IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 10, OCTOBER 2001 2169

Distributed Source Localization Using ESPRIT
Algorithm

Shahram Shahbazpanahi, Shahrokh Val&eamber, IEEEand Mohammad Hasan Bastani

Abstract—A new algorithm based on ESPRIT is proposed for DSPE is essentially a MUSIC-type algorithm, it suffers from

the estimation of central angle and angular extension of distributed  intrinsic disadvantages of MUSIC such as array manifold mea-
sources. The central angles are estimated using TLS-ESPRIT for surements and calibration.

h incoherently distri ID) an herently distri D . S .
gghrce(s:?F?)reC}Dysdoitrczl;t,etﬂé ei;n(li%% \?vigtr: )i/sdessttirzl:jlttzc(ij(gy 3on- In [5], a maximum likelihood (ML) algorithm has been pro-
structing a one-dimensional (1-D) distributed source parameter es- Posed for localization of Gaussian distributed sources. The like-
timator (DSPE) spectrum for each source. For ID sources, the ex- lihood function is jointly maximized for all parameters of the
tension widths are estimated using the central moments of the dis- Gaussian model. The computational complexity of this method
trﬁ;pcé?s.tzgst%lggnthm can be used for sources with different an- grows exponentially with the number of sources.

9 ' Similar to DSPE, an algorithm called DISPARE has been
presented for localization of ID sources [6]. In DISPARE, the
covariance matrix of the array is approximated by a low-rank
model, and then, a spatial spectrum is constructed with peaks
. INTRODUCTION associated with spatial parameters of the ID sources.

EVERAL applications of array processing—such as In [7], an algorithm has been presented for localization of
perating antenna arrays at base stations for mobile cosingle uniformly incoherently distributed (UID) source. In
munications, passive sonar, and underwater acoustics—reqifif¢ algorithm, the extension width of the source is estimated
a spatially distributed source modeling: a modeling to whidkom the eigenvalues of the correlation matrix. Estimation of
much attention has been recently paid in the literature of arr#} Source central angle is based on the properties of eigenvec-
processing [1]-[3]. Depending on the nature of reflection a@rs of the correlation matrlx. IF has been shown t_hat the eigen-
scattering in the above examples, signal components arriviy@etors of the correlation matrix are modulated discrete prolate
from different directions exhibit varying degrees of correlatiorsPheroidal sequences (DPSSs) [8]. In [9], the central angle of
ranging from totally incorrelated (incoherent) to fully correthe UID source is estimated by TLS-ESPRIT [10], and then, the
lated (coherent) cases. Distributed source modeling suffégension width is estimated using the algorithm presented in
from a deficiency, namely, seizing the whole observatidr]- ' . '
space by signal components and nullifying the noise subspacen [2], a Taylor series expansion has been used to derive an ap-
This begets a breakdown of the techniques that exploit tAgoXimate model called the generalized array manifold (GAM).
orthogonality of signal and noise subspaces, such as MUSEAM is based on a linear combination of array location vector
[4] and its variants. and its derivatives. Using GAM, an algorithm is presented to es-
Several distributed-source localization techniques have bdénate the sourcspatial signaturéy exploiting a Vandermonde
proposed in the recent literature. The first attempt for generafructure. The algorithm can only be applied to uniform linear
ization of the signal and noise subspace concepts to distribugstys (ULAs) and uniform CD sources.
sources has been done in [1]. Based on these concepts, an algt [11] and [12], a distributed source is approximated by
rithm called the distributed source parameter estimator (DSP#)p point sources. Then, the directions-of-arrival (DOAs) of the
has been proposed, which is the generalization of MUSIC jp@int sources are estimated using MUSIC or ROOT-MUSIC.
distributed sources and can be applied to both coherently dige angular spread is obtained by using a lookup table that de-
tributed (CD) and incoherently distributed (ID) sources. Singgribes the relation between the distance of the two estimated
DOAs and the angular spread. In [13], a subspace fitting method
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have different distributions. Since the range of extension widtrherec is the wave propagation speed.

is much smaller than the range of central angle, computing then vector representation, (1) and (2) can be written as
1-D DSPE spectrum for each source has a small computational
cost.

