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Abstract—In this paper, we study the effect of packet feedback
loss events on the broadcast completion delay performance of
instantly decodable network coding. These feedback loss events
result in a continuous lack of knowledge about the reception
status at different subsets of receivers. This lack of knowledge
creates a challenge in selecting efficient packet combinations
in subsequent transmissions. To solve this problem, we first
identify the different possibilities of unheard feedback events
at the sender and determine their probabilities. Given these
probabilities and the nature of the problem, we design three
partially blind instantly decodable network coding approaches
that perform coding decisions similar to the algorithms proposed
in [1], [2], but on blindly updated graphs to account for unheard
feedback events. These three approaches are then compared
through extensive simulations. Results show that re-considering
all the attempted packet requests, with unheard feedback, in
subsequent coding decisions can achieve a tolerable degradation
against the perfect feedback performance for relatively high
feedback loss probabilities.

Index Terms—Wireless Broadcast; Instantly Decodable Net-
work Coding; Lossy Feedback.

I. INTRODUCTION

Network coding applications in packet transmission and
recovery over wireless erasure channels have recently attracted
much attention [1], [3]–[7]. In [1], [6], [7], an important
subclass of network coding, namely the instantly decodable
network coding (IDNC), was considered due to its numerous
desirable properties, such as instant packet recovery, simple
XOR-based packet encoding and decoding, and no buffer
requirements.

One major drawback of IDNC is that it is not a rate-optimal
approach and thus may result in high completion delay and low
throughput. In [1], [2], we studied the problem of minimizing
the completion delay in IDNC and showed that finding its
optimal solution is intractable. Nonetheless, we employed the
problem properties and structure to design simple maximum
weight clique search algorithms, which were shown to almost
achieve the optimal completion delay performance in wireless
multicast and broadcast scenarios. In [8], we extended our
proposed algorithms to the case of intermittent feedback, in
which feedback is received accurately at the sender but after
several packet transmissions.

The proposed algorithms in [1], [2], [8] and most other
opportunistic network coding works assume that the received
feedback from all the receivers is perfect and is not subject

to losses. Although a high level of protection for feedback
packets can be employed in several network settings, such as
cellular and WiMAX systems, unavoidable occasions of deep
fading over wireless channels can still expose them to loss
events. Moreover, other network settings cannot guarantee the
correct arrival of each feedback packet at the sender due to
transmission power limitations and possible interference with
other feedback.

In these lossy feedback scenarios, the sender will receive
feedback packets from only a subset of the targeted receivers,
after a given transmission, and thus the status of these receivers
can be updated in the IDNC graph [2]. For the other targeted
receivers whose feedback is not heard at the sender, the latest
status of packet reception and requests will be unknown.
Consequently, the sender must blindly estimate the status of
these receivers, in order to perform the subsequent IDNC
transmission. In this following transmission, the sender may
receive feedback packets from some of these receivers but will
loose the feedback of others. Consequently, the sender must
continuously perform partially blind IDNC decisions until a
correct completion feedback is received from all the receivers.

In this paper, we address the following question: How can
we extend our proposed IDNC algorithms to efficiently operate
in lossy feedback scenarios? To the best of our knowledge, this
paper is a first step in studying the effect of feedback losses on
the completion delay of IDNC. It both identifies the different
possibilities of the sender’s uncertainties in events of unheard
feedback and proposes some approaches to deal with these
uncertainties so as to reduce the IDNC completion delay.

We first compute the probability mass function (pmf) of the
receiver’s reception status, given an unheard feedback event
from this receiver. Given this pmf and the properties of the
completion delay problem, we design three partially blind
instantly decodable network coding approaches that perform
coding decisions according to the identified strategy in [1],
[2] but using blindly updated IDNC graphs to account for
unheard feedback events. We then test these three approaches
of partially blind graph updates and compare their performance
through extensive simulations.

The rest of the paper is organized as follows. In Section II,
we introduce the system model and parameters. The IDNC
graph is illustrated in Section III. In Section IV, we derive
the pmf of the receiver’s reception status in lossy feedback



scenarios. Our proposed modified IDNC algorithms with the
three different partially blind graph update approaches are
introduced in Section V-D and their performance is compared
in Section VI. Finally, Section VII concludes the paper.

