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Abstract—In this paper, we study the effect of probabilistic
and prolonged packet feedback loss events on the broadcast
completion time of instantly decodable network coding (IDNC).
These feedback loss events result in a lack of knowledge about the
reception status at different subsets of receivers, which creates
a challenge in selecting efficient IDNC packet combinations in
subsequent transmissions. To solve this problem for both proba-
bilistic and prolonged feedback loss, we first identify the different
possibilities of feedback loss events at the sender and determine
their probabilities in both cases. Given these probabilities and
the nature of the IDNC completion time problem, we design
three blind instantly decodable network coding approaches that
perform coding decisions similar to the algorithms proposed in
[1], [2], but on blindly updated graphs to account for feedback
events. These three approaches are then compared through
extensive simulations. Results show that the full consideration
and the full negligence of all the attempted packet requests with
probabilistic and prolonged feedback loss events, respectively, in
subsequent coding decisions can achieve a tolerable degradation
against the perfect feedback performance for relatively high
feedback loss probabilities and periods.

Index Terms—Wireless Broadcast; Instantly Decodable Net-
work Coding; Feedback Loss.

I. INTRODUCTION

The application of network coding in packet transmission
and recovery over wireless erasure channels have attracted
much attention in the past few years. [1], [3]–[8]. In [1],
[6]–[8], an important subclass of NC was introduced under
the name of instantly (or instantaneously) decodable network
coding (IDNC), in which the received network coded packets
must be decoded at their reception instants and cannot be
stored for future decoding. IDNC was considered in these
works due to its practicality and numerous desirable properties,
such as instant packet recovery, simple XOR-based packet
encoding and decoding, and no buffer requirements. In IDNC,
the sender must select the packet combination in each network
coded packet transmission according to the previously received
packets at all receivers, so that this coded packet is instantly
decodable at a specific set of receivers if not all of them.
The selection of the appropriate packet combinations that are
instantly decodable at specific sets or all the receivers is done
through what is known as the IDNC graph [1], [2], [8]–[10].

One major drawback of IDNC is that it is not a rate-optimal
approach and thus may result in high completion time and low
throughput. In [1], [2], we studied the problem of minimizing

the completion time in IDNC and showed that finding its
optimal solution is intractable. Nonetheless, we employed the
problem properties and structure to design simple maximum
weight clique search algorithms, which were shown to almost
achieve the optimal completion time performance in wireless
multicast and broadcast scenarios.

The proposed algorithms in [1], [2] and most other op-
portunistic network coding works assume that the received
feedback from all the receivers is perfect and is not subject
to loss. This assumption has its limitations in many practical
scenarios because feedback loss events may occur at the
sender due to several practical settings and impairments in
wireless networks. One reason for such feedback loss events
is probabilistic erasures due to channel impairments on the
uplink channels from the receivers. Although a high level
of protection for feedback packets can be employed in sev-
eral networks, such as cellular and WiMAX systems, fast
fading effects over wireless channels can still expose them
to probabilistic loss events. Moreover, other network settings
cannot guarantee the correct arrival of each feedback packet at
the sender due to transmission power limitation and possible
interference with other feedback.

In these probabilistic feedback loss scenarios, the sender
will receive feedback packets from only a subset of the
targeted receivers after a given transmission and thus the status
of these receivers can be updated in the IDNC graph [2]. For
the other targeted receivers whose feedback is not heard at the
sender, the latest status of packet reception and requests will
be unknown. Consequently, the sender must blindly estimate
the status of these receivers, in order to perform the subsequent
IDNC transmission. In this following transmission, the sender
may receive feedback packets from some of these receivers but
will lose the feedback of others. Consequently, the sender must
continuously perform partially blind IDNC decisions until a
correct completion feedback is received from all the receivers.

Another type of feedback loss at the sender may be more
prolonged, such that all the feedback from one or all receivers
is not received at the sender for several subsequent transmis-
sions, due to the correlation in channel impairments or to the
setting of the network. One example may be one or multiple
receivers may be in prolonged deep fading conditions due
to shadowing. Another very practical example is the case of
time division duplex (TDD) modes in cellular and WiMAX
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systems. In this network setting, the sender must transmit
multiple packets in the downlink frame without receiving any
feedback until the uplink frame starts. In this sense, we may
consider the sender as loosing all feedback information from
all the receivers. In all these scenarios, the sender must make
blind IDNC decisions during the feedback loss period. These
blind decisions, made without any knowledge of the reception
status at different receivers, will definitely affect the IDNC
completion time.

