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Abstract
This paper develops a new network provisioning and resource allocation scheme. We introduce

the concept of the effective burstiness curve (EBC), which is defined as a percentile of the maxi-
mum burstiness curve. For a fixed service rate, EBC represents the size of a buffer for which the
probability of buffer overflow is arbitrarily small. We show that EBC is a convex non-increasing
function of the service rate. We also introduce the empirical effective burstiness curve (EEBC), an
estimator of EBC, which can be obtained with a water-filling algorithm. For discrete queue size,
EEBC can be evaluated with a recursive algorithm. The technique is applied to MPEG4 encoded
video traces.

Keywords: burstiness curve, leaky-bucket regulator, fluid-flow traffic, quality-of-service, water-
filling.
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1 Introduction

There are two approaches to quality-of-service (QoS) provisioning in the literature of high-speed
networking: the stochastic approach and the deterministic approach. In the stochastic approach
for network provisioning, input traffic is usually modeled by a canonical probability distribution
function. The performance is then quantified in terms of the mean or percentiles of the network
behavior. The critical issue in stochastic approach is to find an appropriate probabilistic model
for data. Most of the fairly rich literature in queueing theory is based on the Markov models for
input traffic [1]. However, recent studies show that the classical Markov processes are inefficient
models for Internet traffic [2, 3] and variable–bit–rate (VBR) encoded video traces [4, 5]. It has
been observed that the autocorrelation function of these traffics decreases very slowly in time
(long-range dependence). This is in sharp contrast to Markov models in which the autocorrelation
function demonstrates an exponential decrease. Based on these observations, self-similar models
with fractional Brownian motion processes have been proposed [6].

The deterministic approach avoids the hurdles of model mismatch by restraining the input
traffic to certain boundaries [7, 8, 9, 10, 11, 12]. The bounds reflect the worst-case behavior of
source. A source is called greedy if its traffic meets the upper bound [13]. It has been shown
that a network with greedy sources attains its worst-case behavior. The deterministic approach
usually quantifies the worst-case network performance in terms of maximum delay and maximum
backlog as functions of the scheduling strategy and the parameters of a regulator. A regulator is
a device located at network boundary and used to shape or filter the input traffic. A properly
adjusted regulator anticipates occasions of congestion in the network and takes appropriate steps
to avert congestion by shaping (delaying) and/or filtering (dropping) input traffic. In other words,
a regulator should be capable of matching the needs of the input traffic to the status of network.
An appropriately tuned regulator—supplied with a network feedback—decides, on the basis of the
history of the source to which it is attached, to transmit, delay, and/or drop (mark) the traffic.

The deterministic approach suffers from a severe drawback: it produces very conservative so-
lutions to network provisioning. Since it assumes that all sources are greedy simultaneously, it
usually cannot benefit from statistical multiplexing gain which is an important element in aggregat-
ing stochastic sources. It has been demonstrated in the literature that the deterministic approach
tends to under-utilize network resources [14, 15, 16].

This paper focuses on the development of a recursive approach to the selection of regulator
parameters for a fluid-flow stochastic source. We use the leaky bucket regulator, which can be
modelled by a single server queue with a constant service rate. The objective is to select appropriate
leaky bucket parameters, i.e. token pool size and token replenishment rate, such as to, on the one
hand, satisfy a certain level of contentment for the user—represented here as a small probability of
loss—and on the other hand, be able to benefit from statistical multiplexing gain by aggregating
several stochastic sources into a single flow. We do not, however, impose any canonical probability
distribution function on the input traffic.

In this paper, the QoS metric is the probability of loss, represented by

P(Qρ(t) > σ) ≤ ε (1)

where ε < 1 is a QoS index, which is usually very small, Qρ(t) is the buffered workload in the single
server queue with the constant service rate ρ, and σ is the corresponding buffer size. Note that
for computing Qρ(t) in (1), we assume that the buffer has infinite storage capacity. Therefore, the
left-hand-side of (1) is the probability that the queue size exceeds σ.
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Inequality (1) has been used by many researchers for performance analysis; see for instance
[17, 18, 19, 20, 21, 22] and references therein. Lo Presti et al [17] separate the problem into a
bufferless server and a storage system, and argue that the probability of loss is upper bounded by
the summation of the probability of loss in each subproblem. Kesidis and Konstantapoulos [18]
find the worst case upper bound on the probability of loss when the input traffic passes through
a leaky bucket regulator. They assume that the queue size Qρ(t) is a stationary process and then
find the bound on queue occupancy and queueing delay. Chang et al [19] study the same problem
under general traffic constraints. Both [18] and [19] assume that the node is a constant rate server.
Vojnovic and Le Boudec [20] generalize the results of [18] and [19] to super-additive service curves.
Kumaran and Mandjes [21] use the correlation of source traffic to derive approximate upper bounds
for (1). Boorstyn et al [23] use the Central Limit Theorem and the Chernoff bound to obtain local
and global effective envelopes as the upper bounds of a multiplexed traffic of independent flows.
They assume that individual flows are regulated by leaky bucket regulators and then show that
one can use (1) to improve the statistical multiplexing gain and to increase network utilization.
Liebeherr et al [22] use the statistical network calculus to present a method for computing lower
bounds of the service given to a single flow in a network in which service is provisioned to aggregates
of flows. They show that a probabilistic service allocation for a single flow can be obtained from
the service allocation of an aggregate by subtracting a probabilistic upper bound on the departures
from all other flows. The upper bound is obtained by applying the Chernoff bound.

Inequality (1) has also been studied extensively under the condition σ À 0 where the theory of
large deviation [24, 25] has been used to derive upper bounds on P(Qρ(t) > σ) [26, 27, 28]. It has
been shown that if the input traffic is a stochastic process with exponentially decaying correlation
function, for very large values of σ, one can approximate the upper bound of P(Qρ(t) > σ) by an
exponentially decreasing function. However, for input traffic with long-range correlation the tail
distribution of the queue size is sub-exponential [29, 27].

1.1 Our Approach

The references above share a common approach to the problem. They all provide an upper bound
on the tail of loss probability. In other words, they formulate ε as a function of σ. Our approach
in this paper is different. Here, for a fixed ε, we obtain the smallest vector (σ, ρ) that satisfies (1).
We observe that (σ, ρ) is not unique, and therefore introduce the concept of effective burstiness
curve (EBC), which we define as the size of the buffer, σ, in a single-server queue with constant
service rate, ρ, with the probability of buffer overflow smaller than a positive constant ε. Indeed, a
percentage of traffic will be lost (or marked as violating traffic) if EBC is used to select the buffer
size or the service rate. The proposed approach illustrates one degree of freedom in choosing (σ, ρ)
vector, which might be used by the network manager (or by the traffic regulator by consulting the
network manager) to select σ or ρ; the other parameter is selected from EBC. We show that EBC
is a percentile of the burstiness curve [30, 17, 31].

Our approach is the dual of the literature cited in the previous section, and could be more useful
for network dimensioning. That is, if ε is known, then one can use our proposed technique to select
an appropriate (σ, ρ) to satisfy ε. Indeed, we propose a trade-off curve between σ and ρ so that the
desired ε is obtained. By keeping ε sufficiently small, the network can provide an acceptable level
of QoS for the user. This is particularly important when the violating traffic is simply marked and
submitted to network. Since statistical multiplexing improves bandwidth usage, there is a high
probability that the violating traffic will safely pass through the network.
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Figure 1: A typical effective burstiness curve (EBC) along with the corresponding burstiness curve
(BC). The parameters of a properly-tuned leaky bucket are set at the intersection of EBC and the
delay line.

