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Abstract—This paper designs a distributed Transmission Op-
portunity (TXOP) adaptation algorithm for IEEE802.11e En-
hanced Distributed Channel Access (EDCA). Each node measures
its throughput in a window and compares it with a target value.
If the measured throughput is higher than the target value, the
node reduces its TXOP, otherwise if the measured value is less
than the target throughput, the node increases its TXOP. We
show that the target throughput can be achieved in a globally
stable manner.

Index Terms—IEEE 802.11e, EDCA, WLAN, TXOP, Dis-
tributed parameter control, Lyapunov stability

I. INTRODUCTION

The IEEE 802.11e Enhanced Distributed Channel Access
(EDCA) protocol [1] defines multiple queues, denoted by
access categories (ACs), per each node and sets the cor-
responding control parameters such as the Arbitraion Inter-
frame Space (AIFS), the Contention Window (CW) and the
Transmission Opportunity (TXOP), per each queue in order
to provide Quality-of-Service (QoS) differentiation. TXOP as
our research target allows a station to transmit multiple frames
consecutively when getting the channel without exceeding the
specific TXOP limit duration. Among the three main medium
access control (MAC) parameters in wireless LAN, TXOP
is the most impacting one [2, 3] because TXOP can provide
multiple contention-free transmissions even in high contention
periods, while CW and AIFS cannot limit the collision rates.
As a result, much attention has been given for designing
TXOP adaptation algorithms [3–6]. Unfortunately, most of the
reported work in the literature is intuitive without rigorous
analysis. Hence, it is not yet clear how TXOP should be
adapted in a distributed fashion to provide a target QoS,
identified for instance by the throughput requirement for each
queue in an IEEE 802.11e network.

In this paper, we propose an algorithm to set TXOP for
given throughput requirement. The proposed solution is a dis-
tributed mechanism for TXOP adaptation with minimal control
overhead. In the proposed algorithm, each node independently
measures its throughput and compares it with a target value.
TXOP is then adapted using the result of this comparison;
that is, TXOP is increased if the measured throughput is less
than the target value, and it is decreased if the measured
throughput is more than the target throughput. We show that

the throughput converges to the target throughput in a globally
and geometrically stable manner. Our stability analysis pro-
vides a basis for optimal control of individual TXOP values
of the corresponding AC queues with different throughput
requirements in IEEE 802.11e-based wireless networks.

II. TXOP SOLUTION FOR THROUGHPUT REQUIREMENTS

We assume that there are n queues and denote the set of
queues as N = {1, 2, . . . , n}. We also assume that all the
traffic classes use the same AIFS which is equal to distributed
inter-frame space (DIFS) in order to extract TXOP effect only.
Hence, the QoS in each queue can only be differentiated by
CWmin and TXOP. Let τi be the probability that the i-th
queue transmits during a generic timeslot. Let pb denote the
probability that the channel is busy. Then,

pb = 1−
∏
i∈N

(1− τi). (1)

Let ps,i denote the probability that a successful transmission
occurs in a timeslot for the i-th queue, and ps the probability
that a successful transmission occurs in a timeslot. Then, we
can obtain the following [7]:

ps,i = τi
∏

j ̸=i,j∈N

(1− τj) for i ∈ N , (2)

ps =
∑
i∈N

ps,i. (3)

Let Si be the throughput of the i-th queue. Let δ, xi, Ts

and Tc denote the duration of an empty timeslot, TXOP of the
i-th queue, the average time that the channel is sensed busy
because of a successful transmission, and the average time that
the channel has a collision, respectively. Based on the previous
analysis [7, 8], we can derive the saturation throughput of the
i-th queue as

Si =
E[payload size in a timeslot for the i-th queue]

E[length of a timeslot]

=
ps,ixiRi

(1− pb)δ + psTs + (pb − ps)Tc
(4)

where Ri is the channel capacity of the i-th queue. We assume
that RTS/CTS exchange is adopted. Let TRTS and TCTS

denote the time to transmit an RTS frame and a CTS frame,



respectively. Let TH , TACK , and SIFS denote the time to
transmit the header (including MAC header, physical layer
header, and/or trailer), an ACK, and short inter-frame spacing,
respectively. Then, Ts and Tc can be expressed as

