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Distributed Source Localization Using ESPRIT
Algorithm

Shahram Shahbazpanahi, Shahrokh Valaee, Member, IEEE, and Mohammad Hasan Bastani

Abstract—A new algorithm based on ESPRIT is proposed for
the estimation of central angle and angular extension of distributed
sources. The central angles are estimated using TLS-ESPRIT for
both incoherently distributed (ID) and coherently distributed (CD)
sources. For CD sources, the extension width is estimated by con-
structing a one-dimensional (1-D) distributed source parameter es-
timator (DSPE) spectrum for each source. For ID sources, the ex-
tension widths are estimated using the central moments of the dis-
tribution. The algorithm can be used for sources with different an-
gular distributions.

Index Terms—Array signal processing, coherently distributed
source, incoherently distributed source, parametric localization.

I. INTRODUCTION

SEVERAL applications of array processing—such as
operating antenna arrays at base stations for mobile com-

munications, passive sonar, and underwater acoustics—require
a spatially distributed source modeling: a modeling to which
much attention has been recently paid in the literature of array
processing [1]–[3]. Depending on the nature of reflection and
scattering in the above examples, signal components arriving
from different directions exhibit varying degrees of correlation,
ranging from totally incorrelated (incoherent) to fully corre-
lated (coherent) cases. Distributed source modeling suffers
from a deficiency, namely, seizing the whole observation
space by signal components and nullifying the noise subspace.
This begets a breakdown of the techniques that exploit the
orthogonality of signal and noise subspaces, such as MUSIC
[4] and its variants.

Several distributed-source localization techniques have been
proposed in the recent literature. The first attempt for general-
ization of the signal and noise subspace concepts to distributed
sources has been done in [1]. Based on these concepts, an algo-
rithm called the distributed source parameter estimator (DSPE)
has been proposed, which is the generalization of MUSIC to
distributed sources and can be applied to both coherently dis-
tributed (CD) and incoherently distributed (ID) sources. Since
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DSPE is essentially a MUSIC-type algorithm, it suffers from
intrinsic disadvantages of MUSIC such as array manifold mea-
surements and calibration.

In [5], a maximum likelihood (ML) algorithm has been pro-
posed for localization of Gaussian distributed sources. The like-
lihood function is jointly maximized for all parameters of the
Gaussian model. The computational complexity of this method
grows exponentially with the number of sources.

Similar to DSPE, an algorithm called DISPARE has been
presented for localization of ID sources [6]. In DISPARE, the
covariance matrix of the array is approximated by a low-rank
model, and then, a spatial spectrum is constructed with peaks
associated with spatial parameters of the ID sources.

In [7], an algorithm has been presented for localization of
a single uniformly incoherently distributed (UID) source. In
this algorithm, the extension width of the source is estimated
from the eigenvalues of the correlation matrix. Estimation of
the source central angle is based on the properties of eigenvec-
tors of the correlation matrix. It has been shown that the eigen-
vectors of the correlation matrix are modulated discrete prolate
spheroidal sequences (DPSSs) [8]. In [9], the central angle of
the UID source is estimated by TLS-ESPRIT [10], and then, the
extension width is estimated using the algorithm presented in
[7].

In [2], a Taylor series expansion has been used to derive an ap-
proximate model called the generalized array manifold (GAM).
GAM is based on a linear combination of array location vector
and its derivatives. Using GAM, an algorithm is presented to es-
timate the sourcespatial signatureby exploiting a Vandermonde
structure. The algorithm can only be applied to uniform linear
arrays (ULAs) and uniform CD sources.

In [11] and [12], a distributed source is approximated by
two point sources. Then, the directions-of-arrival (DOAs) of the
point sources are estimated using MUSIC or ROOT-MUSIC.
The angular spread is obtained by using a lookup table that de-
scribes the relation between the distance of the two estimated
DOAs and the angular spread. In [13], a subspace fitting method
has also been proposed for estimating the angular parameters of
distributed sources.

