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Abstract: Point source modeling is frequently used in array processing. Although this assumption is good for many applications, there
are some situations where point source modeling is unrealistic. For instance, in a multi-beam echo sounder, a reflected signal from the ses
floor appears as a spatially extended source. In this paper we investigate distributed sources. The approach is based on the assumption
that the correlation kernel of the distributed source belongs to a family of parametric functions. We generalize the MUSIC algorithm to s
distributed signal parameter estimator (DSPE). The DSPE localizer minimizes a scalar product between an estimated basis for the noise
subspace and the array manifold. We study two cases corresponding to completely correlated and totally uncorrelated signal distributions.
We also discuss limitations of the application of ordinary beamformer techniques to spatially distributed signals by computing the array
gain. It is shown that the array gain is upper bounded by a value which depends on the extension width of the source. Thus increasing
the number of the sensors in a beamformer does not necessarily increase the resolution.

1. Introduction frequency domain can be formulated by
. g z Lt

A common assumption in array processing is that the signals are - 4B o
generated by sources that are highly localized in space (point x= _ /:-_': a{0)si(6; $:)dd +m, o
sources). This modeling of a source is not a valid assumption =173
in some applications. In a multi-beam echo sounder the penetra- where a(8}) is the p x 1 location vector, 1 is the p X 1 noise vec-
tion of the signal into the sea floor and reflection from different tor, and 3;(#; ;) is the angular signal density of the i-th source
layers creates a spatially distributed source [1}. In radar, if the which is also a function of the angle-of-arrival § and the parameter
target is spread in range, the reflection of the signal from the tar- vector ¥i. The two limits of the directions-of-arrival (DOAs) for
get is observed as a spatially extended signal [2]. When a signal a uniform source distribution, and the angle of maximum power
is distributed in space, it is usually modeled as a spatially colored and the —3 dB extension width for a bell-shaped distribution are
noise [3]. The spatial extension of signal might occur in other ap- examples of the parameters.
plications such as reflection of sound in a reverberant room and - The time samples of the noise vector are modelad as zero-
communications through the reflection from the ionosphere and mean, independent, circular, complex Gaussian random variables
the troposphere. and uncorrelated from the signals. It is assumed that the noise is

In past, extended sources were treated as a cluster of point spatial]y white. The white noise assumption can be relaxed if the
sources [1]. For such a model the dimensionality of the signal sub- correlation matrix of the noise is known but for a scalar. With
space grows with the number of point signals. To obtain a ungiue these assumptions the correlation matrix of the array output is
solution for this model, the number of point signals (the dimen- given by
sion of the signal subspace) should be smaller than the number 4 g £ rZ
of sensors (the dimension of the observation space). Thus, if the R;= Z Z/ / a(d)pi; (8,6'; i, ¥5)
number of sensors is not large enough, the clustered point sources im1 1 d-37-%
approximation will not provide a precise model of a distributed
source. xaf (8')d8 d#' + 021 (2)

Recently, we have presented a new method for the localiza- where o2 is the noise power and
tion of spatially distributed sources [4]. This method is based on . roo - R 7 T
a parametric model for the spatial c(Erz"elation function of the sig- Pis(8.0% i ) = Elsu(8;44)57 (8 95)] ®
nal and has been applied to localization of coherently distributed is the angular cross-correlation kernel parameterized in terms of
{CD) and incoherently distributed (ID) source. The present paper the unknown parameter vectors ¥; and ;. The superscripts H
is a continuation of the previous work. In this paper we provide and * represent the Hermitian transposition and the complex con-
additional details about the derivation of the method. In par- jugation, respectively. In this paper we assume that the sources
ticular, we show that the new method is a generalization of the are uncorrelated from each other which results in a simplification
MUSIC algorithm. Furthermore, we study the performance of a of pi;(8,0'; i, ¥;) to
conventional beamformer for distributed sources by finding the pii(8,8"; 44, 4,) = p(8,6"; Wi)biy {4)

array gain for if in . . .
vE r a uniform linear array where &,; is the Kronecker delta and the same parametric model

is used for all sources. This constraint can be relaxed if we model

2. Distributed source l'llOdElillg correlated sources as a single source with a new parametric corre-
lation kernel which is the addition of the angular cross-correlation

