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Abstract: Point source modeling is frequently used in m a y  processing. Although this assumption is good for many applications, thm 
are some situations where point source modeling is unrealistic. For instance, in a multi-beam echo sounder, a reflected signal from the scs 
floor appears as a spatially extended source. In this paper we investigate distributed sources. The approach is based on the a ~ s u m p t i ~  
that the correlation kernel of the distributed source belongs to a family of parametric functions. We generalize the MUSIC algorithm to 
distributed signal parameter estimator (DSPE). The DSPE locaZizer minimizes a scdar product between an estimated basis for the noise 
subspace and the m a y  manifold. We study two cases corresponding to completely correlated and totally uncorrelated signal distributions, 
We also discuss limitations of the application of ordinary beamformer techniques to spatially distributed signals by computing the m a y  
gain. It is shown that the array gain is upper bounded by a value which depends on the extension width of the source. Thus increasing 
the number of the sensors in a beamformer does not necessarily increase the resolution. 

1. Introduction 
A common assumption in array processing is that the signals are 
generated by sources that are highly localized in space (point 
sources). This modeling of a source is not a valid assumption 
in some applications. In a multi-beam echo sounder the penetra- 
tion of the signal into the sea floor and reflection from different 
layers creates a spatially distributed source Ill. In radar, if the 
target is spread in range, the reflection of the signal from the tar- 
get is observed as a spatially extended signd [2]. When a signal 
is distributed in space, it is usually modeled as a spatially colored 
noise 131. The spatial extension of signal might occur in other a p  
plications such as reflection of sound in a reverberant room and 
comrnuni cat ions through the refkc tion from the ionosphere and 
the troposphere. 

In past, extended sources were treated as a cluster of point 
sources [I]. For such a model the dimensionality of the signal s u b  
space grows with the number of point signals. To obtain a unqiue 
solution for this model, the number of point signals (the dimen- 
sion of the signal subspace) should be smaller than the number 
of sensors (the dimension of the observation space). Thus, if the 
number of sensors is not large enough, the clustered point sources 
approximation will not provide a precise model of a distributed 
source. 

Recently, we have presented a new method for the localiza- 
tion of spatially distributed sources (41. This method is based on 
a parametric model for the spatial correlation function of the sig- 
nal and has been applied to localization of coherently distributed 
(CD) and ir1col1e1-ontly distributed (ID) source. The present paper 
is a continuation of the previous work. In this paper we provide 
additional details about the derivation of the method. h par- 
ticular, we show that the n e w  rnetllod is a generalization of the 
MUSIC algorithm. Furthermore, we study the performance of a 
conventional beamformer for distributed sources by finding the 
array gain for a uniform linear array. 

2. Distributed source modeling 
Assume a scenario with q spatially distributed narrowband sources 
arriving at an array of p sensors. The array output vector in the 

frequency domain can be formulated by 

where a(8) is the p x 1 location vector, II is the p x 1 noise vtc- 

tor, and si (0; rL i )  is the t m g ~ l z u  signal density of the i-th source 
which is aiso a function of the angle-of-arrival 8 and the parameter 
vector 7Li. The two limits of the directions-of-amid (DO As) for 
a uniform source distribution, and the angle of maximum power 
and the -3 dB extension width for a bell-shaped distribution art 
examples of the parameters. 

The time samples of the noise vector are rnodeld as zem 
mean, independent, circular, complex Gaussian random variabkea 
and uncorrelated from the signals. It is assumed that the noise is 
spatially white. The white noise assumption can be relaxed if the 
correlation matrix of the noise is known but for a scalar. With 
these assumptions the correlation matrix of the array output is 
given by 

where aZ, is the noise power and 

P*, (ere'; $i = Elsa (0; $i)sJ (0'; $j j)] (3) 

is the angular cross-correlation kernel parameterized in terms of 
the unknown parameter vectors $i and q&, . The superscripts 
and * represent the Hermitian transposition and the complex con- 
jugation, respectively. In this paper we assume that the source 
are uncorrelated from each other which results in a simplification 
of ~ i j ( e , O ' ;  tti,+j) to 

~ i j ( 0 , 9 ' ;  @ J )  = ~(6~0'; 1Li)6i, (4) 

where SSJ is the Kronecker delta and the same parametric model 
is used for aI1 sources. This constraint can be relaxed if we model 
correlated sources as a single source with a new parametric corrc- 
lation kernel which is the addition of the angular cross-correlation 
kernel of the sources. 

