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Abstract— This paper introduces a novel technique to maxi-
mize the lifetime of fault tolerant sensor networks. The proposed
architecture uses multipath diversity in the network layer and
erasure codes. We use a distributed sink where information arrives
at the sink via multiple proxy nodes, called “prongs” in this
paper. The sender node uses erasure coding and splits each
packet into multiple fragments and transmits the fragments over
multiple parallel paths. The erasure coding allows the sink to
reconstruct the original packet even if some of the fragments
are lost. Occasionally, the sink broadcasts a query to awaken the
sensors and to allow them to collect information about probability
of packet loss and energy consumption in the network. The
awakened sensors then use the collected information to distribute
their data among different prongs so as to maximize the network
lifetime, while keeping reliability in the network above a certain
level.

Index Terms— Sensor networks, system design, fault tolerance,
mathematical programming/optimization

I. INTRODUCTION

Sensor networks are wireless ad hoc networks used for
monitoring and information gathering. They are used to ob-
serve natural phenomena such as seismological and weather
conditions, collect data in battlefields, and monitor traffic in
urban areas. Sensor networks consist of many small, self-
organized nodes that form an ad hoc network that reports to
a common sink at the edge of the network.

In a typical sensor network, the sink sends a query which
is disseminated throughout the sensor network with flooding.
The query requests a subset of nodes to send their collected
information. The nodes, which have the requested information,
send it to the sink by forming a tree with the root at the
receiver. However, collection of information with a single sink
may not be appropriate for sensor networks. For a single
sink, the top level of the tree contains relatively few nodes,
compared to the total number of nodes. So, most of the energy
is consumed by the few nodes close to the sink. This makes
the nodes closest to the sink prone to energy drainage.

In this paper, we propose a sensor network architecture that
maximizes the network lifetime, while increasing the fault
tolerance in the network. Our design assumes that the sink
is distributed throughout the sensor network. The sink uses a
number of receivers—called “prongs”—that connect to it with
reliable and high bandwidth links. We assume that if a packet
arrives at a prong, it will be delivered intact to the sink. This
creates a hierarchical architecture where each sensor can be

connected to a prong directly or with multiple hops through
other sensor nodes. This architecture distributes the load on the
last hop among a larger set of nodes than with a centralized
sink design. Therefore, it removes the possibility for a single
point of failure.

In order to increase the reliability of transmission, each node
in the network (a sensor) sends packets over multiple disjoint
paths1. One way to increase reliability is to send copies of
the same packet over the multiple paths. However, this would
be very inefficient. Instead, the reliability can be increased
efficiently with Forward Error Correction (FEC). The source
splits each packet into many fragments and generates parity
fragments with an erasure code [1]. The fragments are then
distributed over the paths and simultaneously sent to the sink.
The sink can reconstruct the packet if it receives a portion of
the fragments which is of the same size as the original packet.
Using erasure codes with multiple paths to increase reliability
was shown to be effective previously in [2], [3].

The distributed sink and multiple paths also allow us to use
load-balancing, which increases the network lifetime. Load-
balancing is a natural consequence of using multiple paths.
However, in this paper we show that it is possible to distribute
the fragments on the paths so as to maximize the network
lifetime, while the reliability is kept above a certain threshold.
We define the network lifetime as the time after which at least
one node will lose all of its energy [4]. This definition of
network lifetime is important, since losing a node might have
a serious impact on the network connectivity. Usually, this
means that some of the paths need to be rerouted and that
other nodes need to pick up the traffic from the node that is
out of service. The other definition of the network lifetime is
the time for the last node to consume all its energy. In this
case, network lifetime can be maximized by minimizing the
total energy consumption of each sensor, while keeping the
reliability above a certain level [3].