Assume a scenario with g spatially distributed narrowband sources kernel of the sources.

arriving at an array of p sensors. The array output vector in the If the signal components corresponding to different directions-

of-arrival (DOAs) are uncorrelated, the angular cross-correlation
kernel can be further simplified to

P8, 614} = pl6;9,)6(8 - §") {5

6



here 5(8) is the Dirac delta function. We refer to such a source
:’ incoherently distributed (ID). This model can be applied to
;callcring media. ) ) .

In some situations the signal components corresponding to
sjfferent DOAs might be completely correlated with each other.
L.“Ch a signal is called coherently distributed {(CD) and has a sep-
arable kernel given by

(8, 0'; 4i) = nigi(0; ¥i)e] (85 44) (6)
Jhere n; is a scalar representing the power of the i-th source ob-
served at the reference point of the array, the superscript » shows
\he complex conjugation, and g:({8; ¥:) is a complex deterministic
angular signal density defined in the interval [—‘5?-’ %] and normal-

ized according to £

3
/ g(fii)de = 1. (N
-

In practice the signal components at different angles might be
partially correlated. Partially correlated signals can be localized

using the same method as for ID signals.

3. The array gain

Beamformers improve the array output SNR by steering a beam
in the the direction of a signal. Because of the ease of implemen-
tation, these methods are practically important. However, they
have relatively low resolution. A large number of sensors must be
used in a conventional beamformer to achieve a high resolution.
For point sources the array gain can be improved by increasing
the number of sensors. Here, we show that for distributed sources
the spatial correlation function of the signal is upper bounded by
an exponentially decreasing function. Then, we derive the array
gain and show that it is bounded and thus cannot increase linearly
with the number of sensors. For the specific case of CD sources, we
show that the array gain attains a maximum and then decreases
exponentially as the number of sensors becomes very large.

The gain of an array of sensors is defined as the ratic of the
SNR at the array output to the SNR at a single sensor [6]. As-
suming that the noise is spatially white and that a conventional
beamformer is used, the array gain is given by

C. = aHR.a ®)
¢T aHa
where a is the location vector of the array steered towards the
direction of interest and R., is the correlation matrix of the array
output in a noise-free environment.

3.1. The CD source case

Assume that the array output can be observed along a continuous
linear aperture and denote the observation at point z by z(z). For
a single CD source in a noise-free environment we have

x

2
a(z) = f e 25540 00(0; 9} ©
-3
where v is a zero-mean complex Gaussian random variable and
3(8; 1} is the normalized deterministic angular signal density. As-
suming that the source is uniformly distributed around 6y, i.e.,

1
—, 8—6] <A,
gltid) =< 24 ! ol<a

0, otherwise,

(10)

the observation vector can be written as
Ba+0
e 5 sin6 (11)
o~A
For a small A, it is straightforward to show that

z{2) = ‘yﬁ A

i 2
r{z) zwe’zi'g"“ 6’°sim:{7FAcosf?o). (12)

I'rom (12) we arrive at the following result.

Property 1. For a uniform CD source with a small extension,
the spatial correlation function af the points z; and z3 in a noise-
Jree environment is bounded by

|E[z(2,)2"(2,))l < K’-l—iz;l (13)

where K is a poastive scalar.

An example of the correlation between two points on a linear
array for a uniform CD source is depicted in Fig. 1. It is assumed
that the first point is the phase reference of the array. The second
point varies along the array. The envelope of the correlation fune-
tion exponentially decreases with the separation between the two
points. Thus, as the aperture length of the array increases, the
correlation between widely separated sensors decreases and the
corresponding signals cannot be coherently added to increase the
SNR. This suggests that the array gain does not increase linearly
with the number of sensors.