Ts =
∑
i∈N

ps,i
ps

xi + os (5)

Tc = TRTS + SIFS + TACK +DIFS (6)

where os is defined as

os = TRTS +3∗SIFS+TCTS +TH +TACK +DIFS. (7)

The throughput of the i-th queue, Si in (4) is a function
of τ = (τ1, τ2, . . . , τn) and x = (x1, x2, ..., xn). The vector
τ is determined by CWmin of all queues and is not affected
by the variation of the vector x [7]. In this paper, we assume
that CWmin are fixed for each queue although each queue can
have different CWmin values. Then, Si is a function of x.

Let si be the normalized saturation throughput, which is
defined as

si =
Si

Ri
. (8)

Using (1) – (8), si can be expressed as

si(x) =
βixi∑

j∈N βjxj +OT
(9)

where

βi =
τi

1− τi
> 0, (10)

OT = δ +
∑
i∈N

βi(os − Tc) +

(∏
i∈N

(1 + βi)− 1

)
Tc > 0.

(11)

To calculate τi in (10), we use Wu’s model [11] which is a
modification of Bianchi’s model [8] with the frame retry limit.

Our objective is to find the TXOP values, x, in a distributed
manner such that

si(x) = s∗i for i ∈ N , (12)

where s∗i is the target normalized throughput of the i-th queue.
Note that (12) builds a set of n linear equations in variables
x as follows:

βi(1− s∗i )xi −
∑

j ̸=i,j∈N

(βjs
∗
i )xj = s∗iOT for i ∈ N . (13)

Proposition 1: If the following condition holds:∑
i∈N

s∗i < 1, (14)

then the solution for the problem (12), x∗ = (x∗
1, x

∗
2, ...x

∗
n),

exists uniquely as

x∗
i =

OT

βi

s∗i
1−

∑
j∈N s∗j

for i ∈ N . (15)

The condition (14) creates a stable system. This is indeed
the feasibility condition. That is, the target throughputs should
be achievable and hence should create a feasible system. We

will discuss shortly that if the system is not feasible then,
the nodes extend their TXOP to the maximum value and still
cannot achieve the target throughput. This is of course an
anomaly where no any other distributed scheduler can satisfy
the target throughputs.

III. TXOP ADAPTATION AND STABILITY ANALYSIS

If there is a centralized coordinator, the TXOP values can
be selected as in (15). However, the users may not know
other users’ parameters including throughput requirements. We
propose a TXOP adaptation algorithm with which the solution
(15) can be reached in a distributed manner.

We define two sets, A(t) and B(t) for time t ≥ 0:

A(t) = {i|si(t) ≥ s∗i , i ∈ N}, (16)
B(t) = {i|si(t) < s∗i , i ∈ N}. (17)

Assume that each queue independently measures its through-
put and selects its TXOP using the following control system
for t ≥ 0:

d

dt
xi(t) =

{
−xi(t) if i ∈ A(t),

xi(t) if i ∈ B(t).
(18)

Therefore, we can conclude that if a node has the measured
throughput larger than the target throughput, it decreases its
TXOP, and if it has a throughput smaller than the target value,
it increases its TXOP. Since the variation of TXOP is directly
related to the throughput, we speculate that (18) adjusts the
throughput so that it gets closer to the target throughput. We
prove this claim by showing that if i ∈ A(t), then dsi(t)

dt < 0

and if i ∈ B(t), then dsi(t)
dt > 0.