In this paper, we propose an algorithm for parameter esti-
mation of distributed sources based on TLS-ESPRIT. For CD
sources, using a GAM modeling, we show that a rotational
eigenstructure exists approximately for two identical closely
spaced subarrays. Thus, the TLS-ESPRIT algorithm is used
to estimate the central angles of sources. Extension widths
are estimated by constructing a one-dimensional (1-D) DSPE
spectrum for each source. In this algorithm, the DSPE spectrum
is computed for each source separately. Thus, sources might
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have different distributions. Since the range of extension width
is much smaller than the range of central angle, computing the
1-D DSPE spectrum for each source has a small computational
cost.

For ID sources, we give an approximation to the covariance
matrix by using the GAM. Using a first-order Taylor series
expansion, we show that each ID source approximately intro-
duces a two-dimensional (2-D) subspace in the observation
space. However, higher order Taylor series might be used to
improve the accuracy of approximation. Again, we show that
the rotational invariant structure exists for two identical closely
spaced subarrays. Hence, TLS-ESPRIT can be used to estimate
DOAs—a pair of DOAs for each source. The covariance matrix
is formulated by the location vectors and their derivatives as
well as the central moments of the distributions. We will show
that the distance of the two estimated DOAs is related to the
source angular spread.

II. DATA MODEL

Consider an array of sensors ( doublets). Assume that the
two sensors in each doublet are identical and have the same gain,
phase, and sensitivity pattern and are separated by a constant
displacement vector. The two induced subarrays are denoted
by and . Furthermore, it is assumed thatnarrowband dis-
tributed sources with the same central frequencyare present
in the environment of these subarrays. The complex envelope of
the output of th sensor in subarray is

(1)

where
response of theth sensor to a unit energy
source emitting at direction with respect to
the orthogonal direction to the displacement
vector ;
angular density of the th source;

th source location parameter vector;
additive zero-mean noise at theth sensor un-
correlated from the signals.

Examples of the parameter vector are the two limits of DOA
for uniform spatial extension or the angle of maximum power
and standard deviation for a Gaussian distribution. Note that
spatial overlap of signals is allowed.

The complex envelope of the output ofth sensor in subarray
is

(2)

where is an additive zero-mean noise at theth sensor of
subarray uncorrelated from the signals, and is the prop-
agation delay between the identical elements of a doublet in two
subarrays for a signal arriving at direction. Throughout, we as-
sume that in (1) and (2) is measured with respect to a direction
orthogonal to . Then, we have

(3)

where is the wave propagation speed.
In vector representation, (1) and (2) can be written as

(4)

(5)

where
and output vectors of the subarraysand , respec-

tively;
and corresponding noise vectors;

subarray location vector for a source at direc-
tion .

For the subarray , the covariance matrix can be written as

(6)

where superscript represents Hermitian transposition, is
the noise correlation matrix, and

(7)

is called theangular cross-correlation kernel. In (7), de-
notes statistical expectation, andrepresents complex conjuga-
tion.

A. Coherently Distributed Sources

A source is called coherently distributed (CD) if the received
signal components of the source at different angles are delayed
and scaled replicas of the same signal. In such a case, the angular
signal density can be represented by

(8)

where is a random variable, and , which is thede-
terministic angular signal density, is a complex-valued deter-
ministic function of . Note that a CD signal is decomposable
into random and deterministic components. The deterministic
component characterizes the spatial distribution of the
source, and the random componentreflects the temporal be-
havior of the source. The indexin has been used to
emphasize different deterministic angular signal densities.

It is assumed that belongs to a set of parametric
functions characterized by two parameters:central angleand
extension width. The central angle is the mass center of the dis-
tribution defined as

(9)

For the extension width, several definitions might be pro-
posed. For instance, for a source uniformly distributed over the
interval , the extension width can be defined
as the angular extent , and for a Gaussian distributed source,
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the extension with can be defined as the standard deviation of
the distribution.

From (8), the angular cross-correlation kernel for a CD signal
is given by

(10)

Let be defined as

(11)

Then, (6) can be written as

(12)

where

(13)

and

(14)

In addition, (4) can be written as

(15)

where . Equation (12) shows that
the signal subspace [defined as the column span of ] is
spanned by the generalized eigenvectors of the matrix pencil

corresponding to the largest generalized eigen-
values [4].