All the aforementioned scenarios raise the following ques-
tion: How can we extend our proposed IDNC algorithms to
efficiently operate in probabilistic and prolonged feedback loss
scenarios? In this paper, we will answer the above question
for the reciprocal erasure channel example as a probabilistic
feedback loss scenario and the TDD mode example as a
prolonged feedback loss scenario. Nonetheless, the designed
algorithms for these examples can be easily extended to all
other examples in both scenarios. We first identify the proba-
bility mass functions (pmfs) of the receiver’s reception status,
given an unheard feedback event from this receiver in both
probabilistic and prolonged feedback loss scenarios. Given
these pmf properties and the nature of the completion time
problem, we design three blind instantly decodable network
coding approaches that perform coding decisions according to
the identified strategy in [1], [2] but using blindly updated
IDNC graphs to account for unheard feedback events. We
then compare these three approaches of blind graph updates
for the probabilistic and prolonged feedback scenarios through
extensive simulations.

The rest of the paper is organized as follows. In Section II,
we introduce the system model and parameters. The IDNC
graph is illustrated in Section III. Our previous work on com-
pletion time reduction in IDNC is summarized in Section IV.
In Section V, we derive the pmfs of the receiver’s reception
status in both feedback loss scenarios. Our proposed modified
IDNC selection algorithms with the three different blind graph
update approaches are introduced in Section VI-B and their
performance is compared in Section VII. Finally, Section VIII
concludes the paper.

II. SYSTEM MODEL AND PARAMETERS

The model consists of a wireless sender that is required
to deliver a frame (denoted by N ) of N source packets to
a set (denoted by M) of M receivers. The sender initially
transmits the N packets of the frame uncoded in an initial
transmission phase. Each sent packet is subject to loss (a.k.a.
erasure) at receiver i with probability pi, which is assumed to
be fixed during the frame transmission period. Each receiver
listens to all transmitted packets and feedbacks to the sender a
positive acknowledgement (ACK) for each received packet. At
the end of the initial transmission phase, three sets of packets
are attributed to each receiver i: By the end of the initial
transmission phase, two sets of packets are attributed to each
receiver i:
• The Has set (denoted by Hi) is defined as the set of

packets correctly received by receiver i.

• The Wants set (denoted by Wi) is defined as the set
of packets that are lost by receiver i in the initial
transmission phase of the current broadcast frame. In
other words, Wi = N \Hi.

The sender stores this information in a state feedback matrix
(SFM) F = [fij ] , ∀ i ∈ M, j ∈ N , such that fij = 0 if
j ∈ Hi and fij = 1 if j ∈ Wi.

After the initial transmission phase, a recovery transmission
phase starts. In this phase, the sender exploits the SFM to
transmit network coded combinations of the source packets.
We define the targeted receivers by a transmission as the
receivers that can instantly decode a packet from this trans-
missions. The non-targeted receivers that receive non-instantly
decodable packets discard them. After each transmission, the
targeted receivers that decoded a packet send ACK packets,
which are used by the sender to update the SFM. Note that
this condition implies that a targeted receiver, which lost the
sender’s transmission, will not generate a feedback since it
would not know it was originally targeted. This process is
repeated until all receivers feedback that they obtained all
their requested packets. We define the completion time of a
frame as the number of transmissions required from the start
of the frame transmission until all receivers obtain all their
intended packets. Given the considered model, the completion
time has a fixed section of N transmissions in which all
frame packets are transmitted uncoded and a variable section in
which IDNC recovery transmissions are sent until all receivers
obtain all their intended receivers. We refer to the latter section
as completion delay.

Let p and pw be the average and worst packet erasure
probabilities of all receivers, respectively. In the probabilistic
feedback loss scenario, we assume channel reciprocity, which
means that the packet erasure probabilities seen by any re-
ceiver i, on both forward (sender to receiver) and reverse
(receiver to sender) links, are the same and are both equal
to pi. Similar to the schemes proposed in [1], [2], we assume
in both scenarios that the receiver does not send any feedback
unless it is targeted by a packet. In other words, if a feedback
is lost by one of the targeted receivers, the sender will not get
any feedback from this receiver until the next transmission in
which it is targeted. We also assume in both scenarios that each
feedback sent from a receiver includes acknowledgements of
all previously received packets.

