the N x N identity
matrix, and o2 is the variance of noise. With these as-
sumptions, the observation vector will be a sample of the
Gaussian process with zero mean and the correlation ma-
trix

RM = HSMHT + ¢’Iy. (7)

It is possible to show that the observation vector can
be decomposed into two orthogonal vectors in the signal
and noise subspaces.The signal subspace is the subspace
spanned by the column vectors of H. If the signal correla-
tion matrix SM is full-rank, the signal subspace will coin-
cide with the span of the eigenvectors of RM corresponding
to M largest eigenvalues. Note that the dimension of the
signal subspace is M. The noise subspace is the orthogonal
complement of the signal subspace. The dimension of the
noise subspace is N — M. The objective of this paper is
to estimate the dimension of the signal subspace, M, given
that M e N = {0,1,...,N —1}.

A direct implication of signal and noise subspace de-
composition technique is that for high signal-to-noise ra-
tio (SNR), the eigenvalues of the sample correlation ma-
trix, corresponding to signal components, are significantly

larger than the noise eigenvalues. Furthermore, the noise
eigenvalues of the true correlation matrix are identical and
are equal to o2. These observations can be used to devise
a simple signal enumeration technique by comparing the
difference between consecutive eigenvalues. In the sequel,
we will call this enumerator by EIG. We will show that
the performance of this enumerator is inferior to that of
MDL and PDL. An inherent problem of the EIG enumera-
tor is that it cannot detect the true number of signals when
M =0.

I1I. PREDICTIVE DESCRIPTION LENGTH

For any m € N, we construct an appropriate model of
order m. Assume that each model m is represented by
a conditional probability density function f(x|¢™) where
x is the observation vector and ¢™ is the corresponding
parameter vector. The PDL cost of the observation vectors

Xk, k=1,..., K, for a model of order m is defined as
K
PDLy(K) = ) log f(xx|#{"1) (8)
k=1

where qgg‘_l is the ML estimate of the parameter vector us-
ing the observations up to time (k—1). The PDL principle
is based on the predictive encoding of data and has its roots
in the theory of stochastic complexity [8]. At each time
instant, the parameter vector is estimated using the past
observations. Therefore, the kth term, —log f(xx|@}" ), is
indeed the codelength of the prediction error. In this pa-
per, we will project the PDL metric onto a trellis structure
and will use it to modify the PDL cost so as to fit it to
time varying systems. The PDL cost is calculated for each
model and the smallest one is selected as the best model,
that is

~

M = argmin PDL,, (k). (9)

To set the initial point in the recursion (8) we collect
N snapshots and form the sample correlation matrix using
these snapshots. This sample correlation matrix is then
used to estimate the parameter vector. The PDL cost is
accumulated for all ¢ = N +1,N + 2,..., K to find the
total code length. Therefore, our formulation of the PDL
criterion is

K
PDLn(K) =~ Y log f(xe|dfy).
k=N+1

(10)

In the following section, we derive the PDL cost to detect
the number of linearly independent columns of H in (6).
For the model of order m, let the channel output signal
at the kth time instant be expressed by
xp = H,,s)' + 0 (11)
where H,, is the N xm matrix of signature waveforms, and
s (t) is an m x 1 signal vector, and nj* is the N x 1 noise
vector of model m. Assuming that the signal vector sj*



and the noise vector nj* are independent, the correlation
matrix of the observation vector xy, is
R™ = H,,S™H} + o2 Iy (12)

where S™ is the signal autocorrelation matrix and o2, Iy is
the noise autocorrelation matrix. Here, we assume that the
noise is white with the unknown variance o2, that depends
on the selected model.

The conditional probability density function of the ob-
servation vector for model m is given by

m\ _ 1 < _le m—lX
FOR™) = e (— 3 R x). (19

From (13), the PDL for a model of order m at time instant
K > N + 1 is given by

K

> (log IRy, | + xR
k=N+1

PDL.(K) = km_l]*lxk) (14)

where f{}c’il is the ML estimate of the correlation matrix
for the model of order m using the observations up to time
(k —1); in (14), the constant terms that are independent
of the selected model have been removed and the whole
cost has been multiplied by 2. The PDL cost is computed
for each model and the minimum is chosen to estimate M.
Indeed, at each time instant k > N + 1, the best model is
selected from

M, = arg min PDL,, (k). (15)

meN

n (15), we have implicitly assumed that the number of
signals can change over time.