For ID sources, we give an approximation to the covariance x= Z /ﬁ a(0)sm (0 9) 6 + 1o )
matrix by using the GAM. Using a first-order Taylor series
expansion, we show that each ID source approximately intro- !
duces a two-dimensional (2-D) subspace in the observation Y= Z/
space. However, higher order Taylor series might be used to
improve the accuracy of approximation. Again, we show thathere
the rotational invariant structure exists for two identical closely x andy  output vectors of the subarraygandY’, respec-

a(0)e?0™@s, (0;4,,)d0 +n,  (5)

spaced subarrays. Hence, TLS-ESPRIT can be used to estimate tively;
DOAs—a pair of DOAs for each source. The covariance matrix n, andn, corresponding noise vectors;
is formulated by the location vectors and their derivatives asa() subarrayX location vector for a source at direc-
well as the central moments of the distributions. We will show tion 6.
that the distance of the two estimated DOAs is related to theFor the subarrayX, the covariance matrix can be written as
source angular spread.
7 g w/2  pw/2
o . /. . .
” DATA MODEL Raca; - z; z:l/_ﬂ—/Q /_77/2 a(9)p”(9, 9 9 "/"zv 1/)1)
=1 5=
Consider an array dfp sensorsy doublets). Assume that the -af(0)dodb’ + R, (6)

two sensors in each doublet are identical and have the same gain,
phase, and sensitivity pattern and are separated by a consi#dre superscriptl represents Hermitian transpositidR,, is
displacement vectaf. The two induced subarrays are denotethe noise correlation matrix, and
by X andY . Furthermore, it is assumed thaharrowband dis-
tributed sources with the same central frequengyre present pij (0, 0’ 4y, ;) = E{si(6; ;)s5(6'; ;)} @)
in the environment of these subarrays. The complex envelope of
the output ofith sensor in subarray is is called theangular cross-correlation kerneln (7), E{-} de-
; notes statistical expectation, andepresents complex conjuga-

/2 tion.
m=1""

a/7(9)37n(97 "/)rn,) de + N, (1)
/2
/ A. Coherently Distributed Sources

where ‘ _ A source is called coherently distributed (CD) if the received
ai(0) response of theth sensor to a unit energy g a1 components of the source at different angles are delayed

source emitting gt d|rgct|oﬁ with rgspect 0 andscaled replicas of the same signal. In such a case, the angular
the orthogonal direction to the d|splacemen§igna| density can be represented by

vectord,
sm(6;,,) angular density of the:th source; s(0; ¥,) = 7ig:(6; ¥,) (8)
¥, mth source location parameter vector; ’ ’
Na, additive zero-mean noise at i sensor un- where~; is a random variable, angl(¢; %), which is thede-
correlated from the signals. terministic angular signal densitys a complex-valued deter-

Examples of the parameter vecifyy, are the two limits of DOA  ministic function ofé. Note that a CD signal is decomposable
for uniform spatial extension or the angle of maximum powesito random and deterministic components. The deterministic
and standard deviation for a Gaussian distribution. Note thasmponent;; (6; ;) characterizes the spatial distribution of the

spatial overlap of signals is allowed. source, and the random componenteflects the temporal be-
The complex envelope of the outputitii sensor in subarray havior of the source. The indexin g;(6; -) has been used to
Yis emphasize different deterministic angular signal densities.
a2 It is assumed thag;(8; ¥,) belongs to a set of parametric
Y = Z / a; ()™ @5, (0;4,.)d +n, (2) functions characterized by two parameterentral angleand
m=1" —7/2 extension widthThe central angle is the mass center of the dis-

wheren,, is an additive zero-mean noise at thie sensor of tribution g, (6; ;) defined as
subarray}” uncorrelated from the signals, an¢¥) is the prop- /2
agation delay between the identical elements of a doublet in two Bo; = / 0g;(6; ;) db. (9)

subarrays for a signal arriving at directiénrhroughout, we as- —7/2
sume thad in (1) and (2) is measured with respect to a direction g the extension width, several definitions might be pro-
orthogonal tod. Then, we have posed. For instance, for a source uniformly distributed over the

interval [fo — A, 6y + A], the extension width can be defined

d .
7(0) = —sind (3) as the angular extent, and for a Gaussian distributed source,
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the extension with can be defined as the standard deviatiormdferes?; is theith source power, ang;(6; ¥,) is the normal-

the distribution. izedangular power densitgf the source satisfying
From (8), the angular cross-correlation kernel for a CD signal /2
is given by [ ptwoae=1. (21)
—7/2

i (0,05 4b,, ) = g:(0; W) E{v~ gt (05 4.). 10 . . .
pis Vi ) = 98 ) B 1505 ) (10) The index:i has been used to emphasize that it is not necessary

Let b(4,) be defined as for the sources to have identical angular power densities. Similar
p to the CD case, the central angle is defined as the mass center of
" p. pi(6; ¥,), and the extension width is defined as the parameter
b(1;) = /_77/2 a(0)g:(0; ;) df. (1) Getermining the angular extent.