II. NETWORK DESIGN FOR FAULT TOLERANT SENSOR

NETWORKS

In this section, we show how the proposed scheme can be
implemented in practice. There are two questions raised by
our design. First, how does the network layer find multiple

1Here, we use multipaths in the network layer, as opposed to a scheme that
may use multipaths in the physical layer.
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Fig. 1. Our sensor network design. The sink sends queries by flooding the
network. The query carries information about the conditions on every hop in
the network. This improves load-balancing and increases reliability.

disjoint paths between the sensors and the sink? And second,
how do we optimize the use of these paths? We answer the
first question in the rest of this section. The second question
is the subject of the subsequent sections.

We position our design within the context of existing sensor
networks. We assume that our network operates with a system
similar to TinyDB [5]. In our design, the sink sends queries
from all prongs at the same time. Figure 1 illustrates an
example for the query/route discovery operation. The sink
floods the network by sending the query through each of the
prongs. The query records the path it takes and the conditions
on each hop of the path. If a query travels in a loop, it
will be discarded. The reported states are the probability of
successful fragment transmission (qi) and energy (Ei,M

(e)
i )

parameters on each hop. The information about the reliability
and energy on each hop is used in the maximization of the
network lifetime. We give more details on how qi, Ei, and
M

(e)
i are collected and packed into three small query fields in

Section III.
Each sensor node records its information in the query and

forwards the query to the next set of nodes. The sensor nodes
also keep track of each path that arrives at a prong. If a node
needs to send back a reply to the query, it selects a set of arc-
disjoint2 paths to the prongs on which it can send the reply.
For example, in Figure 1, node 3 can use path 2 or 3 to the
prong on the right and path 1 to the prong on the left. In this
case, node 3 should select paths 1 and 3.

A sensor node may select the paths with the shortest hop
count, or with the highest reliability. The shortest path cost
may not be the best metric for sensor networks. Indeed, [6]
shows that the shortest path cost selects the nodes which use
a few long hops, and therefore it decreases reliability. The
selection methods which take reliability into account perform
much better. In this paper, we do not present a path selection
algorithm. The contribution of this paper is to maximize the
network lifetime once the paths have been identified.

We note that, compared to a packet size used in regular
networks, the size of the packets sent by the sensors may
be quite small. However, our scheme can still work on the
nodes which aggregate the data from other sensor nodes. The

2Two arc-disjoint paths have no vertices or edges in common.

aggregation is normally used to eliminate the redundant data
reported by the nodes with coding techniques [7]. Our scheme
amplifies the benefits of aggregation by increasing reliability.
The aggregating nodes have more important data to send than
the regular nodes since they are responsible for sending data
from multiple child nodes. Our scheme allows the aggregating
nodes to increase their reliability, making it less likely to lose
their data.

III. A MODEL FOR FAULT TOLERANT SENSOR NETWORKS

We assume that a sensor node generates a packet of size bM
bits every DM seconds. The packet is split into M fragments,
each with size b, and K additional parity fragments with size
b are generated using a linear erasure code [1]. The source
node then distributes the fragments over n parallel paths, by
allocating xi, i = 1, . . . , n, fragments on path i. Since the
total number of fragments is M + K we have

∑n
i=1 xi =

xT 1 = M + K. We denote the allocation vector with x =
[x1, x2, .., xn]T and use 1 to denote a vector of all 1s.

The destination node needs to receive a total of M frag-
ments in order to reconstruct the packet. We use random
variables Zi to indicate the number of fragments received on
path i in DM seconds. So, the probability that the packet can
be reconstructed is given by:

Psucc = Pr

[
n∑

i=1

Zi > M

]
. (1)

Psucc is the measure of reliability in the network. Psucc is
a function of x the allocation of fragments on each path,
q = [q1, . . . , qn] the vector indicating the probability that a
fragment will be successfully transmitted on each path, and
K the number of parity fragments. We will use Psucc and
Psucc(x, q,K) interchangeably in the rest of the paper.