In the sequel, the sample correlation matrix is used to
obtain the ML estimate of the true correlation matrix. The
sample correlation matrix is defined with the recursion

Ry = (1 - )Re—1 + 0x;x] (16)
where 0 < § < 1 is usually very small. This definition
of the sample correlation matrix is very useful for nonsta-
tionary environments. In (16), by varying d, we can have
different weights for R;_1 and x;x7 . For large values of 4,
the sample correlation matrix has a short memory and is
sensitive to recent changes of the underlying statistics, and
for small values of §, it has a longer memory and sudden
changes in the statistics of xjX; are smoothed out.

Let /\k,],] = 1,...,N, be the eigenvalues of Ry_; ar-
ranged in nonincreasmg order, and v ; be the correspond-
ing eigenvectors. It is possible to show that the eigenvalues
and the eigenvectors of the ML estimator R} ; are given

by [9]
j\k,]’ if 1<j<m,
. N
A j= Z < . . an
) )\k,l 1fm+1S]§N7
N_me:m+1
Vi =VE forj=1,...,N. (18)

These eigenvalues and eigenvectors are used to obtain the
ML estimate of the correlation matrix R} ; as

Ry = Vi Ay VT (19)
with
Vk = [\7]9,1 ce vk,N] (20)
N diag(j\kil, ey j\k,m) Om,N—m
Ak B Ome,m &zn,kIme (21)

where diag(Ag1,--.,Ak,m) is a diagonal matrix with the
diagonal entities given in the brackets,

~2
am,kz -

22
— (22)
{=m+1

is the ML estimate of the noise variance o2,
1 X j all-zero matrix.

Using the cumulative structure of the PDL algorithm,
we have

,and 0;; is an

PDL,, (k) = PDLyy(k — 1) + £ i (23)

where £, ;, is the description length of model m at time
instant k£ and is given by

by = Zlog)\k 1j + (N —m)logés, 14

+Xk: [R ] X

= Zlog)\k 15 + + (N -

m

Yk
Ak*la]

m)logé am b1

+
Jj=1

Z Yk,j

mk 1] m+1

(24)

where the constant terms (independent from the model or-
der m) have been removed, and 7;,; is found from

Vi,j = fol,ijXkT‘_fkfl,j — Ak—1,4- (25)
The estimate of M is then obtained from
M, = arg min {PDLm(k 1)+ zm,k}. (26)
m

The PDL criterion needs eigenvalue decomposition and
inversion of the correlation matrix that both are compu-
tationally expensive. In this paper, we use the first order
perturbation technique [10] to devise a recursive structure
for PDL. Using a method similar to [10], it is possible to
show that the eigenvalue decomposition of the sample cor-
relation matrix is given! by

Mg = (L= €)Xporj + eVi_y ;X1 X Ve (27)
N
Vi = Vi—1,;+ 62 bz’j‘_fk—l,j (28)
=1
Vi—1,jXkXg VE—1,j5
bij = : (29)

max{().()lxl,j, j\kfl’j - j\k—l,i} ’

IDue to space limitation, the details of the derivations are not pre-
sented here.
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Fig. 1. The trellis representation of the PDL algorithm for an exam-
ple with four models {0,1,2,3}. A node at the mth row of the trellis
corresponds to a model with m signals.

The PDL algorithm proceeds by solving (27)-(29) and us-
ing the results in (24) and (23). It has been shown that
the first order perturbation can significantly improve the
computational cost of the eigenvalue decomposition of the
sample correlation matrix [10].

The MDL cost can also be obtained with a similar ap-
proach. In this paper, we compare our results to the follow-
ing formulation of the MDL algorithm that was originally
proposed in [2] and has been widely used in order statistics
(see for instance [11])
(‘Affn,K)me
N

= +T(2N—m)logK.
j=m+1 )‘K,j

MDL,, (K) = K log (

(30)
The first term measures the multiplicity of the smallest
eigenvalue and the second term is the penalty factor for
over-modelling.