II. SYSTEM MODEL AND PARAMETERS

The model consists of a wireless sender that is required
to deliver a frame (denoted by N ) of N source packets to
a set (denoted by M) of M receivers. The sender initially
transmits the N packets of the frame uncoded in an initial
transmission phase. Each sent packet is subject to loss (a.k.a.
erasure) at receiver i with probability pi, which is assumed to
be fixed during the frame transmission period. Each receiver
listens to all transmitted packets and feeds back to the sender a
positive acknowledgement (ACK) for each received packet. By
the end of the initial transmission phase, two sets of packets
are attributed to each receiver i:
• The Has set (denoted by Hi) is defined as the set of

packets correctly received by receiver i.
• The Wants set (denoted by Wi) is defined as the set

of packets that are lost by receiver i in the initial
transmission phase of the current broadcast frame. In
other words, Wi = N \Hi.

The sender stores this information in a state feedback matrix
(SFM) F = [fij ] , ∀ i ∈ M, j ∈ N , such that fij = 0 if
j ∈ Hi and fij = 1 if j ∈ Wi.

After the initial transmission phase, a recovery transmission
phase starts. In this phase, the sender exploits the SFM to
transmit XORed combinations of the source packets. We
define the targeted receivers by a transmission as the receivers
than can instantly decode the sent packet in this transmission
to extract a new source packet. The non-targeted receivers that
receive non-instantly decodable packets discard them. After
each transmission, the targeted receivers, which receive the
coded packet, send ACK packets that are used by the sender
to update the SFM. Note that this condition implies that a
targeted receiver, which lost the sender’s transmission, will not
generate a feedback since it would not know it was originally
targeted. This process is repeated until all receivers declare that
they obtained all the packets. We define the completion delay
of a frame as the number of recovery transmissions required
until all receivers obtain all the packets.

To be fair in comparison with the original perfect feedback
formulation and algorithms in [1], [2], in terms of feedback
frequency, we assume that a receiver does not send any
feedback unless it is targeted by a packet. In other words, if
a feedback is lost by one of the targeted receivers, the sender
will not get any feedback from this receiver until the next
transmission in which it is targeted. We also assume that each
feedback sent from a receiver includes acknowledgements of
all previously received packets. Finally, we assume channel
reciprocity, which means that the packet loss probabilities seen
by any receiver i, on both forward (sender to receiver) and
reverse (receiver to sender) links, are the same and are both
equal to pi.

Fig. 1. Illustration of the potential uncertainty in lossy feedback scenarios

III. IDNC GRAPH

The IDNC graph is a graph that defines the set of all
feasible instantly decodable packet combinations. It was first
introduced in the context of a heuristic algorithm design
solving the index coding problem [9], [10] and was extended
to IDNC in [11]. The IDNC graph G is constructed by first
generating a vertex vij in G for each packet j ∈ Wi, ∀ i ∈M.
Two vertices vij and vkl in G are adjacent if one of the
following conditions is true:
• j = l ⇒ The two vertices are induced by the loss of the

same packet j by two different receivers i and k.
• j ∈ Hk and l ∈ Hi ⇒ The requested packet of each

vertex is in the Has set of the receiver that induced the
other vertex.

Consequently, each edge between two vertices in the graph
represents a coding opportunity that is instantly decodable for
the two receivers inducing these vertices. Given this graph
formulation, we can easily define the set of all feasible packet
combinations in IDNC as the set of packet combinations
defined by all cliques in G. Consequently, the sender can
generate an IDNC packet for a transmission by XORing all
the packets identified by the vertices of a selected clique in G.