From (9), the partial derivatives for s(x) are given for i, j ∈
N , as

∂si
∂xj

=

{
(si − s2i )/xi if i = j,

−sisj/xj if i ̸= j.
(19)

If i ∈ A(t),

dsi
dt

=
∑
j∈N

∂si
∂xj

dxj

dt

=
si − s2i

xi
(−xi) +

∑
j∈A(t),j ̸=i

(
−sisj

xj

)
(−xj)

+
∑

j∈B(t)

(
−sisj

xj

)
xj

= −si

1−
∑
j∈A

sj +
∑
j∈B

sj


= −si

(
2
∑

j∈B(t) βjxj(t) +OT∑
j∈N βjxj(t) +OT

)
< 0. (20)

On the other hand, if i ∈ B(t),

dsi
dt

= si

(
2
∑

j∈A(t) βjxj(t) +OT∑
j∈N βjxj(t) +OT

)
> 0. (21)



Now, we investigate whether we can reach the point s∗ =
(s∗1, s

∗
2, . . . , s

∗
n) with the dynamics (18). The global stability

of the algorithm can be studied by the application of the
Lyapunov function. Let us introduce the following Lyapunov
function:

V (s) =
1

n

∑
i∈N

(
si
s∗i

− 1

)2

. (22)

Note that V (s∗) = 0, and V (s) > 0 if s ̸= s∗. On the other
hand, from (20) and (21),

dV

dt
=

2

n

∑
i∈N

1

s∗i

(
si
s∗i

− 1

)
dsi
dt

< 0. (23)

Therefore, the solution s = s∗ is globally asymptotically
stable [9], which implies that

lim
t→∞

s(t) = s∗. (24)

Therefore,

lim
t→∞

xi(t) = lim
t→∞

OT

βi

si(t)

1−
∑

j∈N sj(t)
= x∗

i for i ∈ N ,

(25)
and the solution x = x∗ is globally asymptotically stable.

A. Practical Considerations

In practice, we should measure the throughput in each
measurement interval. Let si(k) be the estimated normalized
throughput of user i in [kT, (k+1)T ), i ∈ N , k = 0, 1, 2, . . ..
Let xi(k) be TXOP of user i during [kT, (k+1)T ). We define
two sets, A(k) and B(k) as follows:

A(k) = {i|si(k) ≥ s∗i , i ∈ N}, (26)
B(k) = {i|si(k) < s∗i , i ∈ N}. (27)

We consider the following discrete-time nonlinear dynamical
system for k = 0, 1, 2, . . .

xi(k + 1) =

{
(1− ηk)xi(k) if i ∈ A(k)

(1 + ηk)xi(k) if i ∈ B(k),
(28)

which is the discrete-time version of (18). Then, we can
reach x∗ using the dynamics (28) if the following conditions
hold [10]:

∞∑
k=1

ηk = ∞ and lim
k→∞

ηk = 0. (29)

In a distributed control environment, it is difficult to adapt a
variable step size ηk. Thus, we assume that ηk, k = 1, 2, ...
are fixed at η, which is a small positive constant.

Now, we investigate the convergence speed. Let yi(k) =
βixi(k), i ∈ N , k = 0, 1, 2, . . .. Suppose that i ∈ A(k).

Then,

si(k + 1) =
yi(k + 1)∑

j∈N yj(k + 1) +OT

=
yi(k)(1− η)∑

j∈A(k) yj(k)(1− η) +
∑

j∈B(k) yj(k)(1 + η) +OT

=
yi(k)∑

j∈N yj(k) +OT 1− η

1 +
( ∑

j∈B(k) yj(k)∑
j∈N yj(k)+OT

−
∑

j∈A(k) yj(k)∑
j∈N yj(k)+OT

)
η

 . (30)

Therefore, the Taylor series for si(k + 1) at η = 0 can be
expressed for i ∈ A(k) as

si(k + 1) = si(k)

(
1−

2
∑

j∈B(k) yj(k) +OT∑
j∈N yj(k) +OT

η +O(η2)

)
,

(31)
where limη→0 O(η2)/η2 is a constant. On the other hand, if
i ∈ B(k),

si(k + 1) = si(k)

(
1 +

2
∑

j∈A(k) yj(k) +OT∑
j∈N yj(k) +OT

η +O(η2)

)
.

