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Localization of Wideband Signals Using
Least-Squares and Total Least-Squares Approaches

Shahrokh Valaee, Benoit Champagne,Member, IEEE, and Peter Kabal,Member, IEEE

Abstract—In this paper, we introduce a new focusing technique
for localization of wideband signals. Relaxing the unitary as-
sumption for the focusing matrices, we formulate the least-square
(LS) and the total least-square (TLS) coherent signal-subspace
methods. The TLS is an alternative to the conventional LS and
uses the fact that the errors can exist both in the focusing location
matrix as well as in the estimated location matrix at a given
frequency bin. To prevent the focusing loss, we use a class of
focusing matrices that are constant under multiplication by their
Hermitian transpose. The class of unitary matrices comports
with this property. We then develop a new focusing technique
based on a modification to the TLS (MTLS). It is shown that the
computational complexity of the new technique is significantly
lower than that for the rotational signal-subspace method (RSS).
The focusing gain of the new technique is also larger than the
focusing gain of the RSS algorithm. The simulation study shows
that, compared with the RSS, the new algorithm has a smaller
resolution signal-to-noise ratio (SNR).

I. INTRODUCTION

W IDEBAND array processing arises in many applica-
tions such as passive sonar, microphone array for

teleconferencing, and spread spectrum communications. Sev-
eral approaches have been proposed in the literature to detect
and estimate the directions-of-arrival (DOA’s) of wideband
signals. In the most basic approach, the output signal of each
sensor is partitioned into nonoverlapping frames or snapshots.
In each snapshot, a discrete Fourier transform (DFT) is used to
sample the spectrum. For each frequency bin, a narrowband
array output signal, with the same DOA’s as the wideband
signal, is formed. Each one of these narrowband signals is pro-
cessed individually, and the results are combined to estimate
the DOA’s [1]. This approach is referred to as the incoherent
signal-subspace method (ISM). This method cannot localize
completely correlated (coherent) sources; spatial smoothing
might be used to handle correlated sources at a cost of reducing
array effective aperture [2].

An alternative to the ISM technique is the coherent signal-
subspace method (CSM) [3]. In CSM, the correlation matrices
at different frequency bins are combined, based on a pre-
estimation of the DOA’s, to form a “universal” correlation
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matrix that is a sufficient statistic for the observation vectors
[4]. A high-resolution algorithm, such as MUSIC [5], is
applied to this sufficient statistic to estimate the DOA’s. In
CSM, the combination of the narrowband signals is performed
through linear transformation of the observation vectors; this is
called focusing. The focusing operator at a given frequency is
a matrix that transforms the location matrix of the array at that
frequency to the location matrix at the focusing frequency. It
has been shown that the CSM algorithm can resolve coherent
sources [3]. Furthermore, it has a lower detection threshold as
compared with ISM.

An improved version of the CSM uses unitary focusing
matrices [6]. This technique is referred to as the rotational
signal-subspace (RSS) method. The unitary transformation
does not create afocusing loss. The focusing loss is a perfor-
mance measure proposed in [6] to motivate the use of unitary
matrices. In [6], the unitary focusing matrices are determined
based on a least-squares (LS) minimization of the norm of the
difference between the transformed location matrix at each
frequency bin and the focusing location matrix. In [7], it has
been shown that if the multiplication of the focusing matrix
by its Hermitian transpose is independent of the frequency of
operation, the focusing is lossless. A variant of CSM is also
defined in [8]. There, the focusing matrix has a diagonal form
that leads to computational savings. This method, however,
suffers from focusing loss.