III. IDNC GRAPH

The IDNC graph is a graph that defines the set of all
feasible instantly decodable packet combinations. It was first
introduced in the context of a heuristic algorithm design
solving the index coding problem [11], [12] and was first
extended to IDNC in [9]. The IDNC graph G is constructed
by first generating a vertex vij in G for each packet j ∈ Wi,
∀ i ∈ M. Two vertices vij and vkl in G are adjacent if one
of the following conditions is true:
• j = l ⇒ The two vertices are induced by the loss of the

same packet j by two different receivers i and k.
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Fig. 1. Example of a feedback table and its corresponding IDNC graph

• j ∈ Hk and l ∈ Hi ⇒ The requested packet of each
vertex is in the Has set of the receiver that induced the
other vertex.

Consequently, each edge between two vertices in the graph
represents a coding opportunity that is instantly decodable for
the two receivers inducing these vertices. Given this graph
formulation, we can easily define the set of all feasible packet
combinations in IDNC as the set of packet combinations
defined by all cliques in G. Consequently, the sender can
generate an IDNC packet for a transmission by XORing all
the packets identified by the vertices of a selected clique in G.

Figure 1 depicts an example of a feedback table and its
corresponding IDNC graph. In this example, if the clique
consisting of the vertices v11 and v24 is selected in the IDNC
graph, then sending packet 1⊕4 will help both receiver 1 and
2 to recover packet 1 and 4, respectively, as each of them has
the other packet and can use XOR to decode their missing
packet out of this sent coded packet.

IV. IDNC COMPLETION TIME REDUCTION WITH PERFECT
FEEDBACK

In [1], [2], we formulated the problem of minimizing
the completion delay problem as a stochastic shortest path
(SSP) problem. The exponentially growing dimensions of this
formulation with the number of receivers and packets made
its solution intractable. Nonetheless, we were able to employ
the properties of this SSP to show that the completion time
can be efficiently reduced by any policy that can both bring
the system closest to absorption in each step and maximizes
the density of coding opportunities in the IDNC graph.

By studying the geometric structure of the SSP in [2], we
showed that the policy, which gives more priority to targeting
the receivers with larger values of ψn

i , such that:

ψi ,
|Wi|

1− pi
, (1)

efficiently brings the system closest to the absorption state.
The parameter ψi represents the expected remaining number
of transmissions required by receiver i until it receives all its

missing packets, assuming that it is persistently targeted in
all transmissions until completion. We will refer to it as the
persistent residual completion delay (PRCD) of receiver i. The
exponent n determines the degree of bias given to receivers
with larger PRCDs. In [2], [10], we showed that the same
policy also efficiently densifies the coding opportunities in the
IDNC graph.

Given this result, we designed an IDNC algorithm that
implements the above prioritization by assigning a weight ψn

i

to each vertex vij in the IDNC graph. The set of targeted
receivers for each transmission can then be determined by
running a maximum weight clique search over this weighted
IDNC graph. However, the maximum weight clique selection
algorithm is known to be NP-hard but can be exactly solved in
polynomial time for non-large graphs [13]. Nonetheless, this
complexity may still be prohibitive in large networks. For these
cases, we designed a quadratic time maximum weight vertex
search algorithm [1], [2]. In this algorithm, the weights of the
vertices are defined as follows. Define aij,kl as the adjacency
indicator of vertices vij and vkl in G such that

aij,kl =

{
1 vij is adjacent to vkl in G(s)
0 otherwise .

(2)

We then define the vertex weight of vertex vij as:

wij = ψn
i

∑
∀vkl∈G

aij,kl ψ
n
k . (3)

Thus, a large vertex weight reflects both its high PRCD and its
adjacency to a large number of vertices belonging to receivers
with large PICDs. The cliques in this algorithm are thus built
by sequentially selecting the maximum weight vertex from
among the ones that are adjacent to all previously selected
ones. In each step, the weights of the adjacent vertices are
recomputed within this adjacent subgraph only, as explained
in [1], [2].

Figures 2 and 3 depict the average completion time per-
formance of our proposed algorithms, for n = 3, n = 5
and n = 10 (denoted by L3, L5 and L10, respectively),
against the number of receivers M (for N = 30, p = 0.15,
pw = 0.3) and the average/worst erasure probability p/pw

(for µ = 0.5 and 1, M = 60, N = 30), respectively. In both
figures, we compare the performance of our proposed optimal
maximum weight clique selection (denoted by “opt”) to that
of our proposed maximum weight vertex search (denoted
by “srh”) algorithm, as well as the maximum clique (MC)
selection algorithm and full network coding (FNC). In this
FNC scheme, we assume that all generated coding coefficients
are always linearly independent and thus this perfect FNC
scheme achieves the optimal completion time performance
over all network coding schemes [14].