Note that if the noise is spatially white, i.e., ,
where is the unknown noise power, then the signal subspace
is spanned by the eigenvectors of corresponding to the

largest eigenvalues. For simplicity, we assume that the
noise is spatially white—nonwhite noise can be handled by
prewhitening.

Similarly, it can be shown that

(16)

and

(17)

where

(18)

and

(19)

B. Incoherently Distributed Sources

A source is said to be ID if the signal rays arriving from dif-
ferent directions are uncorrelated, i.e.,

(20)

where is the th source power, and is the normal-
izedangular power densityof the source satisfying

(21)

The index has been used to emphasize that it is not necessary
for the sources to have identical angular power densities. Similar
to the CD case, the central angle is defined as the mass center of

, and the extension width is defined as the parameter
determining the angular extent.

In this case, we assume that different ID sources are uncorre-
lated. Using this assumption for ID sources, we get

(22)

III. DSPE ALGORITHM

In [1], the DSPE algorithm was proposed in which the signal
and noise subspace concept was generalized to distributed
sources. DSPE is essentially a MUSIC-type algorithm and,
hence, needs array manifold measurement and calibration.
In this section, we review DSPE for both CD and ID source
models.

A. CD Source Localizer

In the case of CD sources, columns of and the eigen-
vectors of corresponding to the largest eigenvalues of

span the same subspace called the signal subspace. The
DSPE spectrum for CD sources is defined as

(23)

where is a matrix with columns representing the
eigenvectors of corresponding to the smallest eigen-
values. For an -dimensional parameter vector, the DSPE
spectrum is a functional defined over an-dimensional space.
The parameter vector is estimated by locating the prominent
peaks of , i.e.,

(24)

Essentially, the DSPE algorithm is a MUSIC-type algorithm
and requires calibration—for each, must be measured
and stored. Besides, in constructing the DSPE spectrum, it is
assumed that the deterministic angular signal density
is identical for all sources. This may not be true in practice.
Different sources might have different angular densities. The
proposed technique in this paper handles the cases with different
angular densities.

B. ID Source Localizer

For ID sources, the noise subspace is generally degenerate
(equal to the zero vector), and the whole observation space is
occupied by signal components. In other words, the noise-free
covariance matrix is full rank. However, for several cases of
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practical interest, most of the energy of the signal is concen-
trated in a few eigenvalues of the array covariance matrix. The
number of these eigenvalues is referred to as theeffectivedimen-
sion of signal subspace and is shown by. Let be a matrix
whose columns are the eigenvectors of covariance matrix corre-
sponding to the smallest eigenvalues. The DSPE spec-
trum for ID source localization is defined as [1]

tr
(25)

where

(26)

and tr stands for the trace of a matrix. Note that in con-
structing DSPE spectrum, it is assumed that the angular power
densities of ID sources belong to the same class of positive def-
inite functions parameterized by a parameter vector.

IV. TLS-ESPRIT LOCALIZER

In this section, we propose a distributed source parameter
estimator based on TLS-ESPRIT. The algorithm uses the Taylor
series approximation of array response vector for different
values of DOA. We show that for both ID and CD sources,
the array covariance matrix can be formulated by the central
moments of source distribution.

A. Coherent Sources

We derive an approximately invariant structure between the
two subspaces spanned by and for .
Remember that is the propagation delay between the sig-
nals arriving at two sensors in each doublet for an emitting
source at direction. Using (3), the exponential term in is

(27)

where is the wavelength at frequency . We assume
—this is an essential assumption in our approximation.
Now, let be the central angle of the distribution .

In addition, assume that is a normalized symmetric
function around

(28)

and

(29)

Using the Taylor series expansion of around , we
can write (11) as

(30)

where is the th derivative of at . Then,
we have

(31)

where , which is the th moment of around ,
is defined as

(32)

For symmetric , vanishes for odd values of,
resulting in

(33)

Similarly, can be expressed as

(34)
Now, let . Then

(35)

where the superscript denotes first-order derivative
with respect to . Note that for , the derivative

is negligible. Hence

(36)

Furthermore, we have

(37)

and similarly

(38)

Then, (34) can approximately be written as

(39)

Hence, we have

(40)

and in matrix form

(41)

where

diag

(42)
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Equation (41) shows that the bases of the two signal sub-
spaces are approximately related by a rotation matrix.
This can be used to estimate the central angles of sources.
ESPRIT-type algorithms such as LS-ESPRIT or TLS-ESPRIT
might be applied to estimate the central angle of source distri-
bution. Since (41) is an approximation, TLS-ESPRIT might
beget a better performance.