. In this case, we assume that different ID sources are uncorre-

Then, (6) can be written as lated. Using this assumption for ID sources, we get
q q
* R.. =R,
Rie = Z Z b("/"i)E{%‘%’ }bH(’l/)j) + R, qyy /2
=1 j=1 2 H
= osa(0)p;(0; ¥,)a" (0)d6 +R,,. (22)
=B@®)I'BY(¢) + R, (12) Z;[;ﬁ ()il Ja(6)

where

I1l. DSPE ALGORITHM

B) =[P@) b)) - b¥,)] 13, [1], the DSPE algorithm was proposed in which the signal

and and noise subspace concept was generalized to distributed
sources. DSPE is essentially a MUSIC-type algorithm and,
(Llij = E{v"} }- (14) hence, needs array manifold measurement and calibration.
In this section, we review DSPE for both CD and ID source
In addition, (4) can be written as models.
x=B(¥)y+n, (15) A. CD Source Localizer
wherey = [y1 v -+ 7,]%. Equation (12) shows that In the case of CD sources, columnsBfy) and theg eigen-

the signal subspace [defined as the column spaB(af)] is Vectors ofR,, corresponding to the largest eigenvalues of
spanned by the generalized eigenvectors of the matrix periit= SPan the same subspace called the signal subspace. The
(R.., Ry, corresponding to the largest generalized eigen-PSPE spectrum for CD sources is defined as
values [4]. 1

Note that if the noise is spatially white, i.&R,, = o021, Posrr = W (23)
whereo? is the unknown noise power, then the signal subspace "
is spanned by the eigenvectors Bf,, corresponding to the WhereE, is ap x (p — ¢) matrix with columns representing the
q largest eigenvalues. For simplicity, we assume that tégenvectors aR,, corresponding to ther—g) smallest eigen-
noise is spatially white—nonwhite noise can be handled pplues. For anV-dimensional parameter vectgr, the DSPE

prewhitening. spectrum is a functional defined over &hrdimensional space.
Similarly, it can be shown that The parameter vecta# is estimated by locating the prominent
peaks ofPpspg, i.€.,
y =C(#$)y +n, (16) ) 1
%, = argmax ————-, i=1,...,q (24)
and T et . v [P ($E.?
vy = C(¥) W) +on (a7 Essentially, the DSPE algorithm is a MUSIC-type algorithm
where and requires calibration—for eaegh b(y) must be measured
and stored. Besides, in constructing the DSPE spectrum, it is
C(¥) =[c(ty) c@y) - c(@,)] (18) assumed that the deterministic angular signal dengfy )
and is identical for all sources. This may not be true in practice.
/2 I Different sources might have different angular densities. The
c(y;) = / a(0)e’0™() g;(8;4;) db. (19) proposed technique in this paper handles the cases with different
—/2 angular densities.
B. Incoherently Distributed Sources B. ID Source Localizer
A source is said to be ID if the signal rays arriving from dif- For ID sources, the noise subspace is generally degenerate
ferent directions are uncorrelated, i.e., (equal to the zero vector), and the whole observation space is

occupied by signal components. In other words, the noise-free
E{s;(0; %,)st(0; )} = 02.0:(0; 9,)6(0 — &) (20) covariance matrix is full rank. However, for several cases of
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practical interest, most of the energy of the signal is concewherea™ (6, is thenth derivative ofa() at8 = 6. Then,
trated in a few eigenvalues of the array covariance matrix. Th& have

number of these eigenvalues is referred to astfeetivedimen- (g

sion of signal subspace and is showngdyLet E,, be a matrix b(y;) = Z 37('02) M, ; (31)
whose columns are the eigenvectors of covariance matrix corre- n=0 &

sponding to the smalleép — ¢.) eigenvalues. The DSPE spec-

trum for ID source localization is defined as [1] whereM,,,;, which is thenth moment ofy; (6; +;) aroundfo;,