The objective of this paper is twofold. First, using the
observations of [7], we generalize the technique of [6] to a case
in which the focusing subspace is selected as the column span
of a transformation of the focusing location matrix. Although
we do not expand on it here, this degree of freedom can be
exploited to acquire certain properties for the solution to the
localization problem. One example can be to optimize the
focusing subspace so that the resolution threshold or the bias
of the DOA estimation are minimized [9]. We use the least-
squares and the total least-squares (TLS) formulation of the
problem and show that under certain constraints, they provide
the same solution; this is an extension of the equation solution
method discussed in [10]. We then modify the TLS approach
(MTLS) to arrive at a new technique for the allocation of
the focusing matrices. The technique borrows its name from
the TLS solution to linear equations [11] since it permits
perturbations in the location matrix at a measured frequency
as well as in the location matrix at the focusing frequency.
The motivation to use a TLS approach comes from the
uncertainty inherent in the measured location matrices due
to the error in pre-estimation of the DOA’s. Besides sharing
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this uncertainty between the measured location matrix and the
focusing matrix, the new technique provides a considerably
simpler implementation, as compared with the RSS approach.
We also define thefocusing gain. We show that the focusing
gain of the new technique is larger than the focusing gain
of the RSS method. Computer simulation studies show that
the MTLS technique outperforms the RSS by reducing the
resolution threshold SNR and the bias of DOA estimation.

The paper is organized as follows. A review of the back-
ground material on CSM is reported in Section II. The new LS-
CSM and TLS-CSM algorithms are proposed in Section III.
In Section IV, the TLS algorithm is modified and the com-
putational complexity of the new technique is discussed.
Section V deals with the comparison of the new technique
to the two-sided correlation transformation (TCT) [12] and
the signal-subspace transformation (SST) [7] methods. In
Section VI, simulation results are presented.

II. COHERENT SIGNAL-SUBSPACE METHOD

Consider wideband source signals arriving at an array of
sensors from the distinct angles The

output of each sensor is uniformly sampled and decomposed
into nonoverlapping frames or snapshots, each containing
samples. A -point DFT algorithm is used in each snapshot
to sample the spectrum of the corresponding signal at a set
of discrete frequencies The array output
vector for a fixed frequency is formed by collecting the
corresponding samples of all the sensors in a vector. Let the
array output vector for frequency at the th snapshot be
represented by A model for this vector is given by

(1)

where and are the signal vector and the
noise vector, and is the
location matrix at frequency It is assumed that is
full rank; at each , the location vectors and
are linearly independent for

Let the signal and noise be statistically independent from
each other with the correlation matrices and , respec-
tively. Furthermore, the samples of the signals and the
noise are independent for different snapshots. For a large
time-bandwidth product, samples of the observation vector
at different frequency bins are uncorrelated. The correlation
matrix of the array at theth frequency bin can be written as

(2)

where the superscript represents the Hermitian transposi-
tion.

The signal subspace at each frequency bin is defined as
the column span of the location matrix at that frequency.
For wideband array processing, each frequency bin has a
different signal subspace. The CSM technique attempts to
transform these subspaces using appropriate matrices in order
to align them. This is calledfocusing, and the transformation
matrices are referred to as thefocusing matrices. Averaging
the transformed correlation matrices gives a “universal” cor-
relation matrix that is used for detection and DOA estimation.

This universal correlation matrix has the characteristics of the
correlation matrix of a narrowband configuration with the same
DOA’s. The universal correlation matrix can be expressed as

(3)

where and are the source and the noise universal
correlation matrices, respectively, given by

(4)

(5)

where is the th focusing matrix. The DOA’s are estimated
by performing the eigendecomposition of the matrix pencil

and using the MUSIC algorithm [5].
In practice, the correlation matrix of the array is estimated

from the sample correlation matrix

(6)

The universal sample correlation matrix is then

(7)

The eigenvalue decomposition is applied to the matrix pencil
, where

(8)

and , which is an estimate of , is determined by averaging
the smallest eigenvalues of the matrix pencil