From both figures, we can see that the algorithm tends to
converge to the same performance with the smallest comple-
tion time achieved by the L3 and L5 algorithms. For L10, the
performance slightly degrades. We can also observe that the
heuristic maximum weight vertex search algorithms perform
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Fig. 2. Average completion time for the perfect feedback scenario vs M

Fig. 3. Average completion time for the perfect feedback scenario vs p/pw

very closely to the optimal clique selection algorithms for all
values of n. For a relatively large network setting (M = 100
and N = 30) and relatively harsh channel conditions (p =
0.15 and pw = 0.3), the proposed heuristic achieves 2.2%
degradation. Moreover, our proposed maximum weight clique
selection and maximum vertex search algorithms with values
of n considerably outperforms the maximum clique selection
algorithms in terms of average completion time. Finally, results
show that our proposed algorithms almost achieves the optimal
performance of the perfect FNC scheme. For a relatively large
network setting (M = 100 and N = 30) and relatively harsh
channel conditions (p = 0.15 and pw = 0.3), the proposed
optimal and heuristic clique selection algorithms achieve a
degradation of 1.3% and 3.6%, respectively, against the op-
timal completion time performance achieved by the perfect
FNC scheme. This near-optimal performance is achieved while
fully preserving the important and practical benefits of INDC

Fig. 4. Illustration of the potential uncertainty in lossy feedback scenarios,
given the SFM in Figure 1 and after sending packet 1⊕ 4

compared to FNC.

V. RECEPTION STATUS DISTRIBUTION

A. Reciprocal Probabilistic Feedback Loss Scenario

As previously mentioned, the possibility of having feed-
back loss events create uncertainty at the sender about the
reception status of the different receivers. In other words, the
sender does not perfectly know the packets received at the
different receivers so as to accurately determine subsequent
instantly decodable coded packets. This notion of uncertainty
is illustrated in Figure 4, in which the SFM of Figure 1 is
shown on the top left corner and the sender sends the packet
combination 1⊕ 4 with the aim to deliver packets 1 and 4 to
receivers 1 and 2, respectively. If the sender does not receive
feedback from both receivers 1 and 2, it cannot concretely
decide on whether to switch the entries f11 and f24 from 1 to
0 but would rather be uncertain about their status, as shown
in the top right SFM. This uncertainty results in a conditional
probability distribution (conditioned on the fact of unheard
feedback) over the four SFMs shown at the bottom, each
representing a combination of receiving or not receiving for
each of the two receivers. Since the uncertainty on the values
of f11 and f24 are independent from each other, we can focus
on the reception status distribution for only one receiver.

To compute the conditional pmf of a receiver’s reception
status given an unheard feedback event, we need to quantify
the probabilities of the different cases causing unheard feed-
back events at the sender after a single transmission. Given
the feedback model and the channel reciprocity condition
explained in Section II, the unheard feedback event from a
targeted receiver i could mean one of two sub-events:

1) The packet was not received by i and thus it did not issue
a feedback. This event can occur with probability pi.

2) The packet was received by i, and i issued a feedback
packet that did not arrive at the sender. This event can
occur with probability (1− pi)pi.

If any of these two events occurs, and if the packet intended
for receiver i is packet j, then the position fij in the feedback
matrix will be uncertain. It can be equal to 1 (packet not
received) if the first event occurred or 0 (packet received) if
the second event occurred. Consequently, an unheard feedback
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Fig. 5. Conditional pmf variation as a function of the erasure probability pi

event Ui from the targeted receiver i with packet j, will render
fij (which reflects the reception status of receiver i) a random
variable with Bernoulli pmf defined as:

P i
L|Ui

= P
(
fij = 1

∣∣Ui

)
=

pi

pi + (1− pi)pi

=
1

2− pi
(4)

P i
R|Ui

= P
(
fij = 0

∣∣Ui

)
=

(1− pi)pi

pi + (1− pi)pi

=
1− pi

2− pi
. (5)

Figure 5 depicts the variation in the conditional pmf of the
reception status at a targeted receiver i as a function of its
packet erasure probability pi, given an unheard feedback event.