Another major difference between our approach and the earlier ones is that we do not merely seek
long-run solutions. In all works cited above, the QoS index has been studied under the assumption
that time has been extended to infinity and that the system has converged to an equilibrium state.
Therefore, P(Qρ(t) > σ) has been replaced by an upper envelope, which is usually obtained from
the Chernoff bound. Although no canonical modelling of the probability distribution function of
the input is required, the application of the Chernoff bound ignores the transitory behavior of
traffic. In practice however sources are non-stationary and traffic generation time is limited. A
more appropriate estimator should learn from the temporal behavior of source traffic. We devise
such an estimator in this paper.

We will show that EBC is a convex, monotonically decreasing function of the service rate, and
also that EBC of a multiplexed traffic is smaller than the summation of EBC of individual flows.
Indeed, when independent traffic flows are aggregated, the aggregate shows statistical multiplexing
gain. Therefore, if all sources are regulated by the suitable leaky buckets, the multiplexed traffic
has a smaller EBC and the violating traffic of some users could possibly pass through the network
without interference.

Fig. 1 shows a typical EBC (for a fixed ε). In this figure, “BC” denotes the burstiness curve as
defined in [30, 17, 31], which is identical to EBC for ε = 0. In [31], we used the intersection of BC
and the delay line (to be discussed in Section 2) to set the traffic regulator. This point is shown
as (σm, ρm) in Fig. 1. In this paper, we set the parameters of regulator at the intersection of EBC
and the delay line—shown as (σe, ρe) in the figure. Therefore, considerable savings in bandwidth
and buffer size are obtained.

Direct computation of EBC needs the probability distribution function of the queueing process
which may not be available in practice. In this paper, we propose an estimator for EBC called
the empirical effective burstiness curve (EEBC). EEBC is defined over a limited number of source
traffic samples and is a consistent estimator of EBC. We will show that, for some traffic types—
such as MPEG4-encoded traces—using EEBC will substantially reduce the required bandwidth
and buffer size compared to when BC is used. Nonetheless, this saving is obtained by introducing
an arbitrarily small traffic loss.

We will also show that for a discrete time input process EEBC can be obtained by a recursive
water-filling procedure. Water-filling provides an algorithmic approach to computing EEBC. Water-
filling indeed distributes the queue occupancy over time and gradually dilates the presence of sharp
peaks in the queue size. The proposed water-filling approach produces a recursive scheme through
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Figure 2: An illustration of the leaky bucket regulator with a shaping buffer.

which EEBC is updated by the arrival of each new sample. The process can therefore be used on-
line. We further show that the water-filling algorithm can be used for a queue with a time-varying
service rate.

2 Problem Formulation

A regulator, located at the boundary of a network, can be considered as a device that anticipates
congestion inside the network and takes proper actions—by transferring the congestion to the net-
work boundary—to alleviate the problem altogether or lessen the destructive effects of congestion.
In this paper, we focus on leaky bucket regulators. Here, we view a leaky bucket regulator as
a token pool replenished by a constant rate token generator and an infinite overflow (shaping)
buffer. Fig. 2 illustrates our formulation of the leaky bucket regulator that is represented by the
pair (σ, ρ), with σ being the token pool size and ρ the token replenishment rate. A packet of data
emitted by the source consumes a number of tokens (equal to the size of the packet) from the pool
and enters the network immediately. Consumed tokens are replaced by the token generator. A
packet arriving at an empty pool can be either marked as a nonconforming packet and submitted
immediately to the network or delayed in the “shaping” buffer until an equal amount of tokens is
generated. In the latter case, the size of the shaping buffer is assumed to be very large so that no
packet is lost in the regulator. The size of the token pool, σ, also represents the maximum burst
size of the traffic. In this paper, we assume that nonconforming traffic is marked and transmitted
immediately. Nonconforming traffic will be prone to loss if congestion occurs inside the network.
In this configuration of leaky bucket, the size of the shaping buffer is zero.

In [31], we devised an algorithm that could be used to select the (σ, ρ) parameters in a lossless
traffic regulation paradigm. Our approach was based on estimating the worst-case burstiness of
the projected traffic. The leaky bucket parameters were then selected in a parsimonious procedure;
(σ, ρ) was selected on the burstiness curve of the source. Any point below the burstiness curve
could have resulted in traffic loss.

Here, we take a different perspective. We allow a small part of traffic to be lost or marked
as nonconforming traffic. This loss can be accepted if significant savings, in terms of bandwidth
and/or buffer size, can be achieved. We devise such an algorithm here. Our problem—given a
source whose statistics are unknown—is to set the parameters of the corresponding leaky bucket
regulator.

We will require that two constraints on the backlog and the delay of traffic in a single-server
queue be met. We first envision the network as a single-server node with a minimum guaranteed
rate; this assumption is frequently used in networking literature [7, 13]. In our formulation, the
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leaky bucket regulator is selected so as to restrain the percentage of the marked traffic below a
prescribed threshold. Indeed, we select (σ, ρ) so that

P(Qρ(t) > σ) ≤ ε (2)

where Qρ(t) is the instantaneous queue size in a server with the service rate ρ.
We add a second constraint, in the form of an inequality

f(σ, ρ) ≥ 0 (3)

in which the function f is given. Examples of f are suggested by giving the design problem a
particular network context. Consider, for instance, a network in which access to the nodal output
buffers is mediated by a generalized processor sharing (GPS) scheduler or one of its non-preemptive
variants [13]. A session is said to be stable in this connection if the corresponding GPS coefficient is
at least as large as the token generation rate ρ in the associated leaky bucket [13]. In this case, the
connection is considered as a deterministic–server queue with buffer size σ (the size of the token
pool) and service rate ρ (in fact the model is approximate and conservative, with the backlog in
the single–server queue forming an upper bound on the end-to-end backlog in the session). This
being so, it is reasonable to require that

σ ≤ ρDM , (4)

where DM is an upper bound on the maximal end–to–end delay deemed acceptable to the source.
This corresponds to the inequality formulated in terms of f with f(σ, ρ) = ρDM − σ. The results
reported in the ensuing sections are for this particular f .

Note that choosing f in the form of (4) is not a restrictive assumption. Indeed, the inequality
constraints (2) and (4) taken together amount to selecting a (σ, ρ) pair inside a region denoted by
the shaded area in Fig. 1. Both constraints are satisfied inside this region. The constraints simply
indicate the boundary of the region. Since bandwidth is usually the scarce resource in network, we
choose (σ, ρ) at the cross section of EBC (to be defined in Section 3) and the delay line σ = ρDM —
the leftmost point in Fig. 1. Therefore, any function f , which intersects EBC can be selected as
the constraint function. Assuming that the network will reserve resources for the projected flow
based on the σ and ρ parameters of the regulator, we select the intersection of the two constraints
(2) and (4) to guarantee that bandwidth is parsimoniously allocated to input traffic [31].

3 Effective Burstiness Curve

Consider a single server handling the traffic of a single user. The accumulated traffic of the user
over an interval [s, t) is represented by A(s, t). The input traffic is assumed to be generated by a
stationary and ergodic stochastic process that satisfies

sup
t

sup
τ>0

A(t, t + τ)
τ

= ρM (5)

lim
τ→∞

A(t, t + τ)
τ

= ρ̄ uniformly in t. (6)

ρM is the maximum rate of traffic and ρ̄ is the average rate. The objective is to select appropriate
service rate and buffer size so that a certain QoS is guaranteed for the user. The QoS is quantified
in terms of traffic delay and loss.
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Figure 3: An example of the effective burstiness curve and Rε(ρ).

The backlog for a server with the constant rate ρ and infinite buffer size at time t can be written
as

Qρ(t) = sup
s≤t
{A(s, t)− (t− s)ρ}. (7)

In a stationary regime, one can represent the queue size at the origin by

Qρ(0) = sup
t≥0
{A−t − tρ} (8)

where A−t
∆= A(−t, 0).

Definition 1 For any 0 ≤ ε ≤ 1 and for any fixed ρ > ρ̄, let Rε(ρ) ∆=
{
b |P

(
Qρ(0) ≥ b

)
≤ ε

}
. The

effective burstiness curve (EBC) is defined as b(ε, ρ) ∆= infRε(ρ).