The focusing matrices in the original CSM algorithm [3]
are the solutions to

(9)

where is the focusing location matrix of the array,
is the vector of focusing DOA’s, and

is the number of focusing angles. To determineand , a
preprocessing step is required. An ordinary beamformer is
applied to estimate the DOA’s of the sources. If the angular
separation between the sources is smaller than the beamwidth
of the beamformer, the spatial spectrum will show a single
peak in the vicinity of the actual sources. Thus, closely
separated sources may not be resolved at this stage. The
locations of the detected peaks serve as the pre-estimated
DOA’s for focusing. In practice, a few more focusing angles
are added in the vicinity of the pre-estimated DOA’s [6]. These
angles are used to determine the location matrices
and In the original version of the CSM, is the
array location matrix at the center frequency of the spectrum
of the source signal. It has been shown in [9] that a better
focusing frequency can be found by minimizing an appropriate
criterion. This results in an improved performance in bias and



VALAEE et al.: LOCALIZATION OF WIDEBAND SIGNALS USING LEAST-SQUARES AND TOTAL LEAST-SQUARES APPROACHES 1215

resolution threshold SNR. For simplicity of notation, in the
sequel, all references to and will be indicated by

and respectively.
The matrix that solves (9) is the focusing matrix of the

CSM algorithm at frequency The signal subspace at the
th frequency bin is the column span of and is represented

by We will refer to as the “measured” signal-
subspace. Similarly, the focusing signal subspace is the column
span of and is denoted by The multiplication of

by transforms the measured signal subspace at theth
frequency bin into the focusing signal subspace. In general,
the linear equation (9) is underdetermined, and its solution
might be singular and nonunique. However, it is possible to
obtain a nonsingular solution to (9) by increasing the number
of the focusing angles to the number of sensors[3].

In [6], a unitary version of the CSM algorithm is introduced,
which is based on the following minimization problem:

(10)

(11)

where is the Frobenius norm of a matrix, and is
the identity matrix. It has been shown that the unitary CSM
does not create focusing loss. This technique has been termed
the rotational signal subspace (RSS) focusing method. The
solution to (10) is given by [6], [13]

(12)

where and are the left and the right singular vectors
of

III. T HE LS-CSM AND TLS-CSM ALGORITHMS

Lossless focusing is not limited to unitary transformations.
In [7], it has been shown that as long as is independent
of , focusing is lossless. We use this observation to propose a
least-squares coherent signal-subspace method (LS-CSM) and
a total least-squares coherent signal-subspace method (TLS-
CSM).

A. LS-CSM

Using [7], the focusing matrices of the coherent signal-
subspace method are selected as the solutions to

(13)

s.t. (14)

where is a Hermitian, positive definite matrix independent
of

Let the square root of be represented by a Hermitian
matrix

(15)

Let the singular value decomposition of be represented by
Then, , and

Thus, if , then

(16)

Note that is the closest unitary matrix to [13]. The
minimization problem (13) can, hence, be written as

(17)

s.t. (18)

for a fixed satisfying (15).
The cost function (17) is bounded by

(19)

We choose to minimize the upper bound (19) since it is
significantly simpler than (17). Furthermore, the upperbound
can be viewed as the error criterion of RSS when the focusing
location matrix is transformed by In [9], the focusing
frequency can be selected based on minimizing an appropriate
cost function. A similar technique might be used to determine

An alternative is to choose a diagonal Each
diagonal element of is considered to be a calibrating
factor that is used to correct or modify the response of
the corresponding sensor in the focusing subspace. As a
third alternative, consider , where is a

diagonal matrix. In this case, the effect of multiplying
by is to weight the focusing DOA’s. This can be

used whenever the uncertainty in the location of the DOA’s
differs for different angles. Thus, an appropriate can
be employed to enhance certain properties of the focusing
technique. We do not pursue this discussion further and
continue with a general

As mentioned earlier, we propose using

(20)

s.t. (21)

to determine the focusing matrices of the least-squares coher-
ent signal-subspace method (LS-CSM). The solution to this
problem is given by [13]

(22)

where and are now the left and the right singular vectors
of The corresponding is

(23)

Note that for , the focusing matrix of the LS-CSM
method is identical to the focusing matrix of RSS, which is a
special case of the SST technique [7].