IV. RECEPTION STATUS DISTRIBUTION

As previously mentioned, the presence of a probability of
feedback loss creates uncertainties at the sender about the re-
ception status of the targeted receivers with unheard feedback.
In other words, the sender does not perfectly know the packets
received at the different receivers so as to accurately determine
subsequent instantly decodable coded packets. This notion of
uncertainty is illustrated in Figure 1, in which the SFM is as
shown on the top left corner and the sender sends the packet
combination 1⊕ 4 with the aim to deliver packets 1 and 4 to
receivers 1 and 2, respectively. If the sender does not receive
feedback from both receivers 1 and 2, it cannot concretely
decide on whether to switch the entries f11 and f24 from 1 to
0 but would rather be uncertain about their status, as shown
in the top right SFM. This uncertainty results in a conditional
probability distribution (conditioned on the fact of unheard
feedback) over the four SFMs shown at the bottom. Since the
uncertainty on the values of f11 and f24 are independent from
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Fig. 2. Conditional pmf variation as a function of the loss probability pi

each other, we can focus on the reception status distribution
for only one receiver.

To compute the conditional pmf of a receiver’s reception
status given an unheard feedback, we need to quantify the
probabilities of the different cases causing unheard feedback
events at the sender after a single transmission. Given the feed-
back model and the channel reciprocity condition explained in
Section II, the unheard feedback event from a targeted receiver
i could mean one of two sub-events:

1) The packet was not received by i and thus it did not issue
a feedback. This event can occur with probability pi.

2) The packet was received by i, and i issued a feedback
packet that did not arrive at the sender. This event can
occur with probability (1− pi)pi.

If any of these two events occurs, and if the packet intended
for receiver i is packet j, then the position fij in the feedback
matrix will be uncertain. It can be equal to 1 (packet not
received) if the first event occurred or 0 (packet received) if
the second event occurred. Consequently, an unheard feedback
event Ui from the targeted receiver i with packet j, will render
fij (which reflects the reception status of receiver i) a random
variable with Bernoulli pmf defined as:

P i
L|Ui

= P
(
fij = 1

∣∣Ui

)
=

pi
pi + (1− pi)pi

=
1

2− pi
(1)

P i
R|Ui

= P
(
fij = 0

∣∣Ui

)
=

(1− pi)pi
pi + (1− pi)pi

=
1− pi
2− pi

. (2)

Figure 2 depicts the variation in the conditional pmf of the
reception status at a targeted receiver i as a function of its
packet loss probability pi, given an unheard feedback event.

It is clear from both the above two expressions and the figure

that, for any value of pi and given an unheard feedback from a
targeted receiver, the probability that this receiver has lost the
packet is always greater than or equal to the probability that
it has received it. In other words, given an unheard feedback
event from a receiver, the estimation of the sender that this
receiver did not receive the packet is the maximum likelihood
estimation. Nonetheless, Figure 2 shows that this likelihood
is not dominant. Even for a packet loss probability of 0.5
at a receiver, making a decision that this receiver did not
receive the packet, given an unheard feedback event from it,
can be wrong with probability 0.34. In the next section, we
will employ the above observations to extend the operation
of our designed IDNC completion delay reduction algorithms
[1], [2] to lossy feedback scenarios.

V. PARTIALLY BLIND IDNC ALGORITHMS

In [1], we showed that the IDNC completion delay in
the perfect feedback problem is significantly reduced if the
sender gives more priority to targeting the receivers with larger
values of ψi ,

|Wi|
1−pi

. This parameter represents the expected
residual completion delay of receiver i if it is persistently
targeted in all transmissions until completion. We will refer
to it as persistent residual completion delay (PRCD). This
prioritization is implemented by assigning a weight ψi to each
vertex vij in the IDNC graph [1]. In [2], we generalized the
vertex weights to be ψn

i , where n determines the degree of
bias given to receivers with higher PRCDs. The set of targeted
receivers for each transmission can then be determined by
running a maximum weight clique search over this weighted
IDNC graph.

