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Abstract—In this paper, we will establish a duality be-
tween maximum delay and maximum backlog in a single
queue network. Min-plus algebra will be employed to
devise the duality. In min-plus algebra, the maximum
backlog is represented by the scalar projection of ac-
cumulated input traffic curve onto accumulated output
traffic curve. We will define the adjoint operator of a
nondecreasing function and show that the maximum de-
lay can be represented as the scalar projection of the
adjoint of accumulated output traffic onto the adjoint of
accumulated input traffic. Based on this observation, we
will draw a duality between the maximum backlog and
the maximum delay.

We will also define the left- and the right-seminorms
of a nondecreasing function and will use it to introduce
the concept of a “matched” queue. A matched queue
is a queue in which the accumulated input and output
curves are adjoint. In a matched queue, the maximum
delay and the maximum backlog are identical and are
equal to the left-norm of input process.

I. introduction

Worst-case quality-of-service (QoS) provisioning has
been the focus of recent research in high-speed network-
ing [1] — [7]. QoS is usually indicated by performance
measures such as delay, delay jitter, traffic loss, back-
log, minimum bandwidth and so on. The QoS parame-
ters can be studied in average-case and/or in worst-case
paradigms. In the average-case analysis of QoS parame-
ters, the input traffic is usually modelled by a canonical
probability distribution function and the behaviour of
network is measured in terms of the percentiles of the
QoS parameters. In the worst-case approach, the QoS
parameters are usually quantified in the extreme case
in which the input traffic is greedy and resource allo-
cation is parsimonious. In fact, the worst-case analysis
quantifies the maximum deviation from the normal net-
work operation. In this approach, the maximum value
of QoS parameters are studied.

In this paper, we study maximum delay and max-
imum backlog as the two indices of network perfor-
mance. For simplicity, the whole network is modelled
as a single queue [1] [3]. The delay of each packet is
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the difference between the time that the packet arrives
at the queue and the time that it leaves the queue.
Backlog indicates the amount of traffic awaiting service
inside the queue. Both parameters are directly related
to the available bandwidth and the activity of other
sources — usually modelled as a crossing traffic.

We will use the concept of service curve [3] [8] [9].
The service curve of each traffic flow represents the
amount of service guaranteed for that traffic. The ser-
vice curve provisioning will provide a certain degree of
isolation between the crossing traffic and the flow un-
der investigation. Using this approach, the delay and
backlog for each traffic can be respectively calculated as
the horizontal and the vertical separation between the
accumulated input traffic and the corresponding service
curve.

In the present paper, we will show that there exists a
duality between the maximum delay and the maximum
backlog. We will use min-plus algebra to establish the
duality [10] [11]. In min-plus algebra, we use minimiza-
tion and addition as the two main operators. In fact,
the arithmetical addition of the conventional algebra is
replaced with minimization and the arithmetical mul-
tiplication is replaced with the addition. It is possible
to show that the set of increasing functions along with
the minimization and addition can generate a dioid [4].
In addition to the “idempotency”, a dioid in min-plus
algebra has the same characteristics as a ring in the
conventional algebra.

The maximum backlog of each traffic flow in a queue
with a given service curve is represented in terms of the
scalar projection of the accumulated input traffic curve
onto the service curve [12]. We will define an adjoint
operator in the set of non-decreasing functions and then
will show that the maximum delay can be represented
as the scalar projection of the adjoint of service curve
onto the adjoint of the accumulated input traffic. Using
this property, we will show that the maximum delay of
a given queue is identical to the maximum backlog of a
dual queue in which the input is driven by the adjoint
of service curve and the output is equal to the adjoint
of the accumulated input traffic of the first queue.

Furthermore, we will define the concept of a



TABLE I

Corresponding operators in the conventional and

min-plus algebra.

Conventional Algebra Min-plus Algebra
min{a, b} a⊕ b

a + b a⊗ b

a− b
a

b
◦

ab ab = ba

a

b
b
√

a

max{a, b} a ∨ b

“matched” queue. We will show that a queue is
matched to the input if the service curve is the adjoint
of accumulated input traffic. For a matched queue, the
delay and the backlog are identical and are equal to a
seminorm — to be defined in the course of the paper
— of the accumulated input traffic curve.