(32)
We adopt the Lyapunov function in (22) as follows:

V (k + 1) =
1

n

∑
i∈N

(
si(k + 1)

s∗i
− 1

)2

. (33)

Applying (31) and (32) in (33), gives

V (k + 1) =
∑
i∈N

1

n

(
si(k)

s∗i
− 1

)2

−
∑

i∈A(k)

2η

n

si(k)

s∗i

∣∣∣∣si(k)s∗i
− 1

∣∣∣∣
(
2
∑

j∈B(k) yj(k) +OT∑
j∈N yj(k) +OT

)

−
∑

i∈B(k)

2η

n

si(k)

s∗i

∣∣∣∣si(k)s∗i
− 1

∣∣∣∣
(
2
∑

j∈A(k) yj(k) +OT∑
j∈N yj(k) +OT

)
+O(η2)

≤
∑
i∈N

1

n

(
si(k)

s∗i
− 1

)2

−
∑
i∈N

2η

n

si(k)

s∗i

∣∣∣∣si(k)s∗i
− 1

∣∣∣∣
(

OT∑
j∈N yj(k) +OT

)
+O(η2)

≤
∑
i∈N

1

n

(
si(k)

s∗i
− 1

)2
(
1− 2η

OT∑
j∈N yj(k) +OT

)
+O(η2)

= V (k)

(
1− 2η

OT∑
j∈N yj(k) +OT

+O(η2)

)
. (34)

Suppose that TXOP is bounded as

xi(k) ≤ xi,max, for i ∈ N , k = 0, 1, 2, .... (35)

If η is sufficiently small, we can ignore O(η2) in (34). Then,

V (k + 1) ≤ ρV (k) (36)



where
ρ = 1− 2η

OT∑
j∈N βjxj,max +OT

. (37)

Moreover,

αmin∥s− s∗∥2 ≤ V (s) ≤ αmax∥s− s∗∥2 (38)

where

αmin =
1

n(maxi∈N s∗i )
2
, αmax =

1

n(mini∈N s∗i )
2
. (39)

Since ρ < 1, the system is globally geometrically stable at
s = s∗ [9]. If ρ approaches 0, the convergence speed is high.
On the other hand, if ρ is close to 1, the system converges to
the solution slowly. From (36) and (37), the convergence speed
is affected by the parameter η. As η increases, ρ decreases and
the optimal solution can be reached faster.

We define the overall normalized throughput as s =∑
i∈N si. Then, from (9) and (19), for i ∈ N ,

∂s

∂xi
=
∑
j∈N

∂sj
∂xi

=
si
xi

(1−
∑
j∈N

sj) =
si
xi

OT∑
j∈N βjxj +OT

> 0.

(40)
Therefore, the maximum throughput can be achieved when
all users set TXOP to the maximum value, that is, xi =
xi,max, i ∈ N . Now suppose that the sum of all through-
put requirements is greater than the system capacity. Then,
unsatisfied users will increase TXOP to the maximum value.
If all users set TXOP value to the maximum value, then the
throughput requirements cannot be enhanced and guaranteed.
This is an unfeasible case in which the target throughputs are
so high that they cannot be achieved even with the TXOP set
at the maximum.

IV. NUMERICAL RESULTS

In this section, we present simulation results to validate our
algorithm. We consider four flows established over four pairs
of source-destination nodes. We assume that each node has
one active queue and the buffer size is infinite. The channel
capacity is 11 Mbps. The RTS/CTS signalling is applied.
First, we evaluate TXOP settings for throughput requirements
in IEEE 802.11e WLAN with system parameters shown in
Table I. The target throughput for flows is given by the vector
(2.4, 1.8, 1.2, 0.6) Mbps. Since the channel capacity is Ri =
11Mbps, i = 1, 2, 3, 4, the required normalized saturation
throughput is s∗ = (0.22, 0.16, 0.11, 0.05). From (15), the an-
alytical value of TXOP is x∗ = (2.71, 2.03, 1.35, 0.68)msec.