IV. TRELLIS REPRESENTATION

The PDL algorithm can also be represented on a trellis
structure as illustrated in Fig. 1. Each node on the trellis
corresponds to a fixed model. Therefore, the total number
of nodes at each stage is N—corresponding to the models
{0,1,...,N — 1}. The weight of each line arriving at a
node m at time instant k, is given by the PDL cost of
the corresponding model at that time instant, ¢, ;. The
total PDL cost for a given model at each time instant &
is obtained by causal filtering of the sequence {{,, 1 }. Our
formulation of the PDL in (23) finds the average of all
Lok, k=N +1,..., K. With the trellis representation of
the PDL algorithm, it is possible to define other filtering
methods on the sequence {/,, r}. For instance, the PDL
cost may be defined as

PDL,,(k) = aPDLy,(k — 1) + (1 — &)y 1. (31)
This formulation provides a filtering scheme that uses an
exponential weighting factor a to emphasize the recent val-
ues of £,,,  more than the values in the past. This approach
is particulary useful in nonstationary environments.

The trellis representation of the PDL algorithm is very
useful for the cases where the number of sources is time

k-1 k

k+1

Fig. 2. The trellis representation of the PDL algorithm for an ex-
ample with four models {0,1,2,3}. A node at the mth row of the
trellis corresponds to a model with m signals. All lines arriving at
a single node m (an example is illustrated in heavy lines) have the
same weight, £, 5.

varying. In Fig. 2, we have extended the trellis to al-
low transition between different models. On this trellis,
all lines arriving at a node have identical weights. Such
as before, various filtering techniques can be used to de-
fine the PDL cost. The filtering methods may allow ag-
gregation of cost along crossing lines. These filters are of
two-dimensional nature and accumulate the PDL cost over
model orders (straight lines in the trellis) as well as across
models (cross lines in the trellis). We do not investigate the
two-dimensional filtering methods in this paper and defer
them to a future work.

The trellis representation of the PDL algorithm sheds
light on the way this method handles time-varying number
of signals. Note in Fig. 2 that a very small £, ;, will tend
to move the minimum PDL cost path in the direction of
L. (node m). This suggests that comparing the PDL
cost functions of different models can detect the changes
in the number of signals. Indeed, we have used this fact
in our simulation studies to locate changes in the number
of signals by investigating PDL,,(k) — PDL,,11(k). We
have shown that the difference between the PDL costs has
a knee-point at the vicinity of the change point.

V. SIMULATION RESULTS

In this section, we present the simulation results. Con-
sider a DS-CDMA system using the 31-bit Gold codes. We
assume that 4 signals are presently active in a Rayleigh
fading channel. The received signal is the superposition
of the signals of all users. The received signal is collected
over a window of size 100. The signal-to-noise ratio (SNR)
is defined as the ratio of the power of any one of the sig-
nals to the power of noise. Noise is assumed to be a white
Gaussian process.

We performed 100 independent runs and found the eigen-
values of the sample correlation matrix in each run. Fig. 3
illustrates the eigenvalues of the sample correlation matrix
averaged over 100 runs. Note that the eigenvalues can be
decomposed into signal and noise eigenvalues. The large
eigenvalues (in this example the first 4 eigenvalues) are the
signal eigenvalues. In this example, the distance between
the 4th and the 5th eigenvalues is larger than the distance
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Fig. 3. The eigenvalues of the sample correlation matrix averaged for
100 independent runs. The results correspond to 3 different SNRs.

SNR (dB)

m| -3 -2 -1 0 1 2

1 47 28 18 9 4 1

2| 25 18 15 3 0 0

EIG 3 17 19 13 6 1 1
41 10 35 54 8 95 08

5/ 1 0 0 0 0 0
1100 9 10 0 0 0

2| 0 4 13 0 0 0

MDL | 3| 0 1 3 3 0 0
41 0 0 41 97 100 100

5/ 0 0 0 0 0 0
T8 12 0 0 0 0

2 13 21 0 0 0 0

PDL |3 6 35 6 0 0 0
41 1 32 94 100 100 100

5/ 0 0 0o 0 0 0

TABLE I

THE NUMBER OF DS-CDMA SIGNALS DETECTED BY THE EIG, MDL,
AND PDL ALGORITHMS FOR 100 INDEPENDENT RUNS.

between the other consecutive eigenvalues. Therefore, a
simple detector (denoted as EIG) selects the number of
signals by comparing the difference between the consecu-
tive eigenvalues. We will compare our proposed detector
to EIG in the sequel.