In Fig. 3, we show an example of EBC and Rε(ρ). Note that if we choose b1 and b2 subject to
b1 < b2 and b1 ∈ Rε(ρ), then b2 ∈ Rε(ρ). Furthermore, if ε ≤ ε′, then Rε(ρ) ⊆ Rε′(ρ). Indeed,
Rε(ρ) is the set of all buffer sizes that have a buffer overflow probability not larger than ε when the
server rate is ρ. Any buffer size selected in Rε(ρ) guarantees that the buffer overflow will remain
below ε. At ε = 0, we will get b(0, ρ), the burstiness curve defined in [30, 31]—also called the
buffer-bandwidth trade-off curve [17]. The following lemma states some of the properties of EBC.

Lemma 1 The effective burstiness curve satisfies:

(i) For any ε ≥ 0, b(ε, ρ) is a non-increasing function of ρ;

(ii) For any ρ > ρ̄, b(ε, ρ) is a non-increasing function of ε;

(iii) b(ε, ρ) = 0 for ρ ≥ ρM ;

(iv) Let Qρ(t) and Q′
ρ(t) be the queue size of the single server queue serving two different input

traffics. If Qρ(t) ≤ Q′
ρ(t) for all t, then b(ε, ρ) ≤ b′(ε, ρ) where b(ε, ρ) and b′(ε, ρ) are the EBC

associated to Qρ(t) and Q′
ρ(t), respectively.

Proof: The proof of parts (i) and (ii) is straightforward. Part (iii) follows from (ii) and the fact
that b(0, ρ) = 0 for ρ ≥ ρM [31]. Part (iv) follows from the definition of the EBC. 2

In the following theorem, we prove the convexity of EBC.
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Theorem 1 For fixed ε, the effective burstiness curve b(ε, ρ) is a convex function of ρ.

Proof: See Appendix A.
The convexity of EBC is important. Consider two traffics A1(t) and A2(t) and let both have the

same probability distribution function. Therefore, both traffics will have the same EBC represented
by b(ε, ρ). Now let A1(t) be served by a single server with the rate ρ1 and A2(t) be served with
another server with the rate ρ2. The convexity of EBC indicates that b(ε, αρ1 + βρ2) ≤ αb(ε, ρ1) +
βb(ε, ρ2) for α + β = 1. That is , the aggregate traffic in a homogeneous network (A1(t) and A2(t)
of the same type) needs a smaller buffer size per traffic. The following theorem shows that this
property also holds in a network with non-homogenous traffic.

Theorem 2 Let Q
(i)
ρi (0) = supt≥0{A(i)

−t − ρit}, R(i)
ε (ρi) = {b |P(Q(i)

ρi (0) ≥ b) ≤ ε} and b(i)(ε, ρi) =

infR(i)
ε (ρi) for i = 1, . . . , L. Define A−t

∆=
∑L

i=1 αiA
(i)
−t, and ρ

∆=
∑L

i=1 αiρi, where αi ≥ 0. Let also
Qρ(0) ∆= supt≥0{A−t − ρt}, Rε(ρ) = {b |P(Qρ(0) ≥ b) ≤ ε} and b(ε, ρ) = infRε(ρ). Then

b(ε, ρ) ≤
L∑

i=1

αib
(i)(ε, ρi). (9)

Proof: See Appendix B.
Theorem 2 indicates that the total burstiness of the multiplexed traffic is smaller than the

summation of the burstiness of individual users. Therefore, if we assume αi = 1 for all i = 1, . . . , L,
then we can conclude that statistical multiplexing can reduce the EBC. Similar results have been
reported in [30] for the maximum burstiness curve.

In the following corollary, we strengthen the results of Theorem 2.

Corollary 1 In Theorem 2, let ρi = ρ for all i = 1, . . . , L, and
∑L

i=1 αi ≤ 1. Then

b(ε, ρ) ≤
L∑

i=1

αib
(i)(ε, ρ). (10)

Proof: Replace ρi by ρ in the right-hand-side of (9) to get b(ε, ρ
∑L

i=1 αi) ≤
∑L

i=1 αib
(i)(ε, ρ). Now

use Lemma 1-(i) to get that b(ε, ρ) ≤ b(ε, ρ
∑L

i=1 αi) for
∑L

i=1 αi ≤ 1. 2

In Definition 1, the effective burstiness curve is defined assuming stationary traffic over an
infinite interval. In practice, using infinite interval is unrealistic. In the sequel, we investigate
the case of finite intervals and discrete time setting. We will use a fluid-flow approximation with
ρM = ∞.

3.1 Empirical Effective Burstiness Curve

The queue size for a constant rate server in a discrete time setting satisfies Lindley’s equation,

qn = [qn−1 − ρ]+ + rn (11)

where qn is the backlog at time n, ρ is the service given over a time unit, rn is the amount of traffic
arriving at time n, and [a]+ ∆= max{a, 0} for any real number a.
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Figure 4: Queue size as a function of time for a queue with discrete inputs. The period of time for
which Qρ(t) > σ has been shown in heavy lines.

For a given token pool size σ, one is able to define

µn(σ) =
1
n

n−1∑

i=0

1
{
qi > σ

}
min

{qi − σ

ρ
, 1

}
(12)

where 1{.} is the indicator function, that is

1{A} =

{
1 if the predicate A is true,
0 if the predicate A is false.

(13)

Note that µn(σ) is also a function of ρ—we have dropped this parameter for brevity. Further, if qn

is the sample of the queue size Qρ(t) at the nth time instant, µn(σ) will be the proportion of time
that the queue size stays above the threshold, σ. See Fig. 4 for an illustration. The queue size at
time t is given by

Qρ(t) = qm − (t−m)ρ, for m < t ≤ m + 1. (14)

Therefore, µn(σ) is indeed the period of time over which Qρ(t) > σ, normalized over the whole
window of observation.

We can also represent µn(σ) as

µn(σ) =
1
n

n−1∑

i=0

∫ i+1

i
1{qi − (t− i)ρ > σ} dt

=
1
n

∫ n

0
1{Qρ(t) > σ} dt. (15)

µn(σ) can thus be interpreted as the temporal average of the event {Qρ(t) > σ}. We also know
that

P
(
Qρ(t) > σ

)
= E1{Qρ(t) > σ}, (16)

with E1 denoting the expected value. For an ergodic process Qρ(t) we can prove the following
lemma.

Lemma 2 In a stationary regime,

lim
n→∞µn(σ) = P(Qρ > σ) (17)
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where Qρ
∆= lim

t→∞Qρ(t) is the stationary queue size.

Note also that since queue Qρ(t) is stable, {Qρ(t) > σ} will be a persistent recurrent event.
Therefore, Lemma 2 can also be proved using the “renewal” theory [32].

Definition 2 The empirical effective burstiness curve (EEBC) for observations over the interval
[0, n] is defined as a function bn(ε, ρ) that satisfies

µn

(
bn(ε, ρ)

)
= ε. (18)

Therefore, bn(ε, ρ) = µ−1
n (ε).

Using (15), we have
1
n

∫ n

0
1{Qρ(t) > bn(ε, ρ)}dt = ε. (19)

Thus, for each n, EEBC indicates a threshold at which the total duration of the time interval where
the event {Qρ(t) > bn(ε, ρ)} occurs is nε. Note that at a given n, EEBC cannot be defined for all
0 ≤ ε ≤ 1. Indeed, the maximum ε is given by ε̄n,ρ = µn(0). In the sequel, we show that EEBC is
a non-increasing convex function of ρ.