If the signal components corresponding to different directions- 
of-arrival [ DO As) are uncorrelated, the angular cross-correlation 
kernel can be further simplified to 

P ( Q ~  8' ;  Jlr ) = p ( # ;  $, )6(8  - 8 ' )  Is) 
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#here q; is a scdar representing the power of the i-th source ob- 
,,,,,d at the reference point of the array, the superscript * shows 

complex conjugation, and gi f 8; $i 1ri) is a complex deterministic 
,plar signal density defined in the interval (y and normal- 
ized according to 

I 1; ~ ( 4  & ) d B  = I- (7 )  

In pactice the signd components at different anglee might be 
correlated. Partially correlated signds can be localized 

using the same method s for ID signals, 

3. The array gain 
~eamfomere improve the array output SNR by steering a beam 

the the direction of a signal. Because of the ease of implemen- 
tation, these methods are practically important. However, they 
have relatively low resolution. A large number of sensors must be 
used in a conventiond 15eamformer to achieve a high resolution. 
For point sources the array gain can be improved by increasing 
the number of sensors. Here, we show that for distributed sources 
the spatial correlation function of the signd is upper bounded by 
an exponentially decreasing function. Then, we derive the array 
gain and show that i t  is bounded and thus cannot increase linearly 
w i t h  the numberof sensors. For the specificcaseof CD sources, we 
show that the array gain attains a maximum and then decreases 
exponentially as the number of sensors becomes very large. 

The gain of an array of sensors is defined as the ratio of the 
SNR at the m a y  output to the SNR at a single sensor [6]. As- 
suming that the noise is spatially white arid that a conventional 
beamformer is used, the array gain is given by 

where a is the location vector of the array steered towards the 
direction of interest and Rs is the correlation matrix of the array 
output in a noise-free environment. 

3.1. The CD source case 

:Issume that the array output can be observed along a continuous 
linear aperture and denote the observation at point t by ~ ( 2 ) .  For 
n single CD source in a noise-free environment we have 

J - x  

where -y is a zero-mean complex Gaussian random variable and 
3 ( 0 ;  $1 is the normalized deterministic angular signal density. AS- 
suming that the source is uniformly distributed around 8 0 ,  i.e., 

1 he observation vector can be written as 

For a small A, it is straightforward to show that 

Property 1. For a arnijam CD soume wifh a small eziension, 
the spatial correlation fanciion at the points zl and z2 in a noise- 
b e e  enviwnmcnt t bounded iy 

An example of the correlation between two points on a linear 
m a y  for a uniform CD source is depicted in Fig. 1. It ia assumed 
that the first point is the phase rtference of the array. The second 
point varies along the array. The envelope of the correlation func- 
tion exponentially decreases with the separation between the two 
points. Thus, as the aperture length of the may increases, the 
correlation between widely stparated sensors decreases and the 
corresponding signals cannot be coherently added to increase the 
SNR. This suggests that the array gain does not increase linearly 
with the number of senmrs. 

For a uniform linear array with half the wavelengf h spacing 
between semors, the component of the observation (12) at the 
position of the I-th sensor is 

=t :I T,$*i sin 80 sinc(lA cos O0 ) . 
(14) 

Assuming that the power of the source is unity and O0 = 0, the 
array gain is given by 

Note that for A = 0 the array gain is equal to p which is the 
gain of a point source scenario. For A # 0 and large p, the sum 
in (1 5) is approximated by n/2  which reveais that the array gain 
decreases with a rate of I/p. The array gain for a CD source as 
a function of the number of sensors p is illustrated in Fig. 2. The 
array gain has a maximum which depends on the extension width. 
Increasing the number of the sensors beyond the maximum point 
decreases the may gain. We have found that at the maximum 
point, the array length p,,, can be approximatedas 

P,,,AO = 40 (16) 

where A* is the extension width measured in degrees. * 

3 3 .  The ID source case - 

For an ID a o u m  the spatial cross-correlation function at the two 
observation points 2 and t' is given by (41 

Ftom this we can easily arrive at the following resdt. 

Property 2. FOT u uniform ID source with a small extension 
width, the spatial cornlat ion junction decreases exponentially with 
the separation and i a  upper bounded by 

where h' i s  a positive scalar. 

Since the spat i d  correlation function decreases exponentially 
with distance, the array gain cannot increase linearly with the 
number of sensors. For a unifonn linear array with half the wave- 
length spacing be tween sensors, the spatial cross-correlation func- 
tion between the I-th and the k-th sensors is given by 

Assuming that do = 0, the array gain is given by 



Again, it is seen that for A = 0, we obtain the same result as a 
point source c w .  With 8 change of variable Lhe m y  g i n  can 
be represented as 

The array gain for an ID source is depicted in Fig. 3. For a fixed 
extension width,  the maximum array gain for the ID source is 
higher than that for the CD source. 