If we approximate the loss of consecutive fragments on each
path to be independent and identical to each other, we can
approximate Psucc(x, q,K) with:

Psucc ≥ Q(x, q,K) (2)

where

Q(x, q,K) =
K∑

j=0

e−λ(x)[λ(x)]j

j!
and λ(x) = −

n∑
i=1

qi ln xi.

(3)
We show that Psucc can be approximated with (2) in [2] by
using the results of [8]. It was also shown in [8] that inequality
(2) is single sided, that is Psucc is always greater than Q. This
allows us to replace Psucc in our optimizations with Q(x, q,K)
which is easier to analyze.

We measure the effectiveness of the scheme, in terms of the
overhead introduced by the erasure code, as:

η =
M

M + K
(4)

where η is the efficiency that we can achieve. The scheme is
more effective as η approaches 1. We will use a lower bound



on η in the maximization of network lifetime to make sure
that efficiency always stays above a certain threshold.

We assume that each sensor delivers information to the sink
at the same rate, given by:

R =
n∑

i=1

Ri =
b

DM
(M + K), (5)

where Ri = bxi/DM is the rate offered on the ith path.
The sink sends a query to the sensor every DM seconds in

order to collect the fragment loss information on each path
between the two nodes. Given the probability that a fragment
transmission is successful on a link, we can calculate the
probability that a fragment is successful on the path as follows:

qi =
ni−1∏
k=0

q
(k)
i (6)

where q
(k)
i is the probability that a fragment is transmitted

successfully on the kth link on path i, and ni is the number
of nodes on that path. We assume that each sensor node is
keeping track of q

(k)
i using a passive monitoring technique

similar to [9].
We assume that every node in the network has the ability

to measure the amount of available energy3 on the node E
(k)
i ,

and the average amount of energy it uses to transmit a bit of
information e

(k)
i , where we index the node as “node k on path

i”. To simplify the optimization, we assume that e
(k)
i and E

(k)
i

do not change during the packet transmission.
A query sent by a prong to the network can also inform the

sensors about the per-bit energy required to transfer a packet
between each sensor and that prong, ei. The per-bit energy
consumption on a path can be determined by adding up the
energy required to transfer a bit at every node on the path:

ei =
ni−1∑
k=0

e
(k)
i (7)

where ni is the number of nodes on path i. The vector of per-
bit energy consumption is given by Eb = [e1, e2, . . . , en]T .
So, the total amount of energy used to transmit the M + K
fragments is given by:

ETotal(x, Eb) = bxT Eb. (8)

We also have access to the maximum number of fragments
that can be transmitted on each path before the energy on the
path runs out, M

(e)
i :

M
(e)
i = min

1≤k≤ni

{
E

(k)
i

be
(k)
i

}
. (9)

M
(e)
i is calculated from the information in the query at each

node k, using

M
(e)
i ← min

{
M

(e)
i ,

E
(k)
i

be
(k)
i

}
. (10)

3The available energy is a coarse estimate of the energy left after all the
other sensors sharing the node transmit their packets. The accuracy of E

(k)
i

depends on how often the sink sends queries to the nodes.

We denote with Me the vector of maximum number of
fragments we can transmit on each path, i.e. Me =
[M (e)

1 ,M
(e)
2 , ..,M

(e)
n ]T .

IV. MAXIMIZATION OF NETWORK LIFETIME

In this section, we show how to maximize the network
lifetime, while the network reliability, efficiency and energy
consumption are bounded. We defined network lifetime earlier
as the time until the first node loses all of its energy. We now
show how the network lifetime can be calculated using the
information collected by the source node, as shown in Sect. III.
The lifetime of node k on path i is given by the amount of
time it takes the source to consume all of the energy it has on
that node:

T
(k)
i =

1
Ri

E
(k)
i

e
(k)
i

=
DM

bxi

E
(k)
i

e
(k)
i

. (11)

The lifetime of each path can be found from the energy
information carried in the query:

Ti = min
1≤k≤ni

{T (k)
i } = min

1≤k≤ni

{
DM

bxi

E
(k)
i

e
(k)
i

}
=

DM

xi
M

(e)
i

(12)

where xi is the number of fragments transmitted on the ith
path and M

(e)
i is defined in (9) as the maximum number of

fragments that can be transmitted on that path due to energy
constraints. Using this definition of network lifetime we define
the optimization of network lifetime as:

Maximize:
x,K

Tnet(x) = min
1≤i≤n

{
DMM

(e)
i

xi

}
(13a)

Subject to: Q(x, q,K) ≥ ε (13b)

η(x,K) ≥ δ (13c)

bxT Eb ≤ Emax (13d)

0 � x �Me (13e)

xT 1−K = M (13f)

where � is pairwise vector comparison.
The first constraint, (13b) is to ensure the reliability is kept

above a certain level. Increase in the reliability means that
there will be less need for retransmissions in the network,
thus decreasing total energy use. We use (2) to evaluate
the reliability in the constraint. The second constraint, (13c),
bounds the number of parity fragments. The third constraint,
(13d), ensures that the total transmission energy is limited.
There are two reasons to add Emax as the maximum amount
of energy. First, the total energy consumption will depend on
the number of parity fragments used to increase the reliability,
as well as, the number of actual data fragments. Both of these
factors affect energy consumption in the network. Second,
even if the time until the first sensor runs out of energy is
maximized, the time at which the last node runs out of power
may not be maximized. So, it is possible that the optimal
network load may consume energy more than the network load
that minimizes total energy consumption. This would decrease



the time until all the nodes run out of energy, decreasing
the operational time of the network. The sensor uses the
energy restriction to prevent this from happening. The fourth
constraint (13e) bounds the total number of fragments that can
be transmitted on each path. The fifth constraint, (13f), ensures
that total number of allocated fragments is M + K.

The optimization without constraints (13b)-(13e) is an ap-
proximation of the optimization in [4]. The optimization (13)
does not consider all the possible paths between the sensor
and the prongs. The sensor node uses the paths, which are
arc-disjoint, in order to maximize the diversity in the network
and increase reliability. However, the optimization in [4] is
ideal and indeed even [4] presents an approximation of that
optimization. Our formulation enhances the general problem of
maximizing the network lifetime by adding reliability bounds.

The problem is solved by first replacing the constraint on
the efficiency with:

0 ≤ K ≤ Kmax (14)

where Kmax = 1−δ
δ M .

Second, we can transform the problem into a linear pro-
gramming problem using the fact that Q(x, q,K) is a mono-
tonically decreasing function of λ(x) for a fixed K [2]. So,
for a given K there exists αε(K) such that:

λ(x) ≤ αε(K)↔ Q(x, q,K) ≥ ε→ Psucc ≥ ε. (15)

We have show in [2] that αε(K) is almost linear for values
of K > 5. So, we approximate αε(K) as a straight line for a
given ε:

αε(K) ≈ s(ε)K + c(ε). (16)

This allows us to simplify the reliability bound and replace
(13b) with:

−xT ln(q)− s(ε)K ≤ c(ε) (17)

The slope s(ε) and constant c(ε) can be obtained with any
number of techniques and stored on the nodes prior to field
deployment of the sensors. In our simulations, we have used
the least-square method.

Third, we convert the objective function so that (13) be-
comes a minimization problem with a linear objective func-
tion. We note that :

T cvx
net (x) ∆= max

1≤i≤n

{
xi

DMM
(e)
i

}
(18)

is a linear function with the same optimum point as (13a) since
the variables xi are positive. In our simulation we have also
converted the optimization into a standard linear program by
introducing a new variable t which becomes the new objective
function and by adding n new constraints xi/M

(e)
i ≤ t to the

original problem (13).