Theorem 3 EEBC has the following properties:

(i) bn(ε, ρ) is a non-increasing function of ρ;

(ii) bn(ε, ρ) is a non-increasing function of ε;

(iii) Let qn and q′n be the queue size of the single server queue serving two different input traffics.
If qn ≤ q′n for all n, then bn(ε, ρ) ≤ b′n(ε, ρ) where bn(ε, ρ) and b′n(ε, ρ) are EEBCs associated
to qn and q′n, respectively;

(iv) bn(ε, ρ) is a convex function of ρ.

Proof: See Appendix C.
In the following section, we will propose an algorithmic approach for computing EEBC. We will

then use it to prove that bn(ε, ρ) converges to b(ε, ρ) when n →∞.

4 Water-filling

In this section, we show that EEBC can be obtained with a water-filling procedure. Water-filling
is particularly important since, as we will show later, it is performed “on-the-fly”. That is, when
a new packet arrives, EEBC is adjusted using the water-filling algorithm. We assume that time is
slotted with each time instant represented by an integer n ≥ 1.

Let n = 1. From the definition of EEBC, we should have µ1(b1(ε, ρ)) = ε. Fig. 5(a) shows an
example with the corresponding EEBC for a given ε. EEBC should be selected so that the fraction
of time that the queue length is larger than b1(ε, ρ) be equal to ε. Note that for any q0−ρ ≤ σ ≤ q0,

µ1(σ) =
∫ 1

0
1{Qρ(t) > σ} dt

=
q0 − σ

ρ
. (20)
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Figure 5: The queue size and EEBC for n = 1.

If σ = q0− ερ, then µ1(q0− ερ) = ε. Therefore, b1(ε, ρ) = q0− δ where δ
∆= ερ indicates the vertical

distance between the maximum queue size, q0, and EEBC. Note that b1(ε, ρ) is an estimate of EBC
at the end of the first time slot.

We now show that b1(ε, ρ) can be found by water-filling. Let us represent the first time instant
by a container with the height q0, and the width 1/ρ. Let this container hold ε units of liquid.
Then, EEBC is the empty portion of the container; see Fig. 5(b).

We continue water-filling representation by letting n = 2. For n = 2, we have two queue
samples denoted by q0 and q1. Note first that any percentile of the queue size is independent of
the order at which queue sizes q0, and q1 arrive. One might visualize the queue size by considering
the quadrangles with the maximum height qi, i = 0, 1 and the decreasing slope of the upper line
ρ. The quadrangles can be arranged in any arbitrary order. Therefore, without loss of generality,
we assume q0 ≥ q1. From the definition of EEBC, the fraction of time that the queue size is
larger than b2(ε, ρ) is ε. Let us visualize a horizontal line located at q0 and allow this line to move
gradually downward and measure the length of the interval for which the queue size is larger than
the horizontal line. We represent the interval for which the queue size is larger than this horizontal
line by I2. The length of I2 starts at zero and gradually increases. When the total length of I2 is
equal to 2ε, we stop and measure the height of the horizontal line, which is equal to b2(ε, ρ). There
are two cases that we will discuss separately: (i) q1 ≤ q0 − 2δ; and (ii) q1 > q0 − 2δ.

In case (i), q1 is much smaller than q0, hence the length of I2 becomes 2ε before the horizontal
line arrives at q1. This case has been illustrated in Fig. 6(a) for ε = 0.25. In this figure, the
event 1{Qρ(t) > b2(ε, ρ)} has been illustrated in heavy lines. For ε = 0.25 and n = 2, the total
temporal extent of the heavy line is 0.5 units. Since the total length of I2 is equal to 2ε, we have
b2(ε, ρ) = q0 − 2δ, where δ = ερ.

EEBC in case (i) can also be obtained by water-filling. Each time instant is modeled by a
container with the height qi and the width 1/ρ holding ε units of water. If the two containers can
exchange liquid, the water will pour into the larger container with the height q0. The height of the
empty portion of the container, q0 − 2δ, is EEBC.

Now consider the second case as illustrated in Fig. 6(b). From the definition of EEBC, the total
length of time for which the queue length is larger than b2(ε, ρ) is 2ε. Similar to case (i), we move
the horizontal line, starting at q0, downward until the length of the total interval for which the
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Figure 6: The queue size and EEBC with ε = 0.25 for n = 2: (a) q0 ≥ q1 +2δ and (b) q0 < q1 +2δ.

queue size is larger than the line is 2ε. When the horizontal line arrives at q1, the total length of I2

is equal to q0−q1

ρ . The horizontal line should move another 2δ−(q0−q1)
2 units downward to complete

the journey. At that point, the total length of I2 is q0−q1

ρ + 22δ−(q0−q1)
2ρ = 2 δ

ρ = 2ε. Therefore,

b2(ε, ρ) = q1 − 2δ−(q0−q1)
2 = q0+q1

2 − δ. Note in Figure 6(b) that b2(ε, ρ) is at the midpoint of q1 and
q0 − 2δ.

The water-filling procedure can again be used to find EEBC. Here, we assume two containers
with heights q0 and q1, and the width 1/ρ. Each container holds ε units of liquid as illustrated in
Fig. 7(a). In Fig. 7, we have extended the height of the containers by δ to include the cases at
which qi = 0. In such cases, the capacity of the container is zero but δ units of liquid should still
be generated at each time instant. Note that this extra height is not used in computing EEBC. As
shown in Fig. 7(b), water-filling gives b2(ε, ρ) = q0+q1

2 − δ, which is the same value obtained by the
direct method.

We continue this process by letting n = 3, where such as before we assume q0 ≥ q1 ≥ q2. Here,
we consider three cases: (i) q0 is substantially larger than q1 and q2; (ii) q1 is close to q0 but is
much larger than q2; and (iii) q0, q1, and q2 are close to each other. In the sequel, we will study
the three cases in details.
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Figure 7: The water-filling procedure for n = 2 with q1 > q0 − 2δ.

To find EEBC we visualize a horizontal line located at q0 and allow this line to move gradually
downward and measure the length of the interval for which the queue size is larger than the
horizontal line. Let us represent the interval for which the queue size is larger than this horizontal
line by I3. The length of I3 starts at zero and gradually increases. When the total length of I3 is
equal to 3ε, the horizontal line coincides with b3(ε, ρ).

In case (i), since q0 is much larger than q1 and q2, the length of I3 will become 3ε before the
horizontal line arrives at q1. Therefore, we will have b3(ε, ρ) = q0−3δ where δ = ερ. Note that here
we have implicitly assumed that 3ε < 1. Using the waterfilling paradigm, we can find the solution
by pouring liquid into the containers formed by q0, q1, and q2. Fig. 8(a) illustrates the waterfilling
solution for this case.

For case (ii), we note that I3 will be decomposed into two parts located in the neighborhoods
of q0 and q1. When the total length of I3 is equal to 3ε, the horizontal line coincides with b3(ε, ρ).
This interval first grows in the first time slot until the horizontal line arrives at q1 and then splits
into two parts and grows with the same rate both in the vicinity of q0 and q1 until the total length
becomes 3ε. When the horizontal line touches q1, the total length of I3 is q0−q1

ρ . The horizontal line

should move another 3δ−(q0−q1)
2 units downward to complete the journey. At this point, the total

length of I3 is q0−q1

ρ + 23δ−(q0−q1)
2ρ = 3 δ

ρ = 3ε. Therefore, b3(ε, ρ) = q1 − 3δ−(q0−q1)
2 = q0+q1

2 − 3
2δ.

This case can also be solved with the waterfilling algorithm. Here, we distribute 3ε units of
liquid over two time instants and arrive at the solution illustrated in Fig. 8(b). Note that in this
case the total volume of the liquid in the containers is (q0 − b3(ε, ρ))/ρ + (q1 − b3(ε, ρ))/ρ = 3ε,
which results at b3(ε, ρ) = q0+q1

2 − 3
2δ.