4. A generalization of MUSIC 
Let us denote by L2 [- :, 51 the Hilbert space of aIl complex vaI- 
ued square integrable functions defined over the interval [- 5,: 1. 
The inner product and the norm in this space are defined by 

where the subscript c indicates the continuous nature of the wave 
farm. According to (11, the observation vector x a t  the array 
output can be expressed as 

where L is s linear operator that maps L2 [-$ ,,$I into a complex 
observation vector space [CP with dimensionabty p such that 

The inner product and the norm in UY are defined by 

where the subscript d indicates the discrete nature of the function. 
The adjoint operator C+ : U?' -+ L2[- 5, $1 satisfies 

For the linear operator (26),  we have 

Thus the adjoint is given by 

C+x = aH ( e ) ~ .  
As a starting point, we extend the definition of the signal and 

noise subspaces to distributed sources. Note that the source signal 
si (0; +i ) in (24) is a random signal which is dso a function of the 
DOA 8 and the parameter vector tL,. By the source subspace we 
mean the span of all realizations of the source signals s, (0; $;), i = 
1 . . , q where the $; 's are fixed. This subspace is denoted by S 
and is defined as 

S = Spanis, (0; $;) : i = I ,  . . . , q,  and all realizations). (32)  

The source subspace S is a subspace of L2 f - $ ,TI .  The range 
of the linear operator L under S is the signal subspace and is 
represented by 

R = { L s  : a l l s E S ) .  (33) 

The orthogonal complement of 7: is the noise subspace and is 
denoted by  Ri . I t  can be shown that the range of the adjoint 
operator C+ , w h e n  the domain i s  restricted to the noise subspace 
7ZL,  is t 1lc o r t  ImgonaI cornplerncnt or LC which  is reI)resented hy 

5'- . The above concept at the signal and noise subspaces be 
reconciled with the conventional definitions for the point m- 
case [S]. 

We now derive a MUSIC type algorithm for distributed 
parameter estimation. In 141 we have defined the concept of tb 
effective dimension of the signal subspace. For distributed sou- 
the signal component might extend to the whole observation -, 
For such sign& the dirneniondity of the signal subspace h p tb 
number of aemom. The effective dimension of the signal subapace 
has been defined as the dimension of the subspace which c o n t b  
95 percent of the total energy of the signal. For localization 4 
distributed sources we use the effective dimension of the 14- 
subspace to estimate the noise eigenvectors. 

Suppose that 7ZL has dimension p-qe  where qc is the effcctiw 
dimension of the signal subspace, and we have a basis for 721 *Y  e . . ,  e ,  and let E n  = [e ll...,e,-,,]. Since e i * ~  are 
72 L, their transformation under L+ will be in SL , i.e. 

Thus for all a($) E S we have 

In (32) the source subspace S was defined as the span of the 
functions si (0 ;  t l i ) .  Hence (35) can be written as 

for all realizations of si (6; $ i ) ,  and for i = I , .  . . , g. Since si (8; +ii) 
is a random function, this is equivalent to 

for i = 1,. . . , q. Using ( 3 )  and (4) this equation can be expressed 
a% 

far i = I . . . , q. We propose that the parameter vector be esti- 
mated by locating the peaks of 

We cdl  this method the distributed signal parameter estimator 
(DSPE). The spectrum of the DSPE algorithm is searched in sn 
m-dimensional space for q local maxima where m is the dimension 
of the parameter vector $J. The maximum points correspond to 
the estimates of the parameter vector. 

5. Some simulation results 

In this section we show how the DSPE technique can localize dis- 
tributed sources. Here we only consider a single ID source with 8 

uniform correlation kernel. The source is arriving from 10 degrm 
wi th  an extension of 3 degrees at a uniformly spaced m a y  oi 20 
sensors. Fig. 4 shows the spectrum of the DSPE localizer. The 
prominent peak in this spectrum corresponds to the distributed 
source. As it is seen the method successfully localizes the source. 
In this simulation we have used 2 eigenvalues for the signal sub 
space. The spectrum of the corresponding MUSIC algorithm can 
be read in the figure by putting A = 0. For a complete set of 
simulations see 151. 



6. Summary 
~ h j s  paper is a continuation of a previous work for distributed 

localization id]. It has been assumed that the spatial cor- 
relation kernel of the signals is chosen from a parametric class 
,[functions. We have generalized the MUSIC algorithm so that 
it can localize distributed sources. The new technique has been 
cdled a distributed source parameter estimator (DSPE). The new 
d p i  t hm can localize the extended sources by minimizing a scalar 

between the back- transform of the noise eigenvectors and 
a basis for the source subspace- Furthermore, we have studied the 

d a conventional beamformer by finding the array 
p in  for a uniform linear array. We have shown that the gain of B 

conventional beamformer is bounded with increasing the number 
of sensors. 
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location of ihe second scnsor (multiples of half wavdength) 

Fig. 1 Spatial cross-correlation for a uniform CD source. 
I The first seilsor is positioned at the phase reference point.) 

Fig. 3 Array gain for a uniform ID source for different 
distribution widths, A, in degrees. 

Fig. 4 The spectrum of the DSPE algorithm. The angles 
are in degrees. 