It is clear from both the above two expressions and the
figure that, for any value of pi and given an unheard feedback
from a targeted receiver, the probability that this receiver lost
the packet is always greater than or equal to the probability
that it received it. In other words, given an unheard feedback
event from a receiver, the estimation of the sender that this
receiver did not receive the packet is the maximum likelihood
estimation. Nonetheless, Figure 5 shows that this likelihood is
not dominant. Even for a packet erasure probability of 0.5
at a receiver, making a decision that this receiver did not
receive the packet, given an unheard feedback event from it,
can be wrong with probability 0.34. In the next section, we
will employ the above observations to extend the operation of
our designed IDNC completion time reduction algorithms [1],
[2] to lossy feedback scenarios.

B. TDD Prolonged Feedback Loss Scenario

Unlike the probabilistic feedback loss scenario, the proba-
bility of not hearing a feedback from all the receivers is 1.

When a packet is sent from the sender, the probabilities of it
being received and lost at receiver i, given that no feedback
can be heard, are (1− pi) and pi, respectively. Consequently,
the likelihood of reception status of any receiver depends only
on its packet erasure probability. Since in most communication
systems, it is more likely that the packet erasure probability
is less than 0.5, the estimation of the sender that the receivers
received a transmitted packet is the maximum likelihood
estimation.

VI. BLIND IDNC ALGORITHMS

In both probabilistic and prolonged feedback loss scenarios,
the uncertainty in the reception status of different receivers,
studied in Section V, affects the ability of the sender to
both certainly determine the instant decodability conditions
of coded packets at the different receivers and efficiently
compute their PRCDs for prioritization. Clearly, this can
greatly affect the IDNC completion time. In other words,
the sender cannot directly employ the designed algorithms in
[1], [2], summarized in Section IV, to efficiently reduce the
IDNC completion time. To solve this problem, we propose and
compare three partially blind IDNC approaches that blindly
estimate the current reception status of all receivers, then
apply our efficient algorithms on the corresponding blindly
updated IDNC graph to select the cliques for the subsequent
transmissions. Each of the three approaches focuses on one
or more of the problem properties with the hope to achieve a
lower completion time.

A. Blind IDNC Graph Update

1) No Vertex Elimination (NVE):
In this approach, all the vertices in the IDNC graph, repre-

senting the served packet requests (represented by vertices)
with unheard feedback, are not removed from the graph and
are all kept in subsequent transmissions. These vertices (and
thus their packet requests) will be rapidly re-attempted in
this scenario, thus giving the chance to the sender to receive
feedback from these receivers and to determine their accurate
reception status. Nonetheless, this approach will widely re-
attempt a lot of vertices which, may slow down the steps of
the process towards completion.

According to the analysis in Section V-A, this approach
follows the maximum likelihood estimates of the system status
in the case of probabilistic feedback loss scenario. However,
Figure 5 shows that this likelihood is not always dominant.
Even for a relatively high packet loss rate such as 0.5, the NVE
approach may fall into many estimation errors. The effect of
this trade-off will be illustrated in Section VII-A.

For the prolonged feedback loss scenario, the NVE
approach is totally opposite to the maximum likelihood
estimation of the receivers’ reception status and thus is
expected to achieve a very high degradation.

2) Full Vertex Elimination (FVE):
In this approach, all attempted vertices with unheard feedback

in each transmission are eliminated from the graph. In case
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there are no remaining vertices in the graph while the system
did not receive the completion feedback from all receivers, the
sender retransmits combinations of the remaining uncertain
vertices. In the lossy feedback context, we can see that the
FVE approach results in an IDNC graph with only certain
vertices that are not attempted before. Consequently, using
FVE guarantees innovation in all generated packets regardless
of the uncertainty in the current reception status. For the
probabilistic feedback loss scenario, this innovation of FVE
comes at the cost of going against the maximum likelihood
estimates for all uncertain vertices. This most likely wrong
estimation not only deviates the system from its true state but
also reduces the perceived PICDs of the involved receivers at
the sender, which may result in prioritization errors and thus
may degrade the completion time performance.

For the prolonged feedback loss scenario, this approach
follows the maximum likelihood estimation of the system
status for packet erasure probabilities less than 0.5. For
higher packet erasure probability, FVE will not be the
maximum likelihood estimation of the system. Nonetheless,
the innovative approach of FVE may still make it achieve
a good performance. The effect of this trade-off will be
illustrated in Section VII-B.

