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Abstract—In this paper, we define a new Joint Sparsity
Model (JSM) and use Principal Component Analysis followed
by Minimum Description Length and Compressive Sensing to
reconstruct spatially and temporally correlated signals in a sensor
network. The proposed model decomposes each sparse signal
into two sparse components. The first component has a common
support across all sensed signals. The second component is an
innovation part that is specific to each sensor and might have a
support that is different from the support of the other innovation
signals. We use the fact that the common component generates
a common subspace that can be found using the principal
component analysis and the minimum description length. We
show that with this general model, we can reconstruct the signal
with smaller samples that are needed by the direct application
of the compressive sensing on each sensor.

I. INTRODUCTION

In compressive sensing [1, 2] a relatively small number

of random incoherent measurements can be used to uniquely

decode a signal that is sparse in a fixed basis. Compressive

sensing has many applications including the sensing of spa-

tially and temporally correlated signals by a set of spatially

distributed sensors. One of the earliest studies that exploits CS

in distributed communication scenarios is the work of Nowak

[3, 4]. It has been shown that the spatial correlation can be

exploited to reduce the total number of samples to reconstruct

the signal. In [5, 6], the signals are assumed to be temporally

and spatially correlated, and three models for joint sparsity

have been proposed, which are represented by JSM-1, JSM-

2 and JSM-3. The three Joint Sparsity Models (JSM) impose

certain structure for the sparsity that might be too restrictive in

many cases. In JSM-1 and JSM-3, it is assumed that the sensed

signals have a common component, which is identical for all

sensors. This common component is assumed to be sparse in

JSM-1 and non-sparse in JSM-3. However the assumption of

having an exact common component across all signals might

not be satisfied in practical applications. JSM-2 assumes that

the support set of all signals are exactly the same. Algorithms

such as SOMP [7], Mixed norm approach [8], M-FOCUSS

[9], M-SBL [10], ReMBo [11] and model-based compressed

sensing [12] have been proposed for reconstructing JSM-2

signals under the concept of Multiple Measurement Vectors

(MMV). However, This model does not allow any variations

among the support sets and the assumption of fixed support

set is not valid if we are interested in the fine features of

the signals. Therefore, despite much improvement obtained

in the JSM models, their restrictive assumptions limit their

application in practice.

In this work, motivated by the signal models proposed in

[5], we propose a more general model called Generalized

Joint Sparsity Model (G-JSM) that can model more practical

cases. We show that JSM-1 and JSM-2 are especial cases

of this model and then propose a sensing and reconstruction

algorithm for G-JSM. We will see that even in this general

model we can still have a better performance compared to

separate compressed sensing. Our reconstruction algorithm is

based on Principal Component Analysis and Minimum De-

scription Length (MDL) and we will show that this algorithm

outperforms SOMP [7] in the G-JSM model. We show that

with this general model, we can reconstruct the signal with

smaller samples that are needed by the direct application of

the compressive sensing on each sensor.

This paper is structured as follows. Our Generalized Joint

Sparsity Model is introduced in Section II. In Section III we

will propose our reconstruction algorithm. We will compare

the performance of our algorithm with that of SOMP and sep-

arate compressed sensing using Orthogonal Matching Pursuit

[13] in Section IV. Section V concludes the paper.

II. GENERALIZED JOINT SPARSITY MODEL

Assume J sensors measuring signals that might be corre-

lated both in space and time. Each sensor node transmits its

data to a fusion center. At the fusion center, the data of all

sensor nodes are decoded jointly and the spatial correlation

is exploited using the Joint Sparsity Models (JSM). In this

scheme measurements are taken independently and there is no

need for collaboration among sensors.

Let xj , j = 1, . . . , J represents the N × 1 signal of the

jth sensor node. We assume that each of the signals consists

of two components. The first component (wj) has exactly the

same support set across all sensors, with the sparsity level

denoted by KC , but maybe with different coefficients and the

second component is called the innovation component (zj)

whose sparsity level is Kj . Therefore, for j = 1, . . . , J ,

xj = wj + zj

‖wj‖0 = KC , ‖zj‖0 = Kj
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Due to the universality of compressive sensing, without loss

of generality, we can assume that the sparsity basis matrix is

the identity matrix, and hence xj , wj and zj are the signals

in the sparse domain.

We call the above model the Generalized Joint Sparsity

Model (G-JSM). The G-JSM model is less restrictive than

JSM-1 [5] since it does not assume that the first components

are exactly the same among all signals. It only assumes that the

support set of the first components are the same. Furthermore,

it is more general than JSM-2 since it assumes that each signal

has an innovation component and thus the support set of the

signals could be different. We will show that even in this

more general model we can achieve perfect reconstruction with

fewer measurements than separate compressed sensing.

A practical situation that could be well modeled by G-JSM

is where several acoustic sensors are listening to a speech

signal. Each signal experiences different attenuation and multi-

path effect which cause different amplitudes and phases.

However, we expect that the location of the excited coefficients

be roughly the same. So we can model the intersection of the

support sets by wj and the variations by zj .