Once the central angles are estimated, one can estimate the
extension widths by constructing the DSPE spectrum for each
source separately. In computing the DSPE spectrum, we need to
compute for different values of extension width.

Since the DSPE spectrum is computed separately for each
source in our algorithm, sources might have different determin-
istic angular densities. This is not possible in the 2-D DSPE
spectrum given in [1].

B. Incoherent Sources

1) Single ID Source:We assume that a single ID source ex-
ists in the environment of the array. This is just for simplicity,
and we will shortly extend our derivation to a multisource sce-
nario.

Let the mass center of be . The first-order Taylor
series expansion of around is

(43)

Thus, (4) can be written as

(44)
Define and as

(45)

(46)

Then, (44) can be written as

(47)

The array covariance matrix of the subarrayis

(48)

where is the unknown noise power, and is the noise co-
variance matrix, which is assumed to be known. For simplicity,
we assume that the noise is spatially white, i.e., .

Lemma 1: For ID sources

(49)

(50)

(51)

where is the second central moment of defined as

(52)

Proof: See the Appendix.
Using Lemma 1, (48) can be written as

(53)

where

(54)

diag (55)

Similarly, the output of subarray can be approximated as

(56)

where . Using (3), we have

(57)

Assume the condition for which . Then, the second
term in (57) is negligible, and we have

(58)

Therefore, (56) can be written as

(59)

2) Multisource Scenario:Now, consider uncorrelated nar-
rowband ID sources. Assume that, , , and

are, respectively, the parameter vector, the angular signal
density, the angular power density, and the central angle of the
angular power density of theth source. It is also assumed that
the sources are uncorrelated. Then, (47) can be modified as

(60)

with

(61)

(62)

where

(63)

(64)

for . Note that

(65)

(66)

(67)
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where is the power of theth signal, and is the second
central moment of the angular power density of theth source.
Since the sources are uncorrelated, we have

(68)

The covariance matrix can be written as

(69)

where

diag (70)

Similarly, can be written as

(71)

where

diag

(72)

Now, let be defined as

(73)

and let be a matrix with columns representing
the eigenvectors of covariance matrix cor-
responding to the largest eigenvalues. Then, spans the
column space of given by

(74)

This means that there is an invertible matrix such that

(75)

Let and be the upper and the lower half matrix of
, respectively, corresponding to the subarraysand . From

(75), we have

(76)

(77)

Hence

(78)

Using the definition , we have

(79)

Equation (79) can be solved by the total least squares (TLS)
method to find whose eigenvalues (diagonal elements of)
are related to the central angles. Note that according to the def-
inition of , all eigenvalues of are repeated with order 2.
Hence, averaging should be employed to ascertain each source
central angle from the estimates of eigenvalues of.

To estimate the extension widths, we use the relation

(80)

where denotes the pseudo-inverse of, and is the esti-
mated noise power. The average of the smallest eigen-
values of can be used as an estimate of the noise power.
Note that for angular power densities that are parameterized by
two parameters (central angle and extension width), the second
central moments can be used to obtain the extension width.
Hence, can be used to estimate the extension widths of dif-
ferent sources; it contains central moment information.

V. SECOND-ORDER TAYLOR APPROXIMATION

In this section, we use higher terms of Taylor series expansion
to approximate the array response vector. We rewrite (43) by a
second-order approximation of Taylor series as

(81)

Then, (44) can be written as

(82)

and in matrix notation, we have

(83)

where is defined as

(84)

Lemma 2: For an ID source

(85)

(86)

(87)

where and are the third and fourth central moments of
the angular power density of the source.