3) Stochastic Vertex Elimination (SVE):
In this approach, the attempted vertices with unheard feedback
are eliminated from the graph probabilistically, according to
the reception probabilities of their inducing receivers. In case
of the probabilistic feedback loss scenario, when a vertex is
attempted in a transmission and no feedback is heard from
its receiver, the sender keeps this vertex in the graph with
probability P i

L|Ui
and eliminates it with probability P i

R|Ui
.

For the prolonged feedback loss scenario, the probabilities
of keeping and eliminating the unacknowledged vertices are
pi and (1 − pi), respectively. In case there are no remaining
vertices in the graph while the system did not receive the
completion feedback from all receivers, the sender retransmits
combinations of the remaining uncertain vertices.

SVE tends to balance the properties of both NVE and
FVE. Unlike NVE, SVE does not always keep the attempted
vertices with unheard feedback but rather gives some chance to
their elimination, proportionally to their conditional reception
probabilities. Thus, it tends to reduce the number of re-
attempted vertices and gives more opportunity to transmitting
new packets towards completion. On the other hand, SVE
better represents the conditional reception probabilities of the
receivers, compared to FVE, and thus can both re-attempt
the non-received vertices in an earlier stage and update the
feedback matrix earlier. This compromise between the NVE
and SVE properties may or may not succeed in reducing the
IDNC completion time, compared to both approaches, and is
thus interesting to consider and test.

B. Algorithm Implementation

After obtaining the blind updated graph, using one of the
approaches described in the previous sections, we can assign

Fig. 6. Average completion time for the probabilistic feedback loss scenario
vs M

the weights ψn
i to each vertex vij in the graph and perform

a maximum weight clique search algorithm or a maximum
weight vertex search algorithm, as explained in Section IV.

VII. SIMULATION RESULTS

In this section, we compare through extensive simulations
the performance of the three partially blind graph update
approaches, using both the maximum weight clique selection
algorithm (denoted by “opt”) and the maximum weight vertex
search algorithm (denoted by “srh”). We also compare the
performance of these approaches to those of the perfect
feedback (PF) IDNC algorithms, as a performance benchmark
for IDNC. For all the above cases, we will employ the
n = 3 realization of our proposed algorithms due to its good
performance shown in Figures 2 and 3.

A. Probabilistic Feedback Loss Scenario

Figure 6 depicts the comparison of the average completion
time achieved by the different algorithms against M for
N = 30, p = 0.15 and pw = 0.3. Figure 7 depicts the same
comparisons against the average and worst packet erasure
probabilities, for M = 60 and N = 30.

From Figure 7, we can see that NVE achieves the best
performance for the entire range of packet erasure probabili-
ties. At high erasure probabilities, the performance of FVE
considerably deviates from that of NVE and SVE because
assuming correct reception, at these probabilities, has a very
high chance of error. Thus, FVE will be assigning wrong
priorities to the receivers, which results in this considerable
degradation.

Figure 6 shows that FVE outperforms the other approaches
for very small numbers of receivers whereas NVE dominates
for more than 40 receivers. In both ranges, SVE achieves
an intermediate performance between the best and worst
approaches. This can be explained in the light of the char-
acteristics of the three approaches as follows. At low numbers
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Fig. 7. Average completion time for the probabilistic feedback loss scenario
vs p/pw

of receivers, the number of vertices in the IDNC graph is rela-
tively smaller compared to that at large numbers of receivers.
Consequently, the time needed by FVE, to both attempt all
these vertices and start to re-attempt unacknowledged vertices,
is small. Thus, FVE does not find the time to drift very far
from the actual system state and to fall in prioritization errors.
In this case, the packet innovation in FVE plays the role of
achieving its better performance over NVE. This innovation
property in SVE, being less than FVE and more than NVE,
makes it perform worse than the former and better than the
latter for this range of numbers of receives.

For large numbers of receivers, the larger size of the IDNC
graph makes the time for FVE to attempt all vertices longer.
Consequently, each receiver, whose last vertex or several
vertices were attempted but unacknowledged, will have to wait
longer for FVE to re-attempt them. This effect causes more
prioritization errors and a larger drift from the actual state of
the system, which greatly degrades the performance of FVE.
On the other hand, NVE reduces these effects since it both
better tracks the actual receivers’ reception status and leaves
the attempted vertices with unheard feedback in the graph,
which increases the speed of their transmission re-attempt,
recovery and feedback reception. For SVE, these faster re-
attempt and better maximum likelihood tracking properties,
being less than NVE and more than FVE, makes it perform
worse than the former and better than the latter for this range
of number of receivers.