is defined as
Pospp = b (25) /2
PSPE T w(EFH(9)E,) My, = / ) (6 — 60:)" 9:(0; ;) db. (32)
—7/2
where For symmetriy; (6; %,), M, ; vanishes for odd values of
x/2 resulting in
B = [ a@te:wal0)is  @6) - o
—7/2 a 90
Z MQk i (33)
and t(.) stands for the trace of a matrix. Note that in con- k=0

structing DSPE spectrum, it is assumed that the angular pov&ilarly, c(¢) can be expressed as
densities of ID sources belong to the same class of positive def-

inite functions parameterized by a parameter vegtor Z k ' 892‘]& ( (0)e72 (/Y Sine)
(2

IV. TLS-ESPRIT LOCALIZER = =0 (3
In this section, we propose a distributed source parameb@Ww, let f(6) 2 27(d/))sin 6. Then
estimator based on TLS-ESPRIT. The algorithm uses the Taylor 5 , , ,
series approximation of array response vector for different - (a(9)6]f(a))=a'(9)e’f(a) +if (B)a(8)e @ (35)
values of DOA. We show that for both ID and CD sources,
the array covariance matrix can be formulated by the centédhere the superscript’ denotes first-order derivative

moments of source distribution. with respect tof. Note that ford <« A, the derivative
f/(8) = 2x(d/A) cos @ is negligible. Hence
A. Coherent Sources 9 o) ) 0)
_ J ~ J
We derive an approximately invariant structure between the a6 (a(e)e ) ral(f)e ) (36)

two subspaces spannediig; ) andc(9;) fori =1, 2, ..., q. Furthermore, we have
Remember that(6) is the propagation delay between the sig-

nals arriving at two sensors in each doublet for an emitting  9? (a(ﬁ)ejf(e)) (e)ejf(g) Fif(O)a(6 )ejf(g)

source at directiofl. Using (3), the exponential term &f#, ) is 962
~a’(f)el () (37)
GIwoT(8) _ ,i2n(d/A)sind (27)
and similarly
where )\ is the wavelength at frequency,. We assumel < o2k ' '
A—this is an essential assumption in our approximation. 57" (a(e)eﬂf(e)) ~ ah)(9)e/ (), (38)

Now, letéy; be the central angle of the distributigr(8; ;).
In addition, assume that,(6; %) is a normalized symmetric Then, (34) can approximately be written as
function aroundy;

. o= aR(gy,
C(’l/)z) ~ 6‘127'r(d/)\)5111007 Z ( 0 ) MQk,i' (39)

/2 (2k)!
| vy =1 (28) k=0
—7/2 Hence, we have
and C(’(/)7) ~ b('l/)i)CjQﬂ—(d/)\) sin 6g; (40)
/2 . .
fo; = / 89:(8; ;) db. (29) and in matrix form
—77/2 }
C(¢) =~ B(y)® (41)

Using the Taylor series expansiona(fd) aroundd = 6;, we

can write (11) as where

& :diag(ej%(d/)‘) sin@m7 eI 2m(d/N) sin@OQ7

/2 Al (0) ;
b('(/)z) = /7‘—/2 nz::o T (9 — 901) 91(9, ’l/)z) de (30) ej27r(d/)\) sin00q). (42)
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Equation (41) shows that the bases of the two signal sulherei/; is the second central momentg?; ) defined as
spaces are approximately related by a rotation madpix /2
This & can be used to estimate the central angles of sources. M, = / (6 — 60)2p(6; %) db. (52)
ESPRIT-type algorithms such as LS-ESPRIT or TLS-ESPRIT —x/2
might be applied to estimate the central angle of source distri-
bution. Since (41) is an approximation, TLS-ESPRIT might
beget a better performance.

Once the central angles are estimated, one can estimate the R.. = AA AT + 521 (53)
extension widths by constructing the DSPE spectrum for each
source separately. In computing the DSPE spectrum, we nee#/hgre
computeb(p) for different values of extension width.

Since trEe )DSPE spectrum is computed separately for each A =[a(fo) 2'(60)] (54)
source in our algorithm, sources might have different determin- A, =diag(o?, 02M,) . (55)
istic angular densities. This is not possible in the 2-D DSPE
spectrum given in [1].