Proof: See the Appendix.
Using Lemma 2, the array covariance matrix can be approx-

imated as

(88)

where

(89)

and

(90)
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As it has been shown in the previous section, for a multi ID
source scenario in which the sources are uncorrelated, (88) can
be used as an approximation of the covariance matrix. It is suf-
ficient to modify the definition of and as

diag (91)

(92)

where is defined as

(93)

This means that each source has been represented by a matrix
in the observation space. Using the same procedure and

assumptions such as in the previous section, we can show that

(94)

where and are the lower and the upper submatrix
of , respectively. is a matrix whose eigenvalues are
functions of the central angles. Since the eigenvalues ofare
repeated of order 3, it is necessary to do an averaging on the
related eigenvalues to estimate the central angles.

VI. M ODEL AMBIGUITY

Remember that we have assumed that different ID sources
are uncorrelated. Hence, each ID source can be split into two
uncorrelated ID sources—nonoverlapping for simplicity. The
TLS-ESPRIT estimator selects the central angles of the induced
partial sources. In fact, if the angular power distribution is split
into the following functions:

(95)

(96)

where is the unit step function and coefficient 2 normal-
izes the area under and to unity, then such
an estimator selects and , which are the mass centers of

and , respectively. It is clear that
has a direct relationship with the source extension width. For
instance, for an UID source with central angleand extension
width , we have

(97)

and for a Gaussian-distributed source with central angleand
standard deviation , we have

(98)

Hence, an alternative approach to uncorrelated ID source lo-
calization may be as follows.

• Estimate the central angles using TLS-ESPRIT in which a
dimension of two is assumed for each source; the number
of estimated DOAs is .

• Sort estimated DOAs and ascertain the source central
angles by averaging each pair of closely-spaced DOAs.

• Estimate the extension widths by using the difference be-
tween adjacent DOAs.

Using a dimension of 3 or higher for each source is possible;
however, there are two limitations. First, increasing the number
of dimensions associated with each source results in increasing
the smallest value of threshold SNR for which the new sources
can be detected; induced sources have a fraction of the original
source power. Second, by increasing the number of DOAs asso-
ciated with each source, the probability of resolution decreases;
the distance between related DOAs decreases. Simulation re-
sults show that increasing the number of dimensions associated
with each source may be useful just for high values of SNR or
if the true covariance matrix is known, which may not be prac-
tical.

VII. SIMULATION RESULTS

A. CD Sources

We have considered two equipower uncorrelated narrowband
CD sources as signal emitters. The two subarrays are ULAs,
and each one consists of 16 sensors. The distance between the
corresponding elements in the two subarrays is , and the
spacing between adjacent sensors in each subarray is( is
the wavelength at the operating frequency).

One of the sources is assumed to be uniformly coherently
distributed (UCD) with the deterministic angular signal density

otherwise
(99)

where and are the central angle of arrival and the exten-
sion width of source, respectively. The other source is assumed
to be Gaussian coherently distributed (GCD), that is

(100)

where and are the central angle of arrival and the exten-
sion width of the GCD source, respectively.

In our simulation, and are taken as 10and 20 with
extension width of and . A Monte Carlo
simulation of 50 independent runs with 50 snapshots for each
trial was performed for different SNRs.

Figs. 1 and 2 show the bias and the standard deviation for
the central angle estimator. Figs. 3 and 4 show the bias and the
standard deviation for the extension width estimator. As it can be
seen, the estimation bias of the central angles are negligible even
for low values of SNR. The standard deviation of the central
angle estimation is about 0.1for SNR 10 dB.

B. ID Sources

In the previous sections, we have proposed two algorithms for
localization of ID sources with different power distributions. In
both algorithms, the central angles are estimated using TLS-ES-
PRIT in which each source is modeled by a subspace of dimen-
sion 2, but the extension widths are estimated in two different
ways. The estimation of extension widths in one of the two al-
gorithms is based on the estimation of the moments of angular
power distribution, whereas the other algorithm is based on the
differences between two DOAs corresponding to each source.

Inorder tosimulate theproposedalgorithms,wehaveassumed
twonarrowband IDsources tobe as signal emitters whose signals
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Fig. 1. Estimation bias for the central angle versus SNR for two CD sources.