For a uniform linear array with half the wavelength spacing
between sensors, the component of the observation (12) at the
position of the {-th sensor is

zp = ye? ™ 40 fogine(IA cos by). (14)

Assuming that the power of the source is unity and 63 = 0, the
array gain is given by

1 z
Ga = ; [Zsmc(la)] . (15)

i=0

Note that for A = 0 the array gain is equal to p which is the
gain of a point source scenario. For A # 0 and large p, the sum
in (15) is approximated by x/2 which reveals that the array gain
decreases with a rate of 1/p. The array gain for a CD source as
a function of the number of sensors p is illustrated in Fig. 2. The
array gain has a maximum which depends on the extension width.
Increasing the number of the sensors beyond the maximum point
decreases the array gain. We have found that at the maximum
point, the array length p,,, . can be approximated as

Puax B°® =40 (16)

where A° is the extension width measured in degrees. *

3.2. The ID source case

For an ID source the spatial cross-correlation function at the two
observation points z and 2z’ is given by [4]

Bla(z)e(z')] = e/ ¥ =i O0gingt 2 (s — ')A cos o). (17)
From this we can easily arrive at the following result.

Property 2. For s uniform ID source with a small erfension
width, the spatial correlation function decreases erponentially with
the separation and is upper bounded by

(Ele(z,)=* (23)]] € —

3 — 2

(18)

where K is a positive scalar.

Since the spatial correlation function decreases exponentially
with distance, the array gain cannot increase linearly with the
number of sensors. For a uniform linear array with half the wave-
length spacing between sensors, the spatial cross-correlation func-
tion between the [-th and the k-th sensors is given by

Elzizy) = eIm(H—F) sin Bogingl(l — k)A cos ). (19)
Assuming that 8o = 0, the array gain is given by
1 p-1p-—1
Ga = - [ sinc[({ - k)A]] - (20)



Again, it is seen that for A = 0, we obtain the same resul.t as a
point source case. With a change of variable the array gain can
be represented as

r—1
Ga = % [;p +2 ;{p - r)sinc(rA)] . (21)

The array gain for an ID source is depicted in Fig. 3. For a fixed
extension width, the maximum array gain for the ID source is
higher than that for the CD source.

4. A generalization of MUSIC

Let us denote by Lz[-—’—;, %] the Hilbert space of all complex val-
ued square integrable functions defined over the interval [-%, Z].
The inner product and the norm in this space are defined by

-4

o= [ st@ns(0) (22)
llsilic = v/ {sissi)e (23)

where the subscript ¢ indicates the continuous nature of the wave-
form. According to (1), the observation vector X at the array
output can be expressed as

q
X = Zﬁs.‘(.;:b.')+n {24)
i=1

where £ is a linear operator that maps L? —Z,Z] into a complex

observation vector space @P with dimensionality p such that

c:L*-%,3]— ¢ (25)
3
Ls = a(f)s(8)de. (26)
-3
The inner product and the norm in @7 are defined by
(%, %;)a = xf'x, (27)
Ixilla = /{xi, Xi)a (28)

where the subscript d indicates the discrete nature of the function.
The adjoint operator £+ : @F — L?[-Z, I] satisfies

(L3, %)q = (s, L1 %)e. {29)

For the linear operator (26}, we have
x

(L3, X)q = [Cs}Tx = f’ s*(9)a¥ (8)dd x = (s,a¥ x).. (30)

Thus the adjoint is given by

£tx = af(o)x. (31)

As a starting point, we extend the definition of the signal and
noise subspaces to distributed sources. Note that the source signal
3i(8; i) in (24) is a random signal which is also a function of the
DOA ¢ and the parameter vector y,. By the source subspace we
mean the span of all realizations of the source signals s, (#;¢:), i =
1,...,q where the v¥;’s are fixed. This subspace is denoted by S
and is defined as

S = Span{s,(#;;):i=1,...,q, and all realizations}. {32)
The source subspace S is a subspace of L2 —~Z.,%]. The range

of the linear operator £ under § is the signal subspece and is
represented by

R={Ls : allse€S}). (33)
The orthogonal complement of R is the noise subspece and is
denoted by R+. It can be shown that the range of the adjoint
operator L1, when the domain is restricted to the noise subspace
R*, is the orthogonal complement of & which is represented by

S1. The above concept of the signal and noise subspaces can b,
reconciled with the conventional definitions for the point Source
case {5].