II. Min-plus Algebra

Let the set of all non-decreasing functions over IR+

be denoted by

J ∆= {a(t) | 0 ≤ a(t1) ≤ a(t2), for 0 ≤ t1 ≤ t2,

and a(0) = 0}. (1)

We will use min-plus algebra to handle the algebraic
manipulation of elements of J . In min-plus algebra,
the arithmetical addition of conventional algebra is re-
placed by the point-wise minimization — denoted here
by the notation ⊕ — and the arithmetical multiplica-
tion is replaced by the point-wise addition, represented
by ⊗. In fact, for a(t), b(t) ∈ J , we have

a(t)⊕ b(t) ∆= min{a(t), b(t)}, (2)

a(t)⊗ b(t) ∆= a(t) + b(t). (3)

It is straightforward to show that the set J is closed
under the ⊕ and ⊗ operations. Subtraction, multiplica-
tion, and division in the conventional algebra also have
corresponding counterparts in min-plus algebra as rep-
resented in Table I.

Definition 1: A set A supplied with two inner oper-
ations ⊕ and ⊗ is a commutative dioid if the following
axioms hold:
• Axiom 1: (Associativity) ∀ a(t), b(t), c(t) ∈ A,

[a(t)⊕ b(t)]⊕ c(t) = a(t)⊕ [b(t)⊕ c(t)], (4)
[a(t)⊗ b(t)]⊗ c(t) = a(t)⊗ [b(t)⊗ c(t)]. (5)

• Axiom 2: (Commutativity) ∀ a(t), b(t) ∈ A,

a(t)⊕ b(t) = b(t)⊕ a(t), (6)
a(t)⊗ b(t) = b(t)⊗ a(t). (7)

• Axiom 3: (Distributivity) ∀ a(t), b(t), c(t) ∈ A,

[a(t)⊕ b(t)]⊗ c(t) = [a(t)⊗ c(t)]⊕ [b(t)⊗ c(t)]. (8)

• Axiom 4: (Null and Identity Elements) ∀ a(t) ∈
A, ∃ε(t), e(t) ∈ A :

a(t)⊕ ε(t) = a(t), (9)
a(t)⊗ e(t) = a(t). (10)

• Axiom 5: (Absorbing Null Element) ∀ a(t) ∈ A,

a(t)⊗ ε(t) = ε(t). (11)

• Axiom 6: (Idempotency of Addition) ∀ a(t) ∈ A,

a(t)⊕ a(t) = a(t). (12)
The null and the identity elements in Axiom 4 are

defined as ε(t) = ∞ for t > 0, and ε(0) = 0, and e(t) = 0
for t ≥ 0, respectively.

Definition 2: A dioid is complete iff it is closed for
infinite sums, and Axiom 3 extends to infinite sums.

Remark 1: It is possible to show that (J ,⊕,⊗) is a
complete dioid [10].

In a dioid, a partial order is defined as

a(t) ≤ b(t) ⇔ a(t) = a(t)⊕ b(t). (13)

With this ordering, the dioid is an inf-semilattice.
Defining the inner operation ∨ as

a(t) ∨ b(t) ∆= max{a(t), b(t)}, (14)

the semilattice becomes a complete lattice [13] [11].
Definition 3: The scalar projection of a function a(t)

onto b(t) was defined in [12] as

〈a(t), b(t)〉 = sup
t≥0

[a(t)− b(t)] ∨ 0. (15)

Using the operator for subtraction, one can also rep-
resent (15) as

〈a(t), b(t)〉 = sup
t≥0

a(t)
b(t)
◦ ∨ 0. (16)

Definition 4: For a(t) ∈ J , we define the adjoint
mapping as

a∗(t) ∆= t + inf{d | t ≤ a(t + d)}. (17)

The reverse mapping is defined as

a(t) ∆= t− inf{d | a∗(t− d) ≤ t}. (18)
Proposition 1: For each a(t) ∈ J , there exists a

unique a∗(t) ∈ J .
Lemma 1: For a(t) ∈ J with the adjoint mapping

a∗(t) we have:
(i) a(t) ∈ J =⇒ a∗(t) ∈ J ;
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Fig. 1. The adjoint mapping for a function a(t) ∈ J .

(ii) a∗∗(t) = a(t);
(iii) If for all t ∈ IR+, a(t) ≤ b(t), then a∗(t) ≥ b∗(t);
(iv) If c(t) = a(t)⊕ b(t), then c∗(t) = a∗(t) ∨ b∗(t);
(v) If c(t) = a(t)⊗ b(t), then c∗(t) ≤ a∗(t)⊕ b∗(t);
(vi) If b(t) = φa(t), then b∗(t) = a∗( t

φ ) for any scalar
φ ∈ IR+;
(vii) If a(t) in convex (respectively concave), then a∗(t)
will be concave (respectively convex);
(viii) If a(t) ≤ b(t), for all t ≥ 0, then a∗(t) − b∗(t) =
inf{d | t ≤ a(b∗(t) + d)} = inf{d | b(a∗(t)− d) ≤ t};
(ix) a∗(a(t)) = t and a(a∗(t)) = t;
(x) 〈t, a(t)〉 = 〈a∗(t), t〉.