An alternative interpretation to the LS-CSM algorithm
might be obtained by investigating the error of transformation.
Define

(24)

The LS-CSM problem can be rearranged as

(25)

s.t. (26)

(27)
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The constraints in this minimization problem show that the lo-
cation matrix is perturbed such that can be transformed
onto it using the focusing matrix The minimization (25)
guarantees that the perturbation matrix has the smallest
Frobenius norm.

Here, we introduce a lemma that will be used in the
following section. This lemma states that the perturbation
matrix lies in the same subspace as the matrix

Lemma 1: Let be the solution to (25). The column span
of the perturbation matrix belongs to the column span of

, i.e.,

(28)

Proof: Using (22), the perturbation matrix can be
written as

(29)

Assume that the singular values of are arranged
in nonincreasing order. Decompose the matricesand
into two submatrices and so
that the matrices and correspond to nonzero
singular values. Since is nonsingular and is full rank
(by assumption), spans the same space as
Thus, forms an orthonormal basis for the column span
of A similar argument indicates that forms an
orthonormal basis for the column span of Since is
a unitary matrix, will be orthogonal to Using these
results in (29), we have

(30)

(31)

Note that and span the same subspace. Thus,
is in the column span of

B. TLS-CSM

The total least-squares coherent signal-subspace method
(TLS-CSM) is based on perturbing both and The
TLS-CSM transformation matrix is the solution to

(32)

s.t. (33)

(34)

where and are the perturbation matrices.
Lemma 2: Let and be the solutions to (32). In

the TLS approach, the column span of and belong,
respectively, to the column span of and , i.e.,

(35)

(36)

Proof: For any fixed , using Lemma 1, it is seen that
the perturbation matrix , which has the smallest Frobenius
norm, is in the subspace spanned by the column vectors of

Thus,
Now, fix , and let The constraint (33) can

be written as

(37)

Note that the solution to the minimization of is obtained
from (25) with Using Lemma 1 completes the proof.

Lemmas 1 and 2 are used to solve the TLS-CSM problem
(32), as indicated in the following theorem.

Theorem 1: Let the matrices of the left and the right
singular vectors of be given by and ,
respectively. Then, the perturbation matrices

(38)

(39)

solve (32) with the transformation matrix

(40)

where

(41)

Proof: See the Appendix.
Note that the focusing matrices for the LS-CSM and TLS-

CSM techniques are identical. This might be considered to be
an extension to the results of [10]. There, it has been shown
that if the solution of a set of linear equations is confined to be
a unitary matrix, the LS and TLS techniques produce the same
results. Here, we have shown that the similarity of the LS and
TLS solutions can be extended to the cases where the product
of the matrix by its Hermitian transpose is a fixed matrix.

IV. A COMPUTATIONALLY EFFICIENT TLS-CSM ALGORITHM

Lemmas 1 and 2 indicate

(42)

where can be the transformation matrix for either LS-
CSM or TLS-CSM. Thus, the column span of is exactly
transformed to the column span of This property holds
for all signal-subspace transformation techniques used for
localization of wideband signals.

The objective of subspace transformation is to transform the
array manifold at the measured frequency to the array manifold
at the focusing frequency. Since this transformation might not
be possible for all angles, if the focusing matrix is confined
to a certain class—say, being unitary—the transformation is
usually performed in a neighborhood of the estimated DOA’s.
Thus, if is close to , a good estimate of the DOA’s
might be expected, provided the true DOA’s are in the vicinity
of the focusing DOA’s. Note that the location matricesand

are determined by a preprocessing step (pre-estimation of
DOA’s) and, hence, contain an error of estimation. Because of
uncertainties in and , minimizing the errors and
does not necessarily lead to appropriate results. Here, we relax
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the error constraint in the hope of arriving at a reduction in
computation. Based on these arguments, we modify the TLS
transformation technique as follows.