Proof: See the Appendix.
Using Lemma 1, (48) can be written as

Similarly, the output of subarraY can be approximated as

~ ’ &%)
B. Incoherent Sources y =~ [b(6o) b'(6o)] {OJ +ny (56)

1) Single ID Source:We assume that a single ID source ex- A je0r(8) .

ists in the environment of the array. This is just for simplicity{"hereb(e) = a(f)e’0 7% Using (3), we have

and we will shortly extend our derivation to a multisource sce- , d ,

nario. b'(6) = a'(B)e! 0@ + 5 3, 2 cos fa(f)c/ 0@ (57)
Let the mass center f{6; 9) be 6y. The first-order Taylor

series expansion af(¢) aroundd is Assume the condition for whic/A < 1. Then, the second

term in (57) is negligible, and we have

a(e) ~ 8(90) + a/(eo)(e - 90) (43) b/(e) ~ a/(e)eng‘r(e)' (58)
Thus, (4) can be written as Therefore, (56) can be written as
/2 A / /2 . ~ 0 / 0 jwT(60) [&7)]
x =~ a(by) s(6;1) do + a’(6p) (6 — 6p)s(0;9) db. vy ~[a(fy) a'(fy)]e o +n,
—77/2 —77/2
(44) jwT (89 o
Define ap anda; as = Ae/er %) {oq} +n,. (59)
w/2 2) Multisource Scenario:Now, consider; uncorrelated nar-
@0 = /_ﬁ/2 s(0;9) do (45)  rowband ID sources. Assume thi, s;(6; 4,), p; (6; ,), and
12 Bo; are, respectively, the parameter vector, the angular signal
[T ) density, the angular power density, and the central angle of the
ar = /W/2(9 — 60)s(0;4) db. (46) angular power density of thigh source. It is also assumed that

the sources are uncorrelated. Then, (47) can be modified as
Then, (44) can be written as

x=As+n, (60)
x ~[a(fo) a'(6o)] Bﬂ +n,. (47)  with
The array covariance matrix of the subartgyis A =[a(fo1) - a(bo,) a'(bo1) -~ a'(fog)] (61)
S = [0601 e Oéo,z 11 Oélq]T (62)
/ E{aoaﬁ} E{OCOOCI}
R., =[a(fo) a'(bo)] . . where

E{onadt E{aiof} "
x [a(Bo) (80" + 025, (48) cor= [ sitbi ) (63)

—77/2

wheres? is the unknown noise power, ai,  is the noise co- /2
variance matrix, which is assumed to be known. For simplicity, ay; = / (6 — 6o;)s;(0; ;) db (64)

we assume that the noise is spatially white, B&,, =1I. —m/2

Lemma 1: For ID sources fori =1, 2, ..., g. Note that

E{aoag} = 0.3 (49) Elagiag } = 0.37‘, (65)
E{ala*{} = U?MQ (50) E{OQZO(L} = O’?iMQJ‘ (66)

E{ogal} =E{a1af} =0 (51) E{agiof;} = F{aua8,} =0 (67)
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wherecs?; is the power of théth signal, andl» ; isthe second  To estimate the extension widths, we use the relation
central moment of the angular power density of ithesource.

_ A2 HT
Since the sources are uncorrelated, we have A, = AT (Reo — 5, 1) A (80)
* * T -1 A i
E{aoiog,} = E{aw,al;} whereA _denotes the pseudo-inverseAf ands? is the esti
B . mated noise power. The average of the— 2¢ smallest eigen-
= E{aviag;} values ofR.. can be used as an estimate of the noise power.
=FE{ayap;} =0. (68) Note that for angular power densities that are parameterized by

two parameters (central angle and extension width), the second
central moments can be used to obtain the extension width.
R,, = AAAH + 02T (69) Hence A, can b_e used to estimate the exte_nsion Wi_dths of dif-
ferent sources; it contains central moment information.