Using Lemma 1-(iv) and the fact that the adjoint
mapping is bijective on J , we can conclude that the
sup-semilattice (J ,∨) is conjugate to the inf-semilattice
(J ,⊕) and therefore that the structure (J ,⊕,∨) is self-
conjugate. Furthermore, if we define the operator ⊗′ as

a∗(t)⊗′ b∗(t) = inf{τ | a(τ)⊗ b(τ) ≥ t}, (19)

then (
a(t)⊗ b(t)

)∗
= a∗(t)⊗′ b∗(t) (20)

and we can state that the dioid (J ,∨,⊗′) is conjugate
to the dioid (J ,⊕,⊗).

The adjoint mapping of a function is, in fact, the re-
flection of that function about the line a(t) = t. Fig. 1
illustrates an example of a function a(t) ∈ J along with
its adjoint mapping. We call this operator “adjoint”
mapping for the items (ix) and (x) in Lemma 1; simi-
lar properties hold between an operator and its adjoint
in the conventional algebra. See also [6], for a similar
definition in terms of pseudo-inverse.

Definition 5: For a(t) ∈ J , we define the left-
seminorm as

‖a(t)‖`
∆=

[
〈a(t), a∗(t)〉

] 1
2

(21)

and the right-seminorm as

‖a(t)‖r
∆=

[
〈a∗(t), a(t)〉

] 1
2

(22)

Note that the notations in the definition of the left
and right seminorms are those of min-plus algebra. In
fact, the left-seminorm (respectively right-seminorm) of
a function a(t) is half the maximum vertical distance
between a(t) (respectively a∗(t)) and its adjoint a∗(t)
(respectively a(t)).

Proposition 2: The left-seminorm satisfies the follow-
ing properties:
(i) ‖a(t)‖` ≥ 0;
(ii) ‖a(t)⊕ b(t)‖` ≤ ‖a(t)‖` ⊕ ‖b(t)‖`

Similar properties hold for the right-seminorm.
Proposition 3: The left and the right seminorm of a

function a(t) ∈ J will satisfy:

‖a(t)‖` 6= ‖a(t)‖r, (23)
‖a(t)‖` = ‖a∗(t)‖r, (24)
‖a(t)‖r = ‖a∗(t)‖`. (25)

Lemma 2: If limt→∞
a(t)

t > 1, then the left-
seminorm is infinite. If limt→∞

a(t)
t < 1, then the right-

seminorm is infinite. If limt→∞
a(t)

t = 1, then both
left-seminorm and right-seminorm are finite.

Remark 2: If a(t) ≤ t for all t ≥ 0, then ‖a(t)‖` = 0
and if a(t) ≥ t for all t ≥ 0, then ‖a(t)‖r = 0.

III. Delay-backlog Duality

The accumulated arrival process in a queue over the
interval [0, t] is represented by A(t) =

∫ t

0
r(s) ds where

the nonnegative function r(t) is the normalized instan-
taneous rate of the input traffic and we have r(t) = 0
for t < 0. With this assumption, we have A(t) ∈ J .

In [4], it has been shown that the maximum delay
and the maximum backlog can be obtained using the
upper envelope of the accumulated input traffic. The
upper envelope is a subadditive closure of input traffic
and reflects the worst-case behaviour of input flow. In
the sequel, we will assume that A(t) is, in fact, the
upper envelope of accumulated input traffic.

Assume that the input A(t) is served by a node with
the service curve S(t). The cumulative output traffic
B(t) will satisfy

B(t) ≥ min
0≤s≤t

{A(s) + S(t− s)} (26)

In terms of min-plus algebra, (26) can be represented
by

B(t) ≥ A(t) ∗ S(t) (27)

where ∗ denotes the convolution operator defined as

a(t) ∗ b(t) =
⊕

0≤s≤t

{a(s)⊗ b(t− s)}. (28)

Using this definition, a single FIFO queue is contem-
plated as a linear filter in min-plus algebra.
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Fig. 2. The delay is defined as the horizontal distance between
the input traffic curve and the output traffic curve.