We now consider the third case. Similar to case (ii), we consider a horizontal line, first located
at q0, and gradually move it down until the length of I3 becomes 3ε. In case (iii), we will consider
a situation at which b3(ε, ρ) is smaller than both q1 and q2. Therefore, we expect that I3 will
have three segments located in all three time slots. Since we have assumed that q1 is larger than
q2, the horizontal line will first arrive at q1. When the horizontal line arrives at q1, the length
of I3 will be q0−q1

ρ . The length of I3 then grows in two segments located in the first and the
second time slots. When the horizontal line arrives at q2 the total length of I3 is q0−q1

ρ + 2 q1−q2

ρ .
At this point the horizontal line has already moved q0 − q2 units downward. The horizontal line
should move extra 3δ−(q0−q2)−(q1−q2)

3 units downward. At this point the total length of I3 will
be q0−q1

ρ + 2 q1−q2

ρ + 33δ−(q0−q2)−(q1−q2)
3ρ = 3 δ

ρ = 3ε. EEBC can then be found from b3(ε, ρ) =

q2− 3δ−(q0−q2)−(q1−q2)
3 = q0+q2+q3

3 −δ. This solution can also be found by waterfilling as illustrated in
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Figure 8: The water-filling process for n = 3 and q0 ≥ q1 ≥ q2:

(a) q2 ≤ q1 ≤ q0 + q1 − 3δ

2
; (b) q2 ≤ q0 + q1 − 3δ

2
≤ q1; (c)

q0 + q1 − 3δ

2
≤ q2 ≤ q1.

Fig. 8(c) since (q0+b3(ε, ρ))/ρ+(q1+b3(ε, ρ))/ρ+(q2+b3(ε, ρ))/ρ = 3ε. Hence b3(ε, ρ) = q0+q2+q3

3 −δ.
This procedure can be repeated for other values of n. Here, we devise a waterfilling algorithm

to obtain EEBC at a fixed ρ. Let the queue size over the interval [i, i+1) be the decreasing function
Qρ(t) = qi − (t − i)ρ. Each time instant is represented by a container holding ε units of liquid.
The ith container has the height qi + δ and the width 1/ρ. The whole liquid is distributed over
all containers with the waterfilling process. In the water-filling algorithm, the height of the empty
portion of the container at any time instant n less δ represents EEBC, bn(ε, ρ). To guarantee that
a zero queue size will also affect EEBC (i.e. hold ε units of water), the height of each container has
been assumed to be at least δ = ερ.

The waterfilling algorithm gives us a powerful tool to find an appropriate buffer size to achieve
the bound (1) in a single server queue. Besides providing a computationally simple algorithm (as
we will show in Section 4.2) waterfilling allows us to solve the problem for cases at which the service
rate is not constant. To observe this property, assume that the service rate is constant in each time
slot but varies from one time slot to next. The waterfilling algorithm can then be formed as follows.
Each time slot is represented by a container with the height qi + ερi and the width 1/ρi, holding
ε units of liquid. If all containers can exchange water, the level of the liquid in the system will be
EEBC.

4.1 Discrete Queues

Let 0 = a0 < a1 < . . . < aM represent the ordered set of quantization levels. We seek an iterative
procedure to track EEBC in real-time. EEBC at time n−1 is represented by bn−1 (the parameters
ε and ρ have been dropped for brevity.) We derive a recursive formula and use it to update EEBC
upon the arrival of a new packet.

The states are decomposed into two sets of “wet” and “dry” states. By a wet state at time
instant n, we mean a state m for which bn < am—all wet states contain liquid in the water-filling
paradigm. A dry state at time instant n is a one that is not wet. For a given bn with am < bn ≤ am+1

all states ak, k ≥ m + 1 are wet and all states ak, k ≤ m are dry.
The total number of time instants at which the queue size has been at state m over the interval
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[0, n] is represented by

`m,n
∆=

n∑

i=1

1{qi = am}, for m = 0, . . . , M. (21)

Note that
∑M

m=0 `m,n = n. The aggregated temporal extent of the states over the interval [0, n] is
represented by

`n(m) ∆=
M∑

k=m

`k,n for m = 0, . . . ,M. (22)

Note that for each n, we have `n(0) = n and `n(m) ≤ `n(k) for m ≥ k. It is also possible to show
that in a stationary regime,

lim
n→∞

`n(m)
`n(0)

= P
(
Qρ(0) ≥ am

)
. (23)

Let, for m = 1, . . . , M,
vm,n

∆= (am − am−1)`n(m) (24)

represent the amount of liquid required to fill-up the whole volume stretched between the states
am and am−1 at time instant n.

Let bn−1 be known at time n−1. Upon the arrival of a new packet at time instant n, we proceed
to find a new EEBC, bn. We distinguish two cases: (i) the new queue size is a dry state, (ii) the
new queue size is a wet state. We discuss these two cases separately.

• Case (i):

Assume am < bn−1 < am+1. Therefore, am+1 is wet and am is dry. Let the new queue size
be qn = ak, where ak is a dry state, that is, k ≤ m. The container in the new time instant
carries δ units of liquid that should be distributed over all states in a water-filling procedure.
First, we update `n(j) as

`n(j) =

{
`n−1(j) + 1 if j ≤ k,
`n−1(j) if j > k.

(25)

Define the amount of liquid, which is required to move bn−1 to am, by

v̌b,n
∆= (bn−1 − am)`n(m + 1). (26)

Let also V
(j)
m,n, j = 1, . . . , m denote the aggregate of the amount of liquid required to fill-up

the volume extended between states am−j and am. Then

V (j)
m,n

∆=
j−1∑

i=0

vm−i,n. (27)

Assume V
(0)
m,n = 0 and note that 0 < V

(1)
m,n < . . . < V

(m)
m,n < V

(m)
m,n + nδ. The new EEBC is

found by comparing δ − v̌b,n to these values:

bn =





bn−1 − δ

`n(m + 1)
if δ < v̌b,n,

am−j+1 − δ − v̌b,n − V
(j−1)
m,n

`n(m− j + 1)
if V

(j−1)
m,n < δ − v̌b,n ≤ V

(j)
m,n, j 6= 0.

(28)
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• Case (ii)

Again assume am < bn−1 < am+1 and let qn correspond to a wet state. Each container
at any time interval carries δ units of liquid. Therefore, the level of liquid in the container
should be compared to qn − δ. If qn − δ < bn−1, the excessive liquid in the new container
should be divided over all pre-existing wet states. An approach similar to the one presented
in case (i), with δ in (28) replaced by δ− qn + bn−1, can be used to distribute the liquid over
all corresponding states. If, on the other hand, qn − δ > bn−1, the new container can sink
part of the liquid in the system and hence increase EEBC. An example of this case has been
illustrated in Fig. 9.

Let qn = ak for some m + 1 ≤ k ≤ M and assume qn − δ > bn−1. In equilibrium, the amount
of liquid poured into the new container is qn− δ− bn. This liquid should be supplied by other
containers. Define the volume of liquid reserved between bn−1 and am+1 by

v̂b,n−1
∆= (am+1 − bn−1)`n−1(m + 1). (29)

Such as (27), let V
(j)
k,n−1, j = 1, . . . , k − m − 2 denote the aggregated liquid between states

ak−j and ak at time n− 1. The total liquid to be distributed over all states j = m + 1, . . . , k
is equal to (see Fig. 9)

Wn
∆= δ + v̂b,n−1 + V

(k−m−2)
k,n−1 . (30)

Upon the arrival of a new packet at time instant n, and assuming qn = ak, the aggregated
temporal extents `n(j), j = 0, . . . , M will be updated as in (25). Now use (27) to find V

(j)
k,n ,

j = 1, . . . , k−m−2. Again assume V
(0)
k,n = 0. A technique similar to the one presented in case

(i) is used to distribute the liquid. Consider 0 < V
(1)
k,n < V

(2)
k,n < . . . < V

(k−m−2)
k,n . The total

amount of liquid Wn is now compared to these values. If Wn belongs to a certain interval,
all states with an index larger than the one corresponding to the given interval will be wet at
time instant n and the remaining states will become dry. The new EEBC, bn, is then given
by

bn =





ak − Wn

`n(k)
if Wn ≤ V

(1)
k,n ,

ak−j −
Wn − V

(j−1)
k,n

`n(k − j)
if V

(j)
k,n < Wn ≤ V

(j+1)
k,n , for 1 ≤ j ≤ k −m− 3.