The covariance matriR, can be written as

where
) V. SECOND-ORDER TAYLOR APPROXIMATION
A, = dlag(agl, ey agq, a§1M27 Iy ovvs angqu). (70) . . ) ) )
In this section, we use higher terms of Taylor series expansion
Similarly, y can be written as to approximate the array response vector. We rewrite (43) by a
second-order approximation of Taylor series as
y~A®Ps+n, (71) , Y
a(8) ~ a(6o) + 29 (g _ gy + X0) (g g2 (81
where 0 1 0 o 0)”-
$— diag(ejwof(em)’ L e (600) Then, (44) can be written as
R . /2
edenm@or) eﬂwoﬂ%o)). (72) x ~a(f) / s(0;4) df
—7/2
Now, letz be defined as , w/2
valen) [ (0 o)s(bi) 0
X —77/2
z = |:y:| (73) a//(eo) /2
+ 2 [ - bs o n, (@)
and letE be a2p x 2¢ matrix with columns representing —7/2

the eigenvectors of covariance matik.. = E{zz"} cor- and in matrix notation, we have
responding to theq largest eigenvalues. Thel spans the

column space oA given by , Lo o
X~ [a(ﬁo) a'(fy) sa (90)] o | +n, (83)
A= [ :@} . (74) @2
whereas is defined as
This means that there is an invertil2igx 2¢g matrix I' such that /2
— = 6 — 60)s(6, 1) db. 84
B 5 w= [ 0-0rs0.9) (84

LetE, andE, be the upper and the lowgrx 2¢ half matrix of ~ Lemma 2: For an ID source
E, respectively, corresponding to the subarrayandY . From

E
(75), we have Elagaz} =0, My (85)
E{oal} =02M; (86)
A=E,T (76) E{asal} =02My (87)
AP =E,T. (77) .
whereM3; and M, are the third and fourth central moments of
Hence the angular power density of the source.
. Proof: See the Appendix.
E,=E,TeT . (78)  Using Lemma 2, the array covariance matrix can be approx-
) o A imated as
Using the definition® = T®T %, we have
R.. = AA AT 1523, (88)
E,=E,¥. (79)
) where
Equation (79) can be solved by the total least squares (TLS)
method to find®¥ whose eigenvalues (diagonal element$gf 9 1 0 M,
are related to the central angles. Note that according to the def- As =0 0 My Ms (89)
My M My

inition of ®, all eigenvalues off are repeated with order 2.
Hence, averaging should be employed to ascertain each so
central angle from the estimates of eigenvalue®of A =[a(fy) a'(fy) %a”(6o)]. (90)
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As it has been shown in the previous section, for a multi ID Using a dimension of 3 or higher for each source is possible;
source scenario in which the sources are uncorrelated, (88) bawever, there are two limitations. First, increasing the number
be used as an approximation of the covariance matrix. It is sof-dimensions associated with each source results in increasing
ficient to modify the definition ofA, and A as the smallest value of threshold SNR for which the new sources
: can be detected; induced sources have a fraction of the original
As =diagAsr; Asz, -y Asg) (1) source power. Second, by increasing the number of DOAs agsso-
A=[a(bo1) a'(fo1) 3a"(fo1) ciated with each source, the probability of resolution decreases;
a(fo,) a'(fog) 3a"(fog)] (92) the distance between related DOAs decreases. Simulation re-
sults show that increasing the number of dimensions associated

hereA,; i fi ; : :
whereA.; is defined as with each source may be useful just for high values of SNR or

) 1 0 M, if the true covariance matrix is known, which may not be prac-
Agi=o5| 0 My Ms,|. (93) tical.
My Ms,; M,
This means that each source has been represented by a matrix VII. SIMULATION RESULTS

A,;; in the observation space. Using the same procedure god

assumptions such as in the previous section, we can show that _ )
We have considered two equipower uncorrelated narrowband

E,=E, ¥ (94) cD sources as signal emitters. The two subarrays are ULAS,
whereE, andE, are the lower and the uppgrx 3 submatrix and each one consists of 16 sensors. The distance between the

of E, respectively® is a3q x 3¢ matrix whose eigenvalues arecorresponding elements in the two subarrays /0, and the
functions of the central angles. Since the eigenvaluel afe SPacing between adjacent sensors in each subari2ie\ is
repeated of order 3, it is necessary to do an averaging on {Ag& wavelength at the operating frequency).

distributed (UCD) with the deterministic angular signal density

VI. M ODEL AMBIGUITY 1

Remember that we have assumed that different ID sources 9165 91) = § 2807 _
are uncorrelated. Hence, each ID source can be split into two 0, otherwise
uncorrelated ID sources—nonoverlapping for simplicity. Thetherefy; andA; are the central angle of arrival and the exten-
TLS-ESPRIT estimator selects the central angles of the inducgidn width of source, respectively. The other source is assumed
partial sources. In fact, if the angular power distribution is splio be Gaussian coherently distributed (GCD), that is