If the number of focusing angles is smaller than the number
of sensors , the rank of and is smaller than ,
and the unitary solution (41) is not unique. Let the matrices

and be decomposed into the forms
and so that the matrices and

collect the singular vectors corresponding to the nonzero
singular values. In such a case, , and we have

(43)

Thus, for DOA estimation, we could choose In
this case, is no longer unitary but has nonzero singular
values equal to 1. Let be the set of all matrices
defined as

for

and for (44)

where is the space of complex matrices, and
is the th singular value of Based on (43), the constraint

in (32) might be replaced by
Using a technique similar to the proof of Theorem 1, it is
possible to show that the solution to (32) is given by

(45)

Study of the TLS-CSM technique indicates that the process
of focusing can be decomposed into two steps. First, the
measured signal-subspace is rotated, using , to the
subspace spanned by Then, using , the result is
transformed into the focusing subspace. We use this view to
develop a new technique for wideband signal localization.

Let matrix be a full-rank transformation that maps
to itself [ is invariant under ]; an example would be
the identity matrix , which we use in the sequel. With
this assumption,

The matrix transforms
and overlaps it with We choose two orthonormal
bases in and and determine a focusing matrix
that transforms the basis of onto the basis of
Let the polar decomposition of the matrices and be
represented by and , respectively, where
and are Hermitian, positive-definite matrices, and

and are matrices that satisfy
[13], [14]. The polar decomposition has the

following properties:

1) The matrix is the closest matrix (in Frobenius norm)
in the set of matrices with orthonormal columns
to A similar argument holds for and

2) Since is full column rank, the positive-definite matrix
is equal to Similarly,

See Fig. 1 for an illustration of the first property.

Fig. 1. Geometric interpretation of the MTLS algorithm.

As shown in the figure, the location matrices and
are projected onto In the set of matrices with
orthonormal columns, and are the closest matrices to

and , respectively [13]. A modified total least-squares
coherent signal-subspace method (MTLS) can be obtained by
choosing the focusing matrix as

(46)

The focusing matrix transfers to In fact, since
and are erroneous, they have been replaced by the

approximations and
The computation of the focusing matrix (46) can further be

simplified to

(47)

Using the second property of the polar decomposition, the
focusing matrix in the MTLS algorithm is

(48)

We will discuss shortly the computation of the focusing matrix
from (48).

A. Focusing Gain

The focusing gainis defined as the ratio of SNR at the
output of the focusing process to the SNR at the input. The
definition of the focusing gain is analogous to the definition
of the array gain in beamforming [15]. Using (4) and (5), and
assuming , the focusing gain is given by

Tr Tr

Tr Tr

(49)
where Tr is the trace operator. The focusing gain of the
RSS technique for the true values of the DOA’s is equal to
one since is unitary—the same as the focusing loss. The
focusing gain of MTLS for the true values of the DOA’s is
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given by in (50), shown at the bottom of the
page. For true DOA’s, Using the properties
of trace

Tr

Tr

Tr (51)

Now, note that

Tr (52)

Thus, the focusing gain for the MTLS is

(53)

Intuitively, the MTLS algorithm reduces the noise effect by
annihilating the noise components in the noise subspace.

B. The Algorithm

The MTLS algorithm is summarized as follows.

1) Apply an ordinary beamformer to pre-estimate the
DOA’s; add a few more angles in the vicinity of the
pre-estimated DOA’s, and form .

2) Decompose the output of the sensors into nonoverlap-
ping snapshots, and apply a DFT algorithm in each
snapshot to sample the spectrum of data.

3) Form the location matrices and .
4) Compute , and

for .
5) Determine the universal sample correlation matrix

(54)

6) Use AIC or MDL to determine the true number of
sources [16].

7) Apply the MUSIC algorithm to estimate the DOAs.
8) To improve the performance, iterate Steps 3)–8).