(31)

The total liquid used in the water-filling procedure in the interval [0, n] is denoted by ∆n = nδ.
From the definition of δ, we have

∆n

n
= ερ (32)

which is independent from n, the length of the observation interval. From the construction of the
water-filling procedure, we conclude that

lim
t→∞P

(
Qρ(t) > bn

)
=

∆n

nρ
(33)

where bn corresponds to the level of liquid in the water-filling process with the total amount of
liquid ∆n. Therefore, the amount of liquid used will indicate the probability of buffer overflow. We
will use this observation to prove the following theorem.
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Figure 9: The water-filling procedure for a case at which qn − δ < bn−1.

Theorem 4 EEBC, bn(ε, ρ), converges to EBC, b(ε, ρ), as n →∞.

Proof: See Appendix D.

4.2 Computational Complexity

In this subsection, we study the computational complexity of the water-filling algorithm. We
compute the computational complexity of the algorithm in the worst case—compute the maximum
number of parameters at each time instant. The water-filling algorithm should store the values
of `n(j), j = 0, . . . , M . Upon the arrival of a new packet, the queue size, qn, is calculated using
Lindley’s equation. As before, we assume that am < bn−1 < am+1 and qn = ak. If qn = ak, then all
`n(j), j = 0, . . . , k will be increased, as suggested in (25). This will require, at most, M additions.
We will also need to calculate vj,n, j = 1, . . . ,M , v̌b,n, and v̂b,n−1, given by (24), (26), and (29),
respectively. At most, this step will use (M + 2) multiplications and (M + 2) additions. Note that
the number of additions can be reduced to 2 if we store each am − am−1 and use them in (25).
Furthermore, if we assume that am − am−1 = 1, then the maximum number of multiplications will
be reduced to 2. The next step is to compute V

(j)
m,n. At the worst case, this step may need M

additions. Next, we have to compute δ− v̌b,n or Wn = δ+ v̂b,n−1 +V
(k−m−2)
k,n−1 , depending on whether

qn is a dry or a wet state. This step needs 1 or 2 additions. In the final stage, we should compare
δ − v̌b,n or Wn to at most M levels. This can be done in log M steps. Finally, EEBC in (28) and
(31) need at most 3 additions and one division. Therefore, the water-filling algorithm in total will
need at most 3M + 7 additions, M + 3 multiplications and log M comparisons. Note that since M
is usually small, the computational complexity of the water-filling algorithm is limited.

5 Numerical Results

In this section, we find EEBC for MPEG4 encoded video traces. We use 20 minute traces of 9
MPEG4 encoded movies downloaded from [33]. The 9 movies are: Jurassic Park I, Silence Of The
Lambs, Star Wars IV, Mr. Bean, Star Trek – First Contact, From Dusk Till Dawn, The Firm,
Starship Troopers, and Die Hard III. Fig. 10 illustrates the trace of Star Wars IV as a function of
time. The maximum packet size in this trace is 9370 bytes and is located at the 154th frame (6.16
seconds after the start of the trace). We decompose each trace into 4 non-overlapping segments
each containing 5 minutes of the original trace and create 36 traces of 5 minute length each. In the
sequel, we will use these traces to study our techniques.
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Figure 10: The MPEG4 encoded trace of the movie Star Wars IV.

The EEBC of all 36 traces for ε = 0.01 are illustrated in Fig. 11. As expected from Theorem 3,
EEBC is a convex, monotonically decreasing function of the service rate ρ. Note also that EEBC
is trace dependent. Therefore, it is not possible to define a unique EEBC that can serve as the
burstiness curve of a class of traces. Indeed, as illustrated in Fig. 11, the variance of EEBC of
traces can be large. Fig. 12 shows the average EEBC for ε = 0, 0.01, 0.02, 0.03, 0.04, 0.05. Note that
EEBC for different values of ε is a convex decreasing function of ρ.

In Fig. 13, we show EEBC as a function of ε for five different values of the service rate in a semi-
logarithmic scale. As noted, EEBC decreases with increasing ε. The decrease is more pronounced
for smaller values of the service rate and moderate values of ε.

EEBCs of the movie Star Wars IV are shown in Fig. 14 in a semi-logarithmic plot along with
the delay lines corresponding to 20 msec and 50 msec delay limits; the curves correspond to ε =
0, 0.01, . . . , 0.05. As illustrated, there exists a fairly large difference between the empirical maximum
burstiness curve and the EEBC associated to ε = 0.01. In this example, for ε = 0 and D = 20 msec,
the allocated bandwidth should be 400 KByte/sec. If ε = 0.01 is used, the required bandwidth will
be 180 KByte/sec. Therefore, using ε = 0.01 instead of ε = 0 will save approximately 55% of the
required bandwidth. Note that indeed with the service rate of 180 KByte/second for the trace, at
most 1% of data will be lost or placed in the shaping buffer and delayed beyond 20 msec. This
phenomenon is due to the burstiness of video stream.

Fig. 15 illustrates the percentage of bandwidth that can be saved if the empirical maximum
burstiness curve is replaced by EEBC. The curves have been found by locating the intersection of
the EEBC and the delay lines. The percentage depends on the parameter ε. In this figure, for the
delay of 50 msec, about 50% saving on bandwidth can be acquired if EEBC is used.

In order to show that the existence of the large distance between the burstiness curves for ε = 0
and ε = 0.01 is not restricted only to the video trace under investigation, we have investigated the
EEBC of an MPEG4 encoded trace of the movie Jurassic Park for 1000 seconds. The results have
been illustrated in Fig. 16. Note the fairly large separation between the burstiness curves for ε = 0
and ε = 0.01 in this example.

Fig. 17 illustrates EEBC of a convex combination of the traces for ε = 0.01. The upper curve in
the figure shows the average of EEBCs of all traces. The other curve is EEBC of the multiplexed
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Figure 11: The EEBC of 36 traces of 5 minutes each taken from the 9 MPEG4 movies.
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Figure 12: The average EEBC of all traces for ε = 0, 0.01, 0.02, 0.03, 0.04, 0.05.
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Figure 17: The convex combination of EEBCs of individual traces and EEBCs of the multiplexed
trace.

trace, which is obtained by averaging all MPEG4 traces. Note that for very small service rates, the
two curves coincide. Indeed, for ρ = 0, there will not be any service and the queue size will be equal
to the addition of the traffic of all traces. For very high bandwidths, the system is over-provisioned
and the two curves also tend to coincide. However, the curve of the multiplexed traffic decays
much faster than the curve of the convex combination of EEBC of the traces. For intermediate
bandwidths, the multiplexed traffic needs a smaller bandwidth.

Fig. 18 illustrates the percentage of buffer size that can be saved when the traces are multiplexed.
Note that for very large bandwidth the relative saving is almost 100%, that is the required buffer
size of the multiplexed traffic is much smaller than the convex combination of the buffer sizes of
the individual MPEG4 traces. Therefore, for the same QoS, the multiplexed traffic requires much
smaller buffer size per trace than the original traces stored in separate buffers.