The MDL and PDL techniques were used to estimate
the number of signals. We have performed 100 indepen-
dent runs and presented the results in Table I. In this
table, three detectors have been compared. Each row in
the table shows the number of times that the detector se-
lected the corresponding model for the given SNR. Note
that PDL outperforms the MDL and EIG methods. As
the SNR decreases, the signal and noise eigenvalues ap-
proach each other and cannot be easily separated. In such
cases, none of the methods can properly estimate the true
number of DS-CDMA signals.

The recursive structure of the PDL algorithm can be very
useful in non-stationary environments. In this section, we
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Fig. 4. The estimated number of sources as a function of the obser-
vation window. The true number of signals changes from 3 to 4 at
k = 100.

study two cases at which the number of sources changes in-
side the window of observation. We consider a window size
of 300 samples with SNR = 3dB. In the first example, we
assume that the number of signals is 3 at the beginning of
the window and changes to 4 at k¥ = 100. We compute the
PDL cost for 20 independent runs and find the average of
these runs. The PDL cost is computed for all 1 < k& < 300.
At each time instant, we estimate the number of signals by
locating the minimum PDL cost. The number of detected
signals has been shown as a function of time in Fig. 4. Note
that the number of detected signals changes from 3 to 4 in
the vicinity of the 100th time instant.

We have also computed PDL,, (k) — PDL,,,41(k), the dif-
ference between the PDL costs of consecutive models for
all time instants inside the window of observation. The
results have been illustrated in Fig. 5 for three different
values of m = 1,2,3. Note an abrupt change in the slope
of PDL3(k) — PDL4(k) in the vicinity of & = 100. The
change indicates that the underlying model which was used
for £k = 1,...,100 is not valid for the rest of the window.
This figure can be used to locate the change point inside
the window of observation. Since MDL operates on a batch
of data, it cannot locate the change.

We also study the case at which the number of signals
changes from 4 to 3 at the 100th time instant. Such as
before, the PDL cost is averaged over 20 independent runs.
The results have been shown in Fig. 6 and Fig. 7. Note
that the number of signals has not been detected properly
over the window k£ = 101,...,300. The reason for this
malfunctioning is that the number of prominent eigenval-
ues of the sample correlation matrix is 4 even after the
actual number of signals is reduced to 3. Fig. 7 shows the
difference between the PDL costs of consecutive model or-
ders. Notice the abrupt change in the slope of the curve
PDL3(k) —PDL4(k). The change indicates that the under-
lying model is not valid and the sample correlation matrix
should be reset and recomputed using the recent data.
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Fig. 5. The difference between the PDL terms of a model of order m
and the corresponding terms of the model of order m + 1. The true
number of signals changes from 3 to 4 at k = 100.
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Fig. 6. The estimated number of sources as a function of the obser-
vation window. The true number of signals changes from 4 to 3 at
k = 100.
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Fig. 7. The difference between the PDL terms of a model of order m
and the corresponding terms of the model of order m + 1. The true
number of signals changes from 4 to 3 at k£ = 100.

VI. SUMMARY

In this paper, we have introduced a new information the-
oretic method to estimate the number of signals in DS-
CDMA networks. Our approach is based on the predictive
description length (PDL). PDL is the length of a predictive
code that encodes the observed data. We use the code-
length as a metric that describes the observation vector.
The best model is the one that gives the smallest code
length. The PDL cost is computed for all candidate mod-
els and the one with the smallest cost is selected as the
best-fit model.

The proposed method is based on the ML estimate of
the correlation matrix. To apply our technique we do not
need the signature waveform of DS-CDMA signals and only
use the multiplicity of the smallest eigenvalue of the cor-
relation matrix. Therefore, this technique can be used in
blind multiuser detection at which the signature waveform
of signals is not known. The simulation results show that
the performance of the PDL algorithm is better than that
of the MDL and EIG methods.
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