The bulk of the computational complexity of the new
focusing method is due to Step 4 in the above algorithm. To
find the square root of the Hermitian, matrices

, we can use the eigenvalue decomposition or apply
an iterative Newton method [14]. It is possible to show that
for the Hermitian, positive-definite matrix , if and

(55)

then quadratically, where denotes the square
root of To compute , we use (55) or the
eigenvalue decomposition to find the square root of
and then multiply by the inverse of Since

and are simply the estimates of the true location
matrix, and is usually larger than, a thorough computation
of may not be necessary; a small number of
iterations of (55) may suffice.

We compare the MTLS and the RSS techniques based
on the number of real flops for computing the focusing
matrices. To form the matrices flops are
required. Assume that the eigenvalue decomposition is used
to determine An eigenvalue decomposition of

can be performed in flops. Again, flops
are required to build The multiplication of
and needs flops. Adding these values,
the total number of flops in computing each matrix in the
MTLS algorithm amounts to

In RSS, flops are needed to build Then, a
singular value decomposition is performed to acquire

the left and right singular vectors of This requires
flops. The multiplication of the left and the right

singular vectors is also performed in flops. Thus, in
total, the computational load in RSS is on the order of
If , the MTLS algorithm is significantly faster than
RSS. Note that since is not explicitly formed in the MTLS
algorithm, a computation on the order of is saved
in the multiplication of the focusing matrices by the sample
correlation matrices [see Step 5)].

V. RELATIONSHIP TO OTHER TECHNIQUES

Recently, two alternatives to the RSS have been proposed
in the literature. In this section, we review the two-sided
correlation transformation (TCT) [12] and the signal-subspace
transformation (SST) [7] techniques and show their relation-
ship to the MTLS algorithm.

Tr Tr

Tr Tr

(50)
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A. Two-Sided Correlation Transformation

In [12], we have introduced the unitary TCT algorithm
for wideband array processing. The focusing transformation
matrices in the TCT method are the solutions to

(56)

s.t. (57)

where is the noise-reduced array correlation matrix at the
th frequency bin and is computed from

(58)

where is defined in (6), and is an estimate of the noise
power at the th frequency bin; is the focusing correlation
matrix defined by , where is the average of
the estimated source correlation matrices

(59)

A solution to (56) is given by

(60)

where and are the eigenvectors of and
A unitary transformation matrix is chosen in the TCT

algorithm to avoid focusing loss. If is a matrix with
orthonormal columns, is equal to and inde-
pendent of , and thus, there is no focusing loss [7]. We might
assume that and are the eigenvectors corresponding
to the nonzero eigenvalues of and In such a case, the
focusing matrix is not unitary; however, its nonzero singular
values are unity, i.e.,

B. Signal-Subspace Transformation

Recently, Doron and Weiss [7] proposed a signal-subspace
transformation (SST) by solving

(61)

s.t. (62)

where and are any Hermitian, positive-definite matri-
ces. In their simulations, they chose the identity matrices for

and This results in

(63)

s.t. (64)

Theorem 2: The solution to (63) is given by

(65)

where and are the left singular vectors of and

Proof: The solution of (63) is given by ,
where and are the eigenvectors of and
[12]. Noting that the eigenvectors of and are
identical to the left singular vectors of and , the proof
is complete.

This theorem indicates that unlike MTLS, the SST method
only uses the left singular vectors of and Exploiting the
right singular vectors in MTLS results in a better performance.
That is because in MTLS, the transformation matrix is formed
by multiplying and , which are, respectively, the
closest matrices with orthonormal columns to and (see
Fig. 1).

C. Discussion

We note that for the RSS, SST, TCT, and MTLS techniques,
, where is the corresponding focus-

ing matrix. We distinguish these techniques by the method
they compose: the unitary focusing matrices. In general, se-
lecting the focusing matrices in any unitary transformation
coherent signal-subspace technique comprises two steps. First,
some orthonormal bases are found for the measured subspace

as well as for the focusing subspace Then,
a unitary matrix (or a matrix with orthonormal columns) is
formed, which transforms basis of onto the basis of