At each sensor node, we use the same M × N random

Gaussian measurement matrix Φ to get the measurement

vector yj = Φxj and transmit the sampled vector to the fusion

center. At the fusion center, we form an N × J matrix X

whose columns are the J signals and an M × J matrix Y

whose columns are the measurements. Thus,

Y = ΦX

Let C ⊂ {1, ..., N} denotes the common sparse support

set of the signals (the support of wj) and ΦC represents the

matrix that is formed by the columns ofΦ indexed by C. Each

measurement vector yj is a linear combination of the columns

of ΦC plus a linear combination of the columns of Φ that

correspond to the sparse support set of zj . If we ignore the

innovation components zj , all of the measurements will lie in

a KC−dimensional subspace which is the span of the columns
of ΦC and is equal to the span of the columns of Y if and

only if J > KC . But if we have innovation components, the

dimension of the span of the columns ofY could be as large as

M . However we can interpret the departure of measurements

from the span of the columns of ΦC as noise and conclude

that in the case of G-JSM, the intrinsic dimensionality of the

span of the columns of Y is still KC .

To estimate the shared support set of the signals, we first

estimate the span of the columns of ΦC as the principal

subspace of the span of the columns of Y using the dominant

eigenvalues of the covariance matrix of Y. The principal

subspace would be the span of the eigenvectors corresponding

to the dominant eigenvalues. A model order selection method

such as the Minimum Description Length (MDL) can be used

to find the size of the shared support set (KC). Afterward, we
project all of the columns of Φ onto the principal subspace

and choose theKC columns that have the minimum projection

error and introduce them as the indices of the shared support

set.

The above discussion motivates the application of principal

component analysis (PCA) [14], which is a method to project

signals onto a lower dimensional subspace given that the

signals lie close to a manifold of lower dimensionality than

that of the original data space.

The sample mean ȳ and the sample covariance matrix S̄ of

the vectors yj , j = 1, . . . , J are given as:

ȳ =
1

J

J
∑

j=1

yj , S̄ =
1

J

J
∑

j=1

(yj − ȳ)(yj − ȳ)T

Now consider the projection of signals onto a

KC−dimensional space whose direction is defined by

orthonormal vectors b1,b2, ...,bKC
. Maximizing the variance

of the projected data is equivalent to maximizing
KC
∑

j=1

bj
T S̄bj

and according to the theory of PCA the maximum is
KC
∑

j=1

λj

which is achieved by the eigenvectors u1, ...,uKC
of the

sample covariance matrix S̄ corresponding to the KC largest

eigenvalues λ1, λ2, ..., λKC
.

III. RECONSTRUCTION OF CORRELATED SIGNALS

Our reconstruction algorithm has two stages. In the first

stage, we estimate the common sparse support set of the first

component wj using PCA followed by MDL. In the second

stage, we subtract the contribution of the estimated common

sparse support set and use Orthogonal Matching Pursuit [13]

to reconstruct the innovation components of the signals.

A. Recovery of the Shared Support Set

As discussed earlier, the common components of the mea-

surement vectors span a subspace with dimensionKC . We can

estimate this subspace by computing the largest eigenvalues

of the sample correlation matrix S̄. A simple thresholding can

detect the largest eigenvalues. However, thresholding is only

useful if the KC th largest eigenvalue is much larger than the

(KC +1)st eigenvalue, which is the case if KC is very small

compared toM . In this paper we use MDL, which is a method

used to find the similarity of the smallest eigenvalue. Although

the equal eigenvalue assumption may not hold in our example,

it is nevertheless a proper approximation. This is in particular

a good approximation when the innovative components of the

signal have support sets that are random across all available

dimensions. We are motivated to use PCA followed by MDL

since even for a perfect model with spherical white noise, the

so-called signal subspace remains unaffected by noise. Hence,

MDL can successfully identify the largest eigenvalues of the

sample covariance matrix.

The proposed algorithm is as follows.

1) Apply PCA on the subspace created by the span of the

columns of Y and find the eigenvalues and corresponding

eigenvectors:

λ1 ≥ λ2 ≥ ... ≥ λM
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2) Use MDL to find KC as the point that minimizes the

MDL cost function:

MDL(i) = − log















M
∏

k=i+1

λk

(

1

M−i

M
∑

k=i+1

λk

)M−i















N

+

1

2
i(2M − i) logN

3) Pick the first KC eigenvalues and form a subspace by the

span of their corresponding eigenvectors.

4) Find the error of the projection of all of the columns of

Φ onto the subspace found in the previous step.

5) The shared support set is the indices of the columns that

have the minimum projection error.

B. Recovery of the Innovations

After finding the indices of the shared support set, we are

essentially dealing with a compressed sensing problem with

partially known support set in which the size of the known

support set is KC and the size of the unknown support set

is Kj . In [15] , a modified-CS algorithm is proposed which

uses convex relaxation to find the sparsest signal outside of

the known part of the support set. However, in many of

applications, ℓ1 minimization approaches are not fast enough

to meet the needs. Here, we use the approach proposed in

[16]. In this algorithm, we can treat wj as the sparse noise

and subtract its contribution from the measurements yj .