CD Sources

6—06 A
I o1 < A; (99)

into the following functions: 1 (6 — 92)?
4 A 92(0; 2) = Torn, © <— AT ) (100)
pT(0; %) = 2p(6; p)u(0 — bo) (95) 2mBg 2
p(6; 9) A 20(6; P)u(—8 + 6o) (96) wherefy, andA, are the central angle of arrival and the exten-

sion width of the GCD source, respectively.

wherew(-) is the unit step function and coefficient 2 normal- |n our simulation#; andé, are taken as T0and 20 with
izes the area undert (6; 1) andp~(6; %) to unity, then such extension width ofA, = 1.5° andA, = 1°. A Monte Carlo
an estimator select;i andé; , which are the mass centers okjmulation of 50 independent runs with 50 snapshots for each
pt(6; ) andp~(6; 4), respectively. Itis clear thd¥y — f;)  trial was performed for different SNRs.
has a direct relationship with the source extension width. ForFigs. 1 and 2 show the bias and the standard deviation for
instance, for an UID source with central angigand extension the central angle estimator. Figs. 3 and 4 show the bias and the
width 2A, we have standard deviation for the extension width estimator. As it can be

0+ - — A 97) seen, the estimation bias of the central angles are negligible even

0 o - for low values of SNR. The standard deviation of the central

and for a Gaussian-distributed source with central afglend @ngle estimation is about 0.for SNR= 10 dB.

standard deviatior, we have B. ID Sources

ear -6y = 2\/2 A. (98) Inthe previous sections, we have proposed two algorithms for
& localization of ID sources with different power distributions. In
Hence, an alternative approach to uncorrelated 1D source lgyth algorithms, the central angles are estimated using TLS-ES-
calization may be as follows. PRIT in which each source is modeled by a subspace of dimen-
» Estimate the central angles using TLS-ESPRIT in whichsaon 2, but the extension widths are estimated in two different
dimension of two is assumed for each source; the numheays. The estimation of extension widths in one of the two al-
of estimated DOASs i€q. gorithms is based on the estimation of the moments of angular
* Sort2q estimated DOAs and ascertain the source centdwer distribution, whereas the other algorithm is based on the
angles by averaging each pair of closely-spaced DOAsdifferences between two DOAs corresponding to each source.
» Estimate the extension widths by using the difference be-Inorderto simulate the proposed algorithms, we have assumed
tween adjacent DOAs. two narrowband ID sourcesto be as signal emitters whose signals
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— ucD source, A=15°
~ — — GCD source, A=1°

— UCD source, A=15°
— - GCD source, A=1°

bias (degrees)
P=
standard deviation (degrees)

0 10 20 30 0 10 20 30
SNR (dB) SNR (dB)

Fig. 1. Estimation bias for the central angle versus SNR for two CD sourcegig- éD Standard deviation of the extension width estimates versus SNR for
two CD sources.

— o -
UCD source, A = 15’ — - UID Source, A = 1.5°
o k — — GCDsource, A=1" || 15 — GID source, A = 1°

bias (degrees)
o
»

standard deviation (degrees)
=

0 10 20 30 0 10 20 30
SNR (dB) SNR (dB)

Fig. 2. Standard deviation of the central angle estimates versus SNR for tlig. 5. Estimation bias for the central angle versus SNR for two ID sources.
CD sources.

— - UID Source, A=1.5°
— GID source, A = 1°

bias (degrees)

standard deviation (degrees)

— UCD source, A=15°
— - GCD source, A=1° 10

0 10 20 30
0 10 20 30 SNR (dB)
SNR (dB)

—4

10~

Fig. 6. Standard deviations for the central angle estimates versus SNR for two
Fig. 3. Estimation bias of the extension width versus SNR for two CD sourcdB. sources.

arrive atthe two subarrays andY.ThetwosubarraysconsistofV\/hereA:L - 1“).' The.source alp; = 30° has a Gaussian
ower angular distribution as
6 — 6g2)2

16 sensors with an interelement spacing of half the Waveleng%
The distance between identical sensorsis A/10. 1

The central angles of two sources & = 10° andfy, = p2(0; ) = V2r A, eXp{— 2A2
30°. The source aflp; = 10° has a uniform angular power )
distribution as whereA, = 1°. The sources are assumed to be equipower and

uncorrelated.