In RSS, the two bases are the left and the right singular
vectors of The left singular vectors form an or-
thonormal basis for , and similarly, the right singular
vectors form an orthonormal basis for In MTLS, the
orthonormal bases and are the unitary matrices of
the polar decomposition of and The basis is the
multiplication of the left and the right singular vectors of
[13]. The same argument holds for and and ,
respectively, are the closest unitary matrices to and
in the Frobenius norm sense [13]. In SST, the orthonormal
bases for the measured and the focusing subspaces are the left
singular vectors of and In TCT, the transformation
matrix is , where and are the eigenvectors
of the noise-reduced correlation matrices and Since

is measured directly from data by simply subtracting the
noise power, it does not contain DOA pre-estimation error.
This fact fortifies the TCT with the possibility of producing
unbiased estimates of the DOA’s in an asymptotic sense; the
other techniques discussed here do not have this property.

The computational complexity of SST is on the order of
, and its performance is almost similar to RSS [7].

TCT has a modest computational complexity relative to RSS,
but its capability to generate asymptotically unbiased estimates
and its smaller resolution threshold SNR favor its use for
wideband array processing. The MTLS algorithm has the
smallest computational complexity [on the order of ].
The performance of SST is comparable to RSS (see [7]). TCT
outperforms all the others, however, with an increase in the
computational complexity [12]. The performance of MTLS is
better than that for the RSS as shown in the following section.
In Fig. 2, the four techniques are roughly compared in terms
of their computational complexity and performance (bias).
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Fig. 2. Comparison of the four techniques: MTLS, SST, RSS, and TCT.

TABLE I
AVERAGE BIAS (IN DEGREES) FOR 100 INDEPENDENTRUNS FOR ASCENARIO WITH

TWO CLOSELY SEPARATED SOURCES AT 10 AND 14� ARRIVING AT A UNIFORM

LINEAR ARRAY OF EIGHT SENSORSUSING THE RSSAND MTLS ALGORITHMS

VI. SIMULATION RESULTS

In this section, we present the computer simulations that
were performed to compare the LS (RSS) and the MTLS
approaches to the CSM algorithm with In the first
example, we consider a configuration with two equipower
coherent wideband sources at the DOA’s and in
the far-field of a uniform linear array of eight sensors. The
spacing between each two consecutive sensors is half the
wavelength at the center frequency of the spectrum of the
wideband signals. The signal of source at is delayed
one sample and introduced as the signal of source at
The sources have a flat complex frequency spectrum over a
40% relative bandwidth. The center frequency of the spectrum
is selected as the focusing frequency. The output of each
sensor is decomposed into 100 snapshots of 32 samples each.
An FFT algorithm is used in each snapshot to sample the
spectrum of signals. A Monte Carlo simulation is performed,
and the bias, the standard deviation, and the resolution are
averaged over 100 independent runs. At each run, a delay-
and-sum beamformer is used to estimate the DOA’s. Then,
two extra angles are added at 1from the estimated DOA. This
simulation was performed for different SNR’s. The focusing
matrices in the RSS and MTLS algorithms are computed from
(12) and (46), respectively. The average bias and the average
standard deviation are reported in Tables I and II. Note that
bias of the MTLS is smaller than the bias of the RSS for
all SNR’s. The difference is significant for small SNR’s. The
standard deviations of the two techniques are almost identical.

We also compare the peak-to-valley measure of the RSS and
the MTLS methods. The peak-to-valley measure is defined as

TABLE II
AVERAGE STANDARD DEVIATION (IN DEGREES) FOR 100

INDEPENDENT RUNS FOR A SCENARIO WITH TWO CLOSELY SEPARATED

SOURCES AT 10 AND 14� ARRIVING AT A UNIFORM LINEAR ARRAY

OF EIGHT SENSORSUSING THE RSSAND MTLS ALGORITHMS

Fig. 3. Peak-to-valley measure of the RSS and MTLS methods averaged
over 100 independent runs for a scenario with two closely separated sources
at 10 and 14� arriving at a uniform linear array of eight sensors.

the difference between the average of the spatial spectrum
at the peak points in the MUSIC algorithm and the spatial
spectrum in the valley [17]. The result is shown in Fig. 3. Note
that for small SNR, the MTLS algorithm has a significantly
better peak-to-valley measure than the RSS.