In the lossy feedback scenarios, the uncertainty in the
reception status of different receivers, studied in Section IV,
affects the ability of the sender to both determine the instant
decodability conditions of coded packets at the different re-
ceivers and efficiently compute their PRCDs for prioritization.
Clearly, this can greatly affect the IDNC completion delay. In
other words, the sender cannot directly employ the designed
algorithms in [1], [2] to efficiently reduce the IDNC com-
pletion delay. To solve this problem, we propose and compare
three partially blind IDNC approaches that estimate the current
reception status of all receivers, then apply our efficient
algorithms on the corresponding blindly updated IDNC graph,
to select the subsequent transmission’s clique. Each of the
three approaches focuses on one or more of the problem
properties with the hope to achieve a lower completion delay.

A. No Vertex Elimination (NVE)

In this approach, all the vertices in of a transmission,
for which the sender did not hear a feedback, are all kept
in the graph and are all considered for potential service in
subsequent transmissions, until a feedback is received for
them. According to the analysis in Section IV, this approach
follows the maximum likelihood estimates for all uncertain
vertices in subsequent transmissions. Moreover, these vertices
(and thus their packet requests) will be rapidly re-attempted,
thus giving the chance to the sender to receive feedback from
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these receivers and to determine their accurate reception status.
This approach will widely re-attempt a lot of vertices, which
may slow down the steps towards completion. Moreover,
Figure 2 shows that, even for a relatively high packet loss rate
such as 0.5, the NVE approach may fall into many estimation
errors and thus may result in worse performance.

B. Full Vertex Elimination (FVE)

In this approach, all attempted vertices with unheard feed-
back, in each transmission, are eliminated from the graph. In
case there are no remaining vertices in the graph while the sys-
tem did not receiver completion feedback from all receivers,
the sender retransmits combinations of the remaining uncertain
vertices. In the lossy feedback context, we can see that the
FVE approach results in IDNC graphs including only the
vertices that have never been attempted before. Consequently,
FVE guarantees the innovation of all transmitted coded pack-
ets, regardless of the uncertainty in the partially observed
system status. Nonetheless, this innovation comes at the cost
of going against the maximum likelihood estimates for all
uncertain vertices. Given these most likely wrong elimination
decisions in FVE, the sender will always underestimate both
the system state and the PRCDs of some receivers, which
may result in prioritization errors and thus may degrade the
completion delay performance.

C. Stochastic Vertex Elimination (SVE)

In this approach, the attempted vertices with unheard feed-
back are eliminated from the graph probabilistically, according
to the conditional reception probabilities of their inducing
receivers. When a vertex is attempted in a transmission and
no feedback is heard from its receiver, the sender keeps this
vertex in the graph with probability P i

L|Ui
and eliminates it

with probability P i
R|Ui

. In case there are no remaining vertices
in the graph while the system did not receiver completion feed-
back from all receivers, the sender retransmits combinations
of the remaining uncertain vertices.

SVE tends to balance the properties of both NVE and
FVE. Unlike NVE, SVE does not always keep the attempted
vertices with unheard feedback but rather give some chance to
their elimination, proportionally to their conditional reception
probabilities. Thus, it tends to reduce the number of re-
attempted vertices and gives more opportunity to transmitting
new packets towards completion. On the other hand, SVE
better represents the conditional reception probabilities of the
receivers, compared to FVE, and thus can both re-attempt the
non-received vertices and update the feedback matrix earlier.

D. Algorithm Implementation

After obtaining the partially blind updated graph, using
one of the approaches described in the previous sections, we
can assign the weights ψn

i to each vertex vij in the graph
and perform a maximum weight clique search algorithm, as
proposed in [1], [2]. The maximum weight clique selection
algorithm is known to be NP-hard but can be exactly solved
in polynomial time for non-large graphs [12]. Nonetheless, this

Fig. 3. Average completion delay vs p/pw

complexity may still be prohibitive in large networks. For these
cases, we can employ the quadratic time maximum weight
vertex search algorithm, also proposed in [1], [2]. In this
algorithm, the weights of the vertices are defined as follows.
Define aij,kl as the adjacency indicator of vertices vij and
vkl in G such that aij,kl = 1 if they are adjacent and is zero
otherwise. We then define the vertex weight of vertex vij as:

wij = ψn
i

∑
∀vkl∈G

aij,kl ψ
n
k . (3)

Thus, a large vertex weight reflects both its high PRCD and its
adjacency to a large number of vertices belonging to receivers
with large PRCDs. The cliques in this algorithm are thus built
by sequentially selecting the maximum weight vertex from
among the ones that are adjacent to all previously selected
ones. In each step, the vertex weights are recomputed within
this adjacent subgraph only, as explained in [1], [2].