Fig. 2. Standard deviation of the central angle estimates versus SNR for two
CD sources.

Fig. 3. Estimation bias of the extension width versus SNR for two CD sources.

arrive at the two subarrays and . The two subarrays consist of
16 sensors with an interelement spacing of half the wavelength.
The distance between identical sensors is .

The central angles of two sources are and
. The source at has a uniform angular power

distribution as

otherwise
(101)

Fig. 4. Standard deviation of the extension width estimates versus SNR for
two CD sources.

Fig. 5. Estimation bias for the central angle versus SNR for two ID sources.

Fig. 6. Standard deviations for the central angle estimates versus SNR for two
ID sources.

where . The source at has a Gaussian
power angular distribution as

(102)

where . The sources are assumed to be equipower and
uncorrelated.

A Monte Carlo simulation with 20 independent runs, and
500 snapshots for each trial was performed for different SNRs.
Figs. 5 and 6 show the bias and the standard deviation of the
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Fig. 7. Estimation bias for the extension width versus SNR for the UID source
� = 1:5 .

Fig. 8. Estimation bias for the extension width versus SNR for the GID source
� = 1 .

central angle estimator. Figs. 7 and 8 show the estimation bias
of the extension width, and Figs. 9 and 10 show the standard de-
viation of the extension width for different algorithms. In order
to show the effect of using higher order derivatives of location
matrix in the moment-based algorithm, we have implemented
the algorithm using both first- and second-order Taylor series.
As it can be seen, a first-order approximation has a better per-
formance. Note that in a ULA, using higher order derivatives of
location vector causes the estimation error of central angle to
be magnified as the sensor index increases. Using a low-error
estimation algorithm for central angle estimation can improve
the performance of the algorithm by increasing the number of
implemented derivatives.

In order to explain the effect of increasing the number of im-
plemented derivatives, we consider the-term Taylor series ex-
pansion of the th element of the location vector as

for some between and (103)

In (103), the last term is the Lagrange residue. For the simulated
ULA, we have . It is difficult to find a closed
form for the residue; however, we can have

(104)

Fig. 9. Standard deviation for the extension width estimates versus SNR for
the UID source.

Fig. 10. Standard deviation of the extension width estimates versus SNR for
the GID source.

Fig. 11. Effect ofd=� on the bias of the central angle estimates.

In (104), the term is not a monolithic decreasing
function; it increases to a maximum value and decreases there-
after. In order to have a decreasing error,should be chosen
much greater than the value for which the residue has a max-
imum. This explains why the error increases for when
compared with . Although the accuracy of the estima-
tion is acceptable for , one might use a much larger value
for . Further results on the implication of a large number of
derivatives can be found in [14].

Fig. 11 shows the effect of on the bias of central angle
estimates in two different scenarios: a UID source with
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and a GID source with . In each scenario, the true co-
variance matrix has been used. As noticed, the bias increases
with . Note, however, that the increase of the bias is negli-
gible even for .

VIII. C ONCLUSION

In this paper, parametric localization of distributed sources
have been considered for both coherently and incoherently dis-
tributed source models.

In the CD case, the central angle of the sources are estimated
by using two closely spaced subarrays. We showed that the ro-
tational invariance exists approximately, and hence, TLS-ES-
PRIT can be used to estimate the central angles. The extension
width can be estimated by constructing a 1-D DSPE spectrum
for each source and finding the value for which the spectrum has
its global maximum. The proposed algorithm can be applied to
a scenario in which different sources have different functional
form for angular signal densities. The computational cost of the
algorithm is lower than that for the DSPE algorithm.

In the ID case, each source is modeled as a 2-D subspace in
the observation space. The source central angles are estimated
by TLS-ESPRIT using a dimension of 2 for each source. We
have shown that the array covariance matrix can be approxi-
mated by the second moment of the source angular power den-
sity and the source powers. Hence, the source parameters can
be estimated by a least-squares covariance matrix fitting. The
proposed algorithm can be applied to a multisource scenario in
which different sources may have different parametric angular
power densities.

APPENDIX

In this Appendix, we show that

for (105)

Using the definition of s, we can write

(106)

Note that ; hence, .
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