In Fig. 19 and Fig. 20, we study the statistical multiplexing gain of EEBC. For any fixed buffer
size ranging from 100 KBytes to 6 MBytes, we find the service rate required to maintain the loss
bellow ε = 0.01. First, we assume that each trace passes through a separate queue. For a fixed
buffer size we find the service rates so that all traces have the loss rate ε = 0.01. We add the service
rates of all individual queues to get the total aggregated service rate. This value is shown by the
upper curve in Fig. 19. In the second example, we create a single queue with a buffer size equal
to the addition of all all buffers sizes of individual queues. We then pass the aggregated traffic,
obtained by adding all traces together, through this queue and adjust the service rate to get the
traffic loss ε = 0.01. The corresponding service rate has been shown with the lower curve in Fig. 19.
As expected, the service rate of the aggregated traffic is much smaller than the sum of the service
rate of individual traces.

Fig. 20 illustrates the ratio of the sum of the service rates of individual traces and the service rate
of the aggregated traffic. Note that the aggregated traffic uses about 25-50 times less bandwidth
than the individual traces.

Fig. 21 illustrates the temporal behavior of EEBC for 10 minutes of the MPEG4 trace of the
movie Star Wars IV for ρ = 100, 150, 200 KBytes/sec. Since the queue size is smaller for higher
service rates, the empirical burstiness curve converges faster.
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Figure 18: The percentage of burstiness (buffer size) that can be saved if the traces are aggregated.
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Figure 19: The service rate versus buffer size for individual traces and the aggregated trace.
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Figure 20: The statistical multiplexing gain as a function of the buffer size.
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6 Conclusion and Discussion

In this paper, we have developed a new traffic regulation scheme. The proposed technique uses
the effective burstiness curve (EBC) which has been defined as a percentile of the queue size for
a constant rate server. We have shown that the EBC is a convex non-increasing function of the
service rate. It has also been shown that the EBC of a multiplexed traffic is smaller than the sum
of the corresponding curves of individual flows. Therefore, multiplexing can reduce the EBC.

We have devised a “water-filling” algorithm to obtain the empirical effective burstiness curve
(EEBC), which provides a sequence of convex decreasing curves converging to the true EBC. It
has been shown that for discrete queues, EEBC can be obtained with a recursive algorithm. The
proposed approach has been applied to MPEG4 encoded video traces. It has been shown that, for
the given video traces, considerable savings in terms of required bandwidth and allocated buffer
size can be obtained if the maximum burstiness curve is replaced by EBC.

The technique proposed in this paper can be applied to traffic streams in an on-line procedure.
In an on-line estimation of EEBC, one can employ a number of auxiliary parallel constant-rate
servers. The queue size in each server is used to determine EEBC at the given service rate. The
total burstiness curve is then estimated by interpolating these points.

The traffic characterization studied in this paper is very useful in applications in which a pre-
recorded video trace is transmitted over a network with guaranteed bandwidth. One instance of
such an application is video-on-demand in which a prerecorded video trace is transmitted at the
request of a user. In such a case, if EEBC of the trace is available, it can be used to allocate an
appropriate amount of bandwidth and buffer size to the transmitted stream in the network. The
intersection of EEBC and the delay line DM ρ indicates a candidate point for resource allocation.
If the bandwidth of the intersection point is available, it will be allocated, otherwise an alternative
point—with presumably larger guaranteed delay—is selected. The burstiness at the selected point
represents the maximum size of the buffer that should be reserved for the traffic, given that the
minimum guaranteed bandwidth is indicated by the service rate of the selected point. The maxi-
mum burstiness curve at the selected service rate indicates the maximum buffer requirement both
in the regulator and inside the network.

A The proof of Theorem 1

For simplicity of notation let b1 = b(ε, ρ1) and b2 = b(ε, ρ2) where

P(Qρ1(0) ≥ b1) ≤ ε (34)
P(Qρ2(0) ≥ b2) ≤ ε (35)

and define ρ = αρ1 + βρ2 for 0 ≤ α ≤ 1, and β = 1− α. Since supremum is a convex function, we
have, for all t,

Qρ(t) = sup
s≤t
{A(s, t)− ρ(t− s)}

≤ α sup
s≤t
{A(s, t)− ρ1(t− s)}+ β sup

s≤t
{A(s, t)− ρ2(t− s)}

= αQρ1(t) + βQρ2(t). (36)

Define Rα,ε(ρ1, ρ2)
∆=

{
b |P

(
αQρ1(0) + βQρ2(0) ≥ b

)
≤ ε

}
. Use part (iv) and (36) to conclude that

b(ε, ρ) ≤ infRα,ε(ρ1, ρ2). To establish convexity, we will show that αb1 + βb2 ∈ Rα,ε(ρ1, ρ2) and

25



hence b(ε, ρ) ≤ αb1 + βb2.
Assuming ρ1 < ρ2, there exists t̂ such that

Qρ2(0) = A−t̂ − ρ2t̂, (37)

Qρ1(0) = Qρ1(−t̂) + A−t̂ − ρ1t̂. (38)

From P
(
Qρ1(0) ≥ b1

)
≤ ε and (38), we have

P
(
A−t̂ − ρ2t̂ ≥ b1 + (ρ1 − ρ2)t̂−Qρ1(−t̂)

)
≤ ε. (39)

Also from P
(
Qρ2(0) ≥ b2

)
≤ ε and (37),

P
(
A−t̂ − ρ2t̂ ≥ b2

)
≤ ε. (40)

Since b2 is the smallest burstiness curve satisfying (40), we conclude

b1 + ρ1t̂−Qρ1(−t̂) ≥ b2 + ρ2t̂. (41)

Now use (37) and (38) to get

P
(
αQρ1(0) + βQρ2(0) ≥ αb1 + βb2

)
= P

(
A−t̂ ≥ α(b1 + ρ1t̂−Qρ1(−t̂)) + β(b2 + ρ2t̂)

)
(42)

Using (41) and (40), we have

P
(
αQρ1(0) + βQρ2(0) ≥ αb1 + βb2

)
≤ P

(
A−t̂ ≥ b2 + ρ2t̂

)
≤ ε. (43)

Therefore, αb1 + βb2 ∈ Rα,ε(ρ1, ρ2) and the proof is complete.

B Proof of Theorem 2

To prove Theorem 2, we will need the following lemma.

Lemma 3 Assume positive causal functions fi(t), i = 1, . . . , L that satisfy
∫ ∞

0
fi(t)dt = 1. Choose

bi, i = 1, . . . , L so that
∫ ∞

bi

fi(t)dt ≤ εi for some εi > 0. Then

∫ ∞
∑L

i=1
bi

f1(t) ∗ . . . ∗ fL(t) dt ≤ min
1≤i≤L

εi (44)

where ∗ is the convolution operator.

Proof: Let f̂(t) ∆= f2(t) ∗ . . . ∗ fL(t). The left-hand-side of (44) can be written as
∫ ∞
∑L

i=1
bi

f1(t) ∗ f̂(t) dt =
∫ ∞
∑L

i=1
bi

dt

∫ ∞

0
f1(t− s)f̂(s) ds

=
∫ ∞

0
f̂(s) ds

∫ ∞

s+
∑L

i=1
bi

f1(r) dr. (45)
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Now use b1 < s +
∑L

i=1 bi for all s ≥ 0 and the fact that
∫ ∞

0
f1(t)dt = 1 and f1(t) ≥ 0 to get

∫ ∞

s+
∑L

i=1
bi

f1(r) dr ≤ ε1. (46)

Therefore, (45) can be written as
∫ ∞
∑L

i=1
bi

f1(t) ∗ f̂(t) dt ≤ ε1

∫ ∞

0
f̂(s) ds. (47)

Note that
∫ ∞

0
f̂(s) ds = 1 since f̂(s) can be interpreted as the probability density function of L− 1

independent random variables. Therefore
∫ ∞
∑L

i=1
bi

f1(t) ∗ f̂(t) dt ≤ ε1. (48)

Since f1(t) has been randomly selected, the left-hand-side of (48) is indeed smaller than min1≤i≤L εi.
2

Proof of Theorem 2: Similar to (36), using the convexity of supremum, we can show that

Qρ(t) ≤
L∑

i=1

αiQ
(i)
ρ (t). (49)

Define Rα,ε(ρ) ∆= {b |P(
∑L

i=1 αiQ
(i)
ρ (0) ≥ b) ≤ ε}. Use Lemma 1-(iv) and (49) to get b(ε, ρ) ≤

infRα,ε(ρ). Next, we show that
∑L

i=1 αib
(i)(ε, ρ) ∈ Rα,ε(ρ).