To find the probability of resolution threshold, we count
the number of times each algorithm resolves the sources. The
sources are assumed to be resolved when two peaks in the
spatial spectrum of the MUSIC algorithm are in the vicinity
(within of the true DOA. Fig. 4 shows the probability
of the resolution for the two methods. It is seen that the
resolution threshold (defined as the SNR for a fixed probability
of resolution) for the MTLS algorithm is smaller than that for
the RSS.

Fig. 5 illustrates the focusing gain as a function of the
perturbation on the DOA’s. As noticed, the maximum focusing
gain is obtained for true DOA’s.

To study the performance of the MTLS algorithm for
multigroup sources, we add two more sources atand
with the same power and increase the number of sensors to 20.
Table III presents the averaged bias for 100 independent runs.
As it is seen, the RSS and the MTLS algorithms both have a
small bias. To compare the computational complexity of the
two methods, we count the number of flops in the MATLAB
software. The location matrices and are 20 6 matrices
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Fig. 4. Probability of resolution for the RSS and MTLS methods for a
scenario with two closely separated sources at 10 and 14� arriving at a
uniform linear array of eight sensors.

Fig. 5. Focusing gain as a function of perturbation on the DOA’s for a
scenario with two closely separated sources at 10 and 14� arriving at a
uniform linear array of eight sensors.

TABLE III
AVERAGE BIAS (IN DEGREES) FOR 100 INDEPENDENT RUNS

FOR A SCENARIO WITH FOUR CLOSELY SEPARATED SOURCES

AT 10, 14, 33,AND 37� ARRIVING AT A UNIFORM LINEAR ARRAY

OF 20 SENSORSUSING THE RSSAND MTLS ALGORITHMS

(corresponding to and ). MATLAB uses about
12.9 mega flops to compute all the focusing matrices in the
RSS technique. MTLS requires about 1.8 mega flops, which
is smaller than that for the RSS by a factor of 7.

VII. CONCLUSION

This paper introduces a new focusing technique for the
coherent signal-subspace processing method. The least-squares

and the total least-squares coherent signal-subspace methods
are formulated in a general structure, and it is shown that under
certain constraints, the two techniques provide an identical
solution. The method can be viewed as an extension to
nonunitary focusing techniques in the CSM algorithm. We then
use this formulation to derive a new focusing algorithm. The
focusing matrices in the new algorithm are determined based
on a modification to the total least-squares method (MTLS).
We show that the new technique can increase the focusing
gain achieved by a unitary coherent signal-subspace method.
The computer simulations verify that the new technique has a
better than or equal to performance than RSS and a smaller
computational cost. In particular, it is shown that the new
method has a smaller resolution signal-to-noise ratio and
a smaller bias than RSS. The computational complexity of
MTLS is smaller than that for the RSS.

APPENDIX

PROOF OF THEOREM 1

We use the Lagrange multipliers method to solve (32). The
Lagrangian is defined as

(66)

where and are the matrices of Lagrange multipliers, is
a vector with all components equal to 1, the superscript
denotes transposition, and is the Hadamard product defined
by

(67)

for two matrices and The derivative of
with respect to a complex variableis defined as

(68)

where and are the real and imaginary parts of the
complex variable We also define the derivative with respect
to a matrix as

(69)

Using these definitions, we have

(70)

(71)

where denotes the complex conjugation. These equations
are solved along with

(72)

(73)

to get and (70) and (71) give

(74)
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From (73)

(75)

where Substituting these matrices in (72) gives

(76)

Use in (74) to get

(77)

The error is given by

(78)

The matrix should be selected to minimize the error. Let the
left and the right singular vectors of are given by

and , respectively. The unitary matrix that minimizes
(78) is then given by [13]

(79)
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