Backlog Q(t) at time t is defined as the vertical dis-
tance between the input traffic A(t) and the output
traffic B(t), that is

Q(t) ∆= A(t)−B(t). (29)

Using the subtraction operator of min-plus algebra,
backlog can also be represented as

Q(t) =
A(t)
B(t)
◦ (30)

Similarly, delay is defined as the horizontal distance
between these two curves. We formulate the delay as

D(t) ∆= tb − ta (31)

where

tb = inf{τ |B(τ) ≥ t}, (32)
ta = sup{τ |A(τ) ≤ t}. (33)

Refer to Fig. 2 for an illustration. Note that ta and tb
are respectively equal to the adjoint of A(t) and B(t).
Using this equality and the subtraction operator of min-
plus algebra, we have

D(t) =
B∗(t)
A∗(t)
◦ (34)

Using (15) and Definition 4, it is possible to prove
that the maximum backlog and the maximum delay
are given by [4] [14]

Q
M

= 〈A(t) , S(t)〉 = sup
t≥0

A(t)
S(t)
◦ (35)

D
M

= 〈S∗(t) , A∗(t)〉 = sup
t≥0

S∗(t)
A∗(t)
◦ (36)

Note that (35) and (36) illustrate a duality between
the maximum backlog and the maximum delay. The
maximum backlog is the scalar projection of the input
traffic onto the output traffic. Similarly, the maximum

AdjointAdjoint

(1)

(2)

A(t) B(t)

A∗(t) B∗(t)

Fig. 3. Two queues illustrating the duality of maximum delay
and maximum backlog.

delay can be formulated as the projection of the adjoint
of accumulated output traffic onto the adjoint of accu-
mulated input traffic. The duality can be employed to
prescribe the application of similar approaches to the
management of these QoS parameters. Fig. 3 illustrates
two dual queues. The maximum delay of queue (1) is
identical to the maximum backlog of queue (2), and the
maximum delay of queue (2) is the same as the maxi-
mum backlog of queue (1).

Now consider a queue in which the service curve is
the adjoint of input traffic, that is S(t) = A∗(t)⊕A(t).
For this queue,

DM = QM = ‖A(t)‖2` . (37)

In fact, the queue is “matched” to the input traffic. In
a matched queue, for all t ≥ 0, we have

Q(t) = D(t). (38)

Using the notation for division in min-plus algebra, we
can write (38) as

A(t)
S(t)
◦ =

S∗(t)
A∗(t)
◦ (39)

Therefore, for a matched queue we have

A(t)⊗A∗(t) = S(t)⊗ S∗(t) (40)

It is possible to show that the matched queue is the
only queue that satisfies (38).

Similarly, for the input traffic A∗(t), the queue will be
matched to the input if the same service curve, S(t) =
A∗(t)⊕A(t), is used. In this case, we have

D′
M

= Q′
M

= ‖A∗(t)‖2` = ‖A(t)‖2r. (41)

See Fig. 4 for an illustration. In Fig. 4, we have assumed
limt→∞A(t)/t = 1 in order to have finite left and right
seminorms.

Example: A leaky bucket regulator is represented by
a pair of parameters (σ, ρ) where σ is the size of token
pool and ρ is token replenishment rate. A greedy traffic
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Fig. 4. An illustration for a matched queue.

at the output of a leaky bucket regulator can be shown
as A(t) = σ + ρt. Assume that this traffic is served
by a matched queue. The output of the queue will be
B(t) = min

{
max{ t−σ

ρ , 0}, σ + ρt
}

. In fact, the output
corresponds to a constant rate server with a constant
initial delay. The delay is σ units and the service rate
is 1/ρ. For this queue, if ρ ≤ 1, then QM = DM =
‖σ + ρt‖2` = σ(1 + ρ). If ρ > 1, the queue is unstable
and Q

M
= D

M
= ∞.

IV. Conclusion

In this paper, we have used min-plus algebra to de-
vise a duality between maximum delay and maximum
backlog in a singe-queue network. The two main op-
erators of min-plus algebra are pointwise minimization
and pointwise addition. We have shown that under
these operators the set of nondecreasing positive func-
tions is a “dioid” — a dioid has the same properties as
a “ring” in the conventional algebra. Using min-plus
algebra, maximum backlog is represented as the scalar
projection of accumulated input traffic curve onto accu-
mulated output traffic curve. We have defined an “ad-
joint” operator in the dioid of nondecreasing functions.
We have shown that the adjoint operator in min-plus
algebra has the properties similar to the adjoint oper-
ator of conventional algebra. Using this definition, we
have shown that maximum delay can be represented
as the scalar projection of the adjoint of accumulated
output traffic onto the adjoint of accumulated input
traffic. This observation establishes a duality between
the maximum delay and the maximum backlog.

We have also defined the left and the right semi-
norms. Using these definitions, we have shown that
if the accumulated output traffic is the adjoint of in-
put traffic, a “matched” queue will be obtained. In a
matched queue, the delay and the backlog are identi-
cal for all time instants. Furthermore, the maximum
delay is equal to the maximum backlog and can be rep-
resented as the square of the left norm of input traffic.
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