Let the probability density function of αiQ
(i)
ρ (0) be represented by fi(t). Therefore,

∫ ∞

αib(i)(ε,ρ)
fi(t) dt = P

(
αiQ

(i)
ρ (0) ≥ αib

(i)(ε, ρ)
)
≤ ε. (50)

Since Q
(i)
ρ (0), i = 1, . . . , L are independent random variables, we have

P
( L∑

i=1

αiQ
(i)
ρ (0) ≥

L∑

i=1

αib
(i)(ε, ρ)

)
=

∫ ∞
∑L

i=1
αib(i)(ε,ρ)

f1(t) ∗ . . . ∗ fL(t) dt. (51)

Now use (50) and Lemma 3 to get

P
( L∑

i=1

αiQ
(i)
ρ (0) ≥

L∑

i=1

αib
(i)(ε, ρ)

)
≤ ε. (52)

This completes the proof.

C Proof of Theorem 3

Parts (i) − (iii) are obvious by construction. We prove part (iv) here. The objective is to show
that bn(ε, ρ) ≤ αbn(ε, ρ1) + βbn(ε, ρ2) where ρ = αρ1 + βρ2, α ≥ 0, β ≥ 0, and α + β = 1. For
simplicity of notation, denote b1 = bn(ε, ρ1) and b2 = bn(ε, ρ2).
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Let qi indicate the queue size at the ith time instant for a server with the service rate ρ. The
queue size can be represented by

qi = sup
`≤i
{A(`, i)− (i− `)ρ}. (53)

The subadditive property of the supremum gives

qi ≤ α sup
`≤i
{A(`, i)− (i− `)ρ1}+ β sup

`≤i
{A(`, i)− (i− `)ρ2}

= αq1,i + βq2,i (54)

where q1,i and q2,i represent the queue size at time instant i for the service rates ρ1 and ρ2,
respectively.

Without loss of generality, we assume that ρ1 < ρ2. With this assumption the queue sizes q1,i

and q2,i can be represented by

q2,i = A(ˆ̀, i)− (i− ˆ̀)ρ2 (55)

q1,i = q1,ˆ̀+ A(ˆ̀, i)− (i− ˆ̀)ρ1 (56)

where ˆ̀ is the time instant at which the supremum of (53) is achieved.
The metric µn(σ) can also be written as

µn(σ) =
1
n

n−1∑

i=0

min
{

max
{qi − σ

ρ
, 0

}
, 1

}
. (57)

Define the truncating function T β
α (.) as

T β
α (t) =





α if t ≤ α
t if α < t < β
β if β ≤ t

(58)

Using this function, (57) will be represented as

µn(σ) =
1
n

n−1∑

i=0

T 1
0 (

qi − σ

ρ
). (59)

From the definition of the EEBC, we have

1
n

n−1∑

i=0

T 1
0

(q1,i − b1

ρ1

)
= ε (60)

1
n

n−1∑

i=0

T 1
0

(q2,i − b2

ρ2

)
= ε (61)

Using (56) and (55), we get

1
n

n−1∑

i=0

T 1
0

(A(ˆ̀, i)− (i− ˆ̀)ρ1 − b1 + q1,ˆ̀

ρ1

)
= ε (62)

1
n

n−1∑

i=0

T 1
0

(A(ˆ̀, i)− (i− ˆ̀)ρ2 − b2

ρ2

)
= ε (63)
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Applying ρ1 ≤ ρ2 in (62) and (63) gives

(i− ˆ̀)ρ2 + b2 ≤ (i− ˆ̀)ρ1 + b1 − q1,ˆ̀. (64)

We now apply αb1 + βb2 in the definition of the EEBC and use (54) to get

1
n

n−1∑

i=0

T 1
0

(qi − (αb1 + βb2)
ρ

)
≤ 1

n

n−1∑

i=0

T 1
0

(αq1,i + βq2,i − (αb1 + βb2)
ρ

)
. (65)

Substitute (55) and (56) in (65) and get

1
n

n−1∑

i=0

T 1
0

(qi − (αb1 + βb2)
ρ

)
≤ 1

n

n−1∑

i=0

T 1
0


A(ˆ̀, i)− α

(
(i− ˆ̀)ρ1 + b1 − q1,ˆ̀

)
− β

(
(i− ˆ̀)ρ2 + b2

)

ρ




≤ 1
n

n−1∑

i=0

T 1
0

(A(ˆ̀, i)− (i− ˆ̀)ρ2 − b2

ρ

)
(66)

where we have used (64). Note that ρ is a convex combination of ρ1 and ρ2 and therefore ρ ≤ ρ2.
Use this inequality in (66) to get

1
n

n−1∑

i=0

T 1
0

(qi − (αb1 + βb2)
ρ

)
≤ ε. (67)

Since the left hand side of (67) is smaller than ε it is possible to find an EEBC bn(ε, ρ) ≤ αb1+βb2

such that
1
n

n∑

i=0

T 1
0 (

qi − b(ε, ρ)
ρ

) = ε. (68)

And the proof is complete.

D Proof of Theorem 4

Note first that limn→∞ `n(m) = ∞ for all m = 0, . . . , M . This is due to the fact that in a stable
queue all states are recurrent. We investigate two cases:

Case (i): qn is a dry state. Note that

lim
n→∞Vb,n = lim

n→∞

(
bn−1 − am

)
`n(m + 1) = ∞. (69)

Therefore, for very large n, we have δ ∈ I0 in (28) and

bn = bn−1 − δ

`n(m + 1)
. (70)

This indicates that ‖bn−bn−1‖ → 0 for n →∞. Hence, {bn} is a Cauchy sequence and is convergent.
Case (ii): qn is a wet state. Here, Wn−1 grows much faster than Vq,n and thus for very large n

we have Wn−1 ∈ Ik−m−1 in (31). Hence

bn = am+1 − Vq,n−1 +
∑k−m−2

i=1 Vk−i,n−1 + Vb,n−1 − Vq,n −
∑k−m−2

i=1 Vk−i,n

`n(m + 1)
(71)
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We use approximations, Vq,n−1 ≈ Vq,n, Vk−i,n−1 ≈ Vk−i,n and `n−1(m + 1) ≈ `n(m + 1), to get
bn ≈ bn−1.

From the above discussion we conclude that the sequence {bn} is convergent and assign limn→∞ bn =
b∞. Note also that from (33) we have

P(Qρ(0) > b∞) = ε. (72)

The objective is to show that b∞ = b(ε, ρ). We prove this by contradiction. First, let b∞ <
b(ε, ρ). This is in contradiction to the definition of the EBC and therefore is not valid. Second, let
b∞ > b(ε, ρ). A water-filling procedure resulting in b(ε, ρ) will require ∆n +

(
b∞−b(ε, ρ)

)
`∞(m+1)

units of fluid where we have assumed am < b(ε, ρ) < b∞ < am+1. Therefore, using (33), one gets

lim
n→∞

1
nρ

[
∆n +

(
b∞ − b(ε, ρ)

)
`∞(m + 1)

]
= ε +

(b∞ − b(ε, ρ)
ρ

)
P

(
Qρ(0) > am + 1

)
= ε′. (73)

Since both b∞ − b(ε, ρ) > 0 and P
(
Qρ(0) > am + 1

)
> 0, we have that ε′ > ε. This is also in

contradiction to the definition of b(ε, ρ).
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