Finally, we can observe a degradation in the average com-
pletion time obtained in the lossy feedback scenario compared
to the perfect feedback scenario. However, for a relatively
large network setting (M = 100, N = 30), a worst erasure
probability of 0.3, and a broadcast setting, this degradation in
the frame completion time reaches 3.9% and 7.1% for NVEopt
and NVEsrh, respectively, compared to the perfect feedback
algorithm performance. These two algorithm also achieve a

Fig. 8. Average completion time for the prolonged feedback loss scenario
vs M

degradation of 5.8% and 11.6%, respectively, against FNC,
which achieves the optimal completion time performance over
all network coding schemes. These degradation percentages
are clearly tolerable in such very large network and up to
30% feedback loss probability, which is typically very high
for signalling information.

B. Prolonged Feedback Loss Scenario

Figure 8 depicts the average completion time of the three
proposed blind IDNC algorithms with that of the prompt
feedback, against M , for N = 30, Tf = 5, p = 0.15 and
pw = 0.3. Figure 9 depicts the completion time comparison
against Tf , for M = 60, N = 30 and µ = 0.5. Finally,
Figure 10 depicts the average completion time comparison
against the packet erasure probability for M = 60, N = 30,
Tf = 5 and µ = 10.5. In Figure 10, we assume that all
the receivers have the same packet erasure probability, which
is equal to the corresponding value on the x-axis for each
simulation point.

From all three figures, we can see that the FVE approach
achieves the best completion delay performance compared to
the other three approaches for both the optimal and search
clique selection algorithms. This clearly shows that the differ-
ent trade-offs introduced in the other three approaches tend to
degrade the performance rather than improving it.

Another important observation is the degradation in average
completion delay obtained in the limited feedback scenario
compared to the full feedback scenario, which naturally in-
creases with the increase of the feedback period. However, for
a relatively large network setting (M = 100, N = 30) and a
considerable feedback period value (Tf = 5), this degradation
reaches 3 and 3.5 transmissions for the FVEopt and FVEsrh
algorithms, respectively, compared to their corresponding full
feedback algorithms (depicted in Figure 8). This results in an
overall degradation in the completion time of 6% and 6.5% for
FVEopt and FVEsrh, respectively. These two algorithms also
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Fig. 9. Average completion time for the prolonged feedback loss scenario
vs Tf

Fig. 10. Average completion time for the prolonged feedback loss scenario
vs p

achieve a degradation of 7.7% and 9.7%, respectively, against
the optimal completion time performance achieved by FNC.
These degradation percentages are clearly tolerable given the
80% reduction in the feedback frequency, a reduction that is
of extreme importance in many practical network settings as
explained in Section I.

Finally, we observe from Figure 10 that FVE still out-
performs SVE even for high erasure probabilities, where re-
attempting the vertices earlier would have been intuitively
better. The reason for this performance of FVE is both the
innovation of packets within the feedback period and the re-
attempt of non-received vertices after feedback instants.

VIII. CONCLUSION

In this paper, we studied the effects of probabilistic and
prolonged feedback loss events on the broadcast completion

time of IDNC. We first identified the different possibilities
of feedback loss events at the sender and determined their
probabilities in both probabilistic and prolonged packet feed-
back loss scenarios. Given these probabilities and the nature of
the IDNC completion time problem, we designed three blind
instantly decodable network coding approaches that perform
coding decisions similar to the algorithms proposed in [1],
[2], but on blindly updated graphs to account for feedback
events. These three approaches are then tested through exten-
sive simulations. For the probabilistic feedback loss scenario,
results show that the no vertex elimination approach, which
keeps all uncertain vertices in the graph and considers them
in subsequent coding decisions, achieves both the best per-
formance compared to the other approaches and a tolerable
degradation, against the perfect feedback performance, for
relatively high feedback erasure probabilities. In contrast, the
full vertex elimination approach, which removes all uncertain
vertices from the graph and ignores them in subsequent
coding decisions, both outperforms the other approaches in the
prolonged feedback loss scenario and can achieve a tolerable
degradation for relatively large feedback loss periods.
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