Thus we just need to find a matrix P such that when we

multiply both sides of equation (1) by P, the contribution of

wj is removed.

xj =wj + zj

yj =Φ(wj + zj)

Pyj =PΦwj +PΦzj

(1)

We know that Φwj lies in the subspace created by the

span of the columns of ΦC . So by choosing matrix P as

the projection matrix that projects the vectors of RM onto the

orthogonal complement subspace of the span of the columns

of ΦC , we can null out all of the possible vectors of the form

Φwj . More formally if we choose P as

P = I−ΦC(Φ
T
CΦC)

−1ΦT
C

we will have

∀wj , PΦwj =(I−ΦC(Φ
T
CΦC)

−1ΦT
C)Φwj = 0

⇒ Pyj =PΦ(wj + zj) = PΦzj
(2)

It can be shown that PΦ satisfies the RIP condition and

thus we can use standard compressed sensing algorithms such

as Orthogonal Matching Pursuit [13] to reconstruct each zj
separately.

The intuition behind our algorithm is that we are essentially

reducing the sparsity level of the signals by subtracting the

contribution of the common support set, thus we can achieve

better performance compared to separate compressed sensing.

IV. NUMERICAL RESULTS

In this section we investigate the performance of the

proposed algorithm numerically. We run the algorithm on

J ∈ {75, 100} signals of length N = 50 and different

sparsity levels and number of measurements. We then find

the probability of exact reconstruction and average the results

over 1000 simulation runs.

A. Comparison of PCA and SOMP in Reconstructing the

Shared Support Set of the Signals

In this part, we compare the performance of PCA with J ∈
{75, 100} and that of SOMP with J = 100, which is proposed
in [7] in terms of finding the shared support set of signals

with sparsity level Kj = 5, KC = 5. One obvious advantage
of PCA is the ability to find KC using statistical techniques

such as MDL, while in SOMP we would need to know KC in

advance to determine the number of iterations. Moreover, as

Figure 1 indicates, PCA outperforms SOMP in terms of the

probability of exact reconstruction of the shared support set

in G-JSM. This is mainly due to the fact that SOMP is tailor-

made for the case that support set of the signals are exactly

the same, while PCA considers the existence of noise and tries

to minimize it.

B. Comparison of Joint Reconstruction with Separate Recon-

struction of the Signals

In this part, we use J ∈ {75, 100} signals with sparsity

level Kj = 3, KC = 3 to compare the performance of

the proposed algorithm with separate compressed sensing in

terms of probability of exact reconstruction of the signals. This

comparison is shown in Figure 2. We first use PCA to find

the common sparse support, subtract its contribution from the

measurements and then use OMP to reconstruct the innovation

components. The second plot corresponds to applying OMP

directly on each signal and computing the probability of exact

reconstruction. As the Figure illustrates, we can exploit the

inter-sensor correlation and substantially decrease the number

of measurements.

C. Performance of PCA Followed by MDL in an Imperfect

G-JSM

Up to now, we have assumed that all signals have the shared

support set (wj), However in practical situations, it is likely

that a few number of sensors do not share the common support

set. Here, we investigate the performance of applying PCA

followed by MDL on the measurements in the scenario where

some of the signals are not obeying the G-JSM model. Assume

that we have J = 100 signals with N = 50, M = 25 and α

percent of them share a common support set with KC = 3,
Kj = 3 and the other signals do not share the common support
set and the sparsity level of them is KC + Kj = 6. Figure
3 shows the probability of reconstruction of the common

support set versus α using MDL and PCA. As this Figure

indicates, even in the case where %10 of the signals do not

obey the G-JSM model, our reconstruction algorithm achieves

perfect reconstruction of the shared support set. In this case,
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Fig. 1. Reconstruction of the common support set in G-JSM using PCA and
SOMP for J ∈ {75, 100}, N = 50, KC = 5 and Kj = 5.
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Fig. 2. Reconstruction of signals in G-JSM using PCA-OMP and Separate
OMP for J ∈ {75, 100}, N = 50, KC = 3 and Kj = 3.

subtracting the contribution of the common support set does

not affect %10 of the signals but improves the probability of

reconstruction of %90 of the signals as it does in a perfect

G-JSM model. Thus we can conclude that the performance

of the whole algorithm in this scenario is the same as G-JSM

model for %90 percent of the signals and the same as separate
CS for %10 of them.

V. CONCLUSION

In this work, we proposed the G-JSM model which is more

general than the joint sparsity models in the literature and

is suitable for practical applications. We applied PCA on the

measurements to determine the common component of the

signals and then used MDL to find the sparsity level of the

common component. After finding the common component,

we subtracted the contribution of it from the measurements and

used standard compressive sensing on each individual signal

to find the innovation components. We further showed that our

proposed sampling and reconstruction algorithm outperforms

the conventional SOMP algorithm for the reconstruction of

the common support set of the signals in this particular joint

sparsity model (G-JSM). Our simulation results show that even

in this general model for sensor networks, we can achieve a
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Fig. 3. Reconstruction of the common support set in an imperfect G-JSM
model for J = 100, N = 50, M = 25, KC = 3 and Kj = 3.

much better performance than separate compressed sensing

reconstruction.
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