1 16— 61| < A A Monte Carlo simulation with 20 independent runs, and
p1(6; ;) =4 24, o ==t (101) 500 snapshots for each trial was performed for different SNRs.
0 otherwise Figs. 5 and 6 show the bias and the standard deviation of the

7
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Fig. 7. Estimation bias for the extension width versus SNR for the UID sourggg. 9. Standard deviation for the extension width estimates versus SNR for
A = 1.5°. the UID source.
5 T 1
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Fig. 8. Estimation bias for the extension width versus SNR for the GID sour: L . . )
Ag: 10, %?g. 10. Standard deviation of the extension width estimates versus SNR for

the GID source.

central angle estimator. Figs. 7 and 8 show the estimation bias 0.038

of the extension width, and Figs. 9 and 10 show the standard de- -—- GID source, A = 1° P -
viation of the extension width for different algorithms. In order 0036} — - UIDsource,A=2°| .~

to show the effect of using higher order derivatives of location e

matrix in the moment-based algorithm, we have implemented 0034 - - e
the algorithm using both first- and second-order Taylor series. & -7 e

As it can be seen, a first-order approximation has a better per- @ ool -7 ./'/
formance. Note that in a ULA, using higher order derivatives of ' 7

location vector causes the estimation error of central angle to 0.03} /_,~’

be magnified as the sensor index increases. Using a low-error P

estimation algorithm for central angle estimation can improve 0.028 - .

the performance of the algorithm by increasing the number of 0 0.1 0.2 " 0.3 04 05

implemented derivatives.
In order to e?(pla}ln the effect (_)f Increasing the number of im- Fig. 11. Effect ofd/\ on the bias of the central angle estimates.
plemented derivatives, we consider tiieterm Taylor series ex-

pansion of thernth element of the location vectar,,(6) as In (104), the term(zm)X /K is not a monolithic decreasing

K-1 ag:)(eo) ‘ aﬁ,{")(&) ’ function; it increases to a maximum value and decreases there-
am(f) = Z 0 (0 — 0)* + T (0 — 6o)" after. In order to have a decreasing erirshould be chosen
k=0 ) ) much greater than the value for which the residue has a max-
for somef; betweerd andf. (103)  imum. This explains why the error increases fér= 3 when

c%lﬂpared withK' = 2. Although the accuracy of the estima-

ed . )

fon is acceptable foK = 2, one might use a much larger value

for K. Further results on the implication of a large number of

derivatives can be found in [14].

(I) ; ] K Fig. 11 shows the effect af/\ on the bias of central angle

am (HC) (Jm’]r Sl 9() jmmsin 8¢ (— 9 9
i K e ¢+ 0 (m"1). (104) estimates in two different scenarios: a UID source whth= 2°

In (103), the last term is the Lagrange residue. For the simula
ULA, we havea,,(8) = e/™7sn? |tis difficult to find a closed
form for the residue; however, we can have
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and a GID source witlh = 1°. In each scenario, the true co- [5]
variance matrix has been used. As noticed, the bias increases
with d/A. Note, however, that the increase of the bias is negli- g;
gible even ford/A = 0.5.
[71
VIIl. CONCLUSION

In this paper, parametric localization of distributed sources g;
have been considered for both coherently and incoherently dis-
tributed source models.

In the CD case, the central angle of the sources are estimateﬁl
by using two closely spaced subarrays. We showed that the ro-
tational invariance exists approximately, and hence, TLS-ES10
PRIT can be used to estimate the central angles. The extension
width can be estimated by constructing a 1-D DSPE spectrumiii]
for each source and finding the value for which the spectrum has
its global maximum. The proposed algorithm can be applied tg; 5
a scenario in which different sources have different functional
form for angular signal densities. The computational cost of thél3]
algorithm is lower than that for the DSPE algorithm. [14

In the ID case, each source is modeled as a 2-D subspace in
the observation space. The source central angles are estimated
by TLS-ESPRIT using a dimension of 2 for each source. We
have shown that the array covariance matrix can be approxi-
mated by the second moment of the source angular power d
sity and the source powers. Hence, the source parameters
be estimated by a least-squares covariance matrix fitting. T
proposed algorithm can be applied to a multisource scenaric
which different sources may have different parametric angul
power densities.

APPENDIX

In this Appendix, we show that
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Using the definition ofy;s, we can write

smart antennas.
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