VI. SIMULATION RESULTS

In this section, we compare through extensive simulations
the performance of the three partially blind graph update
approaches, using both the maximum weight clique selection
algorithm (denoted by “opt”) and the maximum weight vertex
search algorithm (denoted by “srh”). We also compare the
performance of these approaches to those of the perfect
feedback (PF) IDNC algorithms, as a performance benchmark
for IDNC. For all the above cases, we will employ the
n = 3 realization of our proposed algorithms due to its best
performance in [2].

Figure 3 depicts the comparison of the average completion
delay, achieved by the different algorithms, against the av-
erage and worst packet loss probabilities, for M = 60 and
N = 30. For each point (p/pw) in the x-axis, the packet loss
probabilities of different receivers are random variables with
mean p and worst-case value of pw. Figure 4 depicts the same
comparisons against M for N = 30, p = 0.15 and pw = 0.3.
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Fig. 4. Average completion delay vs M

From Figure 3, we can see that NVE achieves the best
performance for the entire range of loss probabilities. At
high loss probabilities, the performance of FVE considerably
deviates from that of NVE and SVE as, at these probabilities,
assuming correct reception has a very high chance of error.
Thus, FVE will be assigning wrong priorities to the receivers,
which results in this considerable degradation.

Figure 4 shows that FVE outperforms the other techniques
for very small receiver population whereas NVE dominates
for more than 40 receivers. This can be explained in the
light of the characteristics of the two approaches as follows.
At low number of receivers, the number of vertices in the
IDNC graph is relatively smaller compared to that at large
numbers of receivers. Consequently, the time needed by FVE,
to both attempt all these vertices and start to re-attempt
unacknowledged vertices, is small. Consequently, FVE does
not find the time to drift very far from the actual system
state and to fall in prioritization errors. In this case, the
packet innovation in FVE plays the role of achieving its better
performance over NVE.

For large numbers of receivers, the larger size of the IDNC
graph makes the time for FVE to attempt all vertices longer.
Consequently, each receiver, whose last vertex or several
vertices were attempted but unacknowledged, will have to wait
longer for FVE to re-attempt them. This effect causes more
prioritization errors and a longer drift from the actual state of
the system, which greatly degrades the performance of FVE.
On the other hand, NVE reduces these effects since it both
better tracks the actual receivers’ reception status and leaves
the attempted vertices with unheard feedback in the graph,
which increases the speed of their transmission re-attempt,
recovery and feedback reception.

Finally, we can observe a degradation in the average com-
pletion delay obtained in the lossy feedback scenario compared
to the perfect feedback scenario. However, for a relatively
large network setting (M = 100, N = 30), a worst loss

probability of 0.3, and a broadcast setting, this degradation
in the frame delivery duration (from the start of the frame
transmission until its reception at all receivers) reaches 3.9%
and 7.1% for NVEopt and NVEsrh, respectively, compared
to the perfect feedback algorithm performance. These values
are clearly tolerable in such large networks and up to 30%
feedback loss probability, which is typically very high for
signalling information.

VII. CONCLUSION

In this paper, we studied the effect of packet feedback
loss events on the broadcast completion delay of IDNC. To
overcome the uncertainty arising in this lossy feedback envi-
ronment, we first computed the conditional pmf of the different
possibilities given unheard feedback events at the sender.
Given this pmf and the nature of the problem, we designed
and compared three partially blind instantly decodable network
coding approaches that perform coding decisions similar to
the algorithms proposed in [1], [2], but on blindly updated
graphs to account for unheard feedback events. Simulation
results show that the no-elimination of vertices can achieve
both the best performance for a wide range of scenarios and a
tolerable degradation against the perfect feedback performance
for relatively high feedback loss probabilities.
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