Next, we investigate the proposed distributed algorithm in
(28). The length of measurement interval is set to T = 100
msec. We measure the throughput of each flow i as Si(k) in
[kT, (k + 1)T ). By using Si(k) and xi(k) in [kT, (k + 1)T ),
we adapt the payload size of TXOP for each flow i, xi(k + 1),
at each interval of length T according to (28). Fig. 1 (a)
shows the saturation throughput variation of each flow with
η = 0.01. If T is sufficiently large, the measurement error
becomes small. In Fig. 1 (a), the saturation throughput of
flow i at time t is depicted using the average throughput

TABLE I
SYSTEM PARAMETERS

Common Parameters Values
Payload (MP ) 2068 bytes (initial value)

MAC header (MH ) 272 bits
PHY header length (TP ) 192 µs

Data Rate (RD) 11 Mbps
Control Rate (RC ) 1 Mbps

DATA length (MP +MH)/RD + TP

RTS length 160 bits/RC + TP

CTS length 112 bits/RC + TP

ACK length 112 bits/RC + TP

CWmin 32
CWmax 1024

Retry Limit 7
Propagation Delay 1 µs

SIFS 10 µs
Slot Time 20 µs

DIFS 50 µs

during [0, t), S̄i(k) =
∑k

j=1 Si(j)/k. The initial payload
size of each flow xi(0) is 1.504 msec (= 2068 bytes) [1]
1. Then, the initial saturation throughput of each flow Si(0) is
calculated as 1.4194 Mbps according to (4)–(7). Since there
exists the measurement error including the randomness of the
backoff window of flow i, measured throughput of flow i at
k = 0, S̄i(0) in Fig. 1 (a), may be different from 1.4194
Mbps. We observe that the measured throughput of each flow
i, S̄i(k) converges to the required throughput of each flow
i, S∗

i as time increases. Fig. 1 (b) shows the payload size
of TXOP for each flow with η = 0.01. The target TXOP is
x∗ = (2.71, 2.03, 1.35, 0.68)msec. We observe that the size
of TXOP for each flow i, xi(k) fluctuates about the target size
of TXOP for each flow i, x∗

i , as time increases.

Now we examine the convergence speed according to the
control parameter η. As a convergence criterion, we use the
Lyapunov function V (k) defined in (33). In Fig. 2 (a), V (k)
decreases as k increases, which implies that the measured
throughput approaches the target throughput. As noticed in
the figure, V (k) decreases fast with time as η increases,
that is, the convergence speed for each flow increases as η
increases. However, V (k) does not approach zero although
time increases. This is because η is a fixed parameter inde-
pendent of k. We define the convergence time as kT such
that V (k) = 0.01. If the throughput of every flow i, S̄i(k)
is 0.9S∗

i ≤ S̄i(k) ≤ 1.1S∗
i , then V (k) ≤ 0.01. Note that

ρ defined in (37) is the upperbound of decreasing ratio of
V (k). Accordingly, we define the cutoff time as kT such that
ρk = 1/2. Fig. 2 (b) shows the convergence time and the
cutoff time for the saturation throughput with varying η. We
observe that as η increases, the convergence time and cutoff
time for saturation throughput are reduced.

1In the IEEE 802.11e standard [1], the default value of TXOP limit for
AC VO is set to 3.264 ms or 1.504 ms according to different physical layers.
For AC VI, the default value of TXOP limit is set to 6.016 ms or 3.008 ms
according to different physical layers.
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(a) Saturation throughput for each flow.
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(b) Payload size of TXOP for each flow.

Fig. 1. Throughput and TXOP for each flow with η = 0.01.

V. CONCLUSION

This paper derives a closed-form solution of TXOP settings
and proposes a distributed TXOP adaptation algorithm to sat-
isfy target throughputs for IEEE 802.11e users in a distributed
manner. Each node measures its throughput in a window
and compares it with the target throughput. If the measured
throughput is higher than the target value, the node reduces
its TXOP; otherwise if the measured value is lower than the
target throughput, the node increases its TXOP. We show
that if the optimal solution of setting a TXOP for throughput
requirements exists, then the target throughputs can be reached
in a globally and geometrically stable manner.
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