We now derive a MUSIC type algorithm for distributed soypc,
parameter estimation. In {4] we have defined the concept of thy
effective dimension of the signal subspace. For distributed sources
the signal component might extend to the whole observation spacs,
For such signals the dimensionality of the signal subspaceis p the
number of sensors. The effective dimension of the signal subspace
has been defined as the dimension of the subspace which contain,
95 percent of the total energy of the signal. For localization of
distributed sources we use the effective dimension of the signal
subspace to estimate the noise eigenvectors.

Suppose that R+ has dimension p—g. where g, is the effective
dimension of the signal subspace, and we have a basis for R+, say
€1,...,€p—qg,, and let B, = [e],...,€54.]. Since e;'s are ig
R %, their transformation under £+ will be in S+, i.e.

cte; =af¥(te;est, i=1,...,p-q.. (34)
Thus for all s(f) € S we have
i
/ af (9)E,.s(6)ds = 0. (35)
-3

In (32) the source subspace S was defined as the span of the
functions s:(6; ¥:). Hence (35) can be written as

5
/ af (O)Ens:(8;4:)d6 < 0 (36)
-3
for all realizations of 5;(6; %), and for i = 1,...,¢. Since 5;(8;¥;)
is a random function, this is equivalent to

ol f_ z 2t () Ensi(e:0i)a0] | =0

fori=1,...,9. Using (3) and (4) this equation can be expressed
as

37

5 3
; ] / aT (OE.p(6,6';v:)EFa(8)dsde' =0 + (38)
-3/-%

for { = 1...,q. We propose that the parameter vector be esti-
mated by locating the peaks of
- 1

1y = argmax (39)

v f_%.;. f_%.g aH(9)E.p(8,8'; $)EH a(e')dodsf

We call this method the distribuied signal parameter estimator
(DSPE). The spectrum of the DSPE algorithm is searched in an
m-dimensional space for g local maxima where m is the dimension
of the parameter vector 3. The maximum points correspond to
the estimates of the parameter vector.

5. Some simulation results

In this section we show how the DSPE technique can localize dis-
tributed sources. Here we only consider a single ID source with a
uniform correlation kernel. The source is arriving from 10 degrees
with an extension of 2 degrees at a uniformly spaced array of 20
sensors. Fig. 4 shows the spectrum of the DSPE localizer. The
prominent peak in this spectrum corresponds to the distributed
source. As it is seen the method successfully localizes the source.
In this simulation we have used 2 eigenvalues for the signal sub-
space. The spectrum of the corresponding MUSIC algorithm can
be read in the figure by putting A = 0. For a complete set of
simulations see {5].



6. Summary

This paper is a continuation of a previous work for distributed
source localization {4]. It has been assumed that the spatial cor-
celation kernel of the signals is chosen from a parametric class
of functions. We have generalized the MUSIC algorithm so that
it can localize distributed sources. The new technique has been
called a distributed source parameter estimator (DSPE). The new
algorithm can localize the extended sources by minimizing a scalar
product between the back-transform of the noise eigenvectors and
a basis for the source subspace. Furthermore, we have studied the
performance of a conventional beamformer by finding the array
gain for a uniform linear array. We have shown that the gain of a
conventional beamformer is bounded with increasing the number
of sensors.
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Fig, 1 Spatial cross-correlation for a uniform CD source.
iThe first sensor is positioned at the phase reference point.)
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Fig. 2 Array gain for a uniform CD source for different
distribution widths, A, in degrees.
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Fig. 3 Array gain for a uniform ID source for different
distribution widths, A, in degrees.

Fig. 4 The spectrum of the DSPE algorithm. The angles
are in degrees.