V. SIMULATION RESULTS

In this section, we present the simulation results. We use a
network with four prongs and a single sink for our simulations.
We study our method using two examples.
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TABLE I

THE LOG-ODD TRANSFORM

log10

“
ε

1−ε

”
ε log10

“
ε

1−ε

”
ε

0.0 0.5 3.0 0.999
1.0 0.909 4.0 0.9999
2.0 0.990 5.0 0.99999

In the first example, the network consists of nine nodes
forming a grid.We assume that the sink sends a query at regular
intervals of DM = 1 sec to each of the nodes; the nodes
answer by sending their data as described in Sect. II and
Sect. III. The query carries information about the reliability
(qi) and the energy (Ei,M

(e)
i ) as explained in Sect. III.

We have generated 100 query reponses in which all links
had a fragment success rate randomly distributed in the interval
[0.85, 0.95] with the mean of 0.9. This makes the average
path reliability 0.81 for two hop paths and 0.73 for three hop
paths. Each sensor has enough energy to transmit 100, 000
fragments and each sensor transmits packets of size M = 100
fragments. Before transmitting a query response the sensor
uses optimization (13) to calculate the number of fragments
K required to achieve the reliability threshold ε and the
distribution of fragments on each path. We ran this simulation
with a different number of active prongs.

Figure 2 shows the effect of minimum reliability ε on
network lifetime. The vertical axis is plotted in the “log-
odd” format, where instead of ε we show log[ε/(1− ε)]. This
allows us to see differences between values of ε that are very
close to 1. We give some representative values for the log-
odd transformation in Table I. The horizontal axis shows the
time at which the first node loses all of its energy, or network
lifetime. Figure 2 shows that the network lifetime increases as
we increase the number of prongs. The network lifetime also
decreases as reliability increases because the sensors have to
transmit more parity fragments to increase the reliability.

We show why the network lifetime increases with the
number of prongs in Figure 3. The figure shows the energy
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Fig. 3. The left-over energy over time. We show the energy left on each
of the nodes as time progresses. (a) The scenario with one prong. (b) The
scenario with four prongs.

level at each node as a function of time. Figure 3(a) shows
the energy levels of the nodes when only one prong is turned
on. Figure 3(b) shows the energy levels when all four prongs
are turned on. We observe that in the single prong scenario
the node which spends the most energy is the node closest to
the sink, node 8 in our simulation. In the four prong scenario,
the available energy is distributed roughly the same on all of
the nodes increasing the network lifetime.

In the second example, we simulate a network with 10, 000
sensors randomly displaced in a rectangular area. We assume
that every sensor can connect to four prongs located at the edge
of the network. We simulate our scenario with four different
values for the average path success rate q̄ = 0.6, 0.7, 0.8, 0.9.
The energy consumption along each path is a random number
with the mean 0.5.

Figure 4 illustrates the decrease of the network lifetime as
a function of the minimum reliability. The top horizontal line
with the value 0 corresponds to the lifetime when there is
no erasure coding used in the system; this approximates [4].
The plots show the decrease of the network lifetime when
K increases to achieve the reliability bound. In Fig. 4, we
can argue that the lifetime is not substantially affected by
the increased level of reliability. For example, even when
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Fig. 4. The decrease in network lifetime versus network reliability. The
increase in ε has almost no significant impact on the network lifetime.

the average network reliability is q̄ = 0.6 the lifetime does
not decrease more than 2.5%, for the minimum reliability of
ε = 0.9999. This is due to the load balancing capability of
our scheme.

VI. CONCLUSION

We have proposed a new architecture for sensor networks
that uses a sink with many prongs to increase load-balancing
in the network. Load-balancing is achieved by using multiple
paths to transmit information from each source to the sink.
Each sensor also encodes the packets into fragments with an
FEC code so that reliability in the network is increased. The
distribution of fragments is calculated locally on every sensor,
with the optimization we solve in the paper. The simulation
results show that the network lifetime is not significantly
affected when the reliability of the network is substantially
increased and that the design with multiple prongs outperforms
a single prong design.
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