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Abstract—This paper focuses on the development of a new
resource allocation scheme for video streaming in wireless
networks. The technique utilizes the ε-weak burstiness curve
which has been defined as the (1− ε)-percentile of the max-
imum burstiness curve. We show that the ε-weak bursti-
ness curve is a convex non-increasing function of the service
rate. We also devise a “water-filling” algorithm to obtain
the empirical ε-weak burstiness curve. The technique has
been applied to MPEG-4 encoded video traces. The nu-
merical studies show that if the ε-weak burstiness curve is
used for resource provisioning, a considerable percentage of
bandwidth will be saved.

Keywords: Video streaming, burstiness curve, water-
filling, single FIFO queue, VBR traffic, MPEG-4 trace.

I. Introduction

The next generation wireless systems should support
multimedia streaming applications. Multimedia streams
are usually modelled by variable-bit-rate (VBR) traffics.
Video streams are generated by applying an encoder —
such as an MPEG-4 encoder — to digitized video traces.
The result is a periodic sequence of packets with nonuni-
form lengths. The size of each packet is related to the
information content of the frame and its location inside
the group of frames.

To support video applications, the network should pro-
vide appropriate resources — in terms of guaranteed band-
width and buffer size — for the encoded trace. The as-
signed resources are frequently measured in the stochastic
or deterministic paradigm. In the stochastic approach, a
canonical probability distribution function is assigned to
input traffic and the performance is measured in terms of
the mean and percentiles of the network behavior. A mis-
match between the selected model and the underlying data
structure might produce significant errors in the estimated
network behavior. In the deterministic network provision-
ing, the input traffic is replaced by its worst-case behavior
— greedy source [1] [2] [3]. This approach usually creates
conservative solutions for resource allocation.

Recent studies of the Internet traffic indicate that the
classical approaches to traffic modelling, such as the Pois-
son and Markov processes, do not provide appropriate
models for LAN and WAN traffics [4] [5]. It has been shown
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that, unlike the traditional traffic models, the Internet traf-
fic has long-range dependence. This observation has been
the motivating force for devising self-similar models for In-
ternet traffic [6]. It has also been shown that MPEG coded
video traces also reveal long-range dependence and that
self-similar models can also be employed for video streams
[7] [8]. Unfortunately, self-similar models are very com-
plicated and do not provide simple solutions for network
provisioning.

In this paper, we propose an alternative approach. We
devise a technique for non-conservative resource allocation.
Nevertheless, we would like to avoid the necessity of select-
ing a probability model for input traffic. We assume that
the network has a single bottleneck node and model the
network with a simple first-in-first-out queue. This is a
valid assumption if we consider that the bandwidth is usu-
ally the scarce commodity in the wireless hops as compared
to the backbone wired network. We measure the network
performance in terms of percentile of the queue size. The
proposed approach is stochastic; nonetheless, no explicit
model for input traffic is imposed.

An acceptable level of quality-of-service (QoS) for the
transmitted stream will be provided if the wireless network
can guarantee a minimum bandwidth for the encoded video
stream. For a real-time application, an acceptable band-
width would be the peak rate. If a bandwidth equal to
the peak rate is allocated to the video stream, each packet
will arrive at the receiver early enough so that it can be
played back in its proper time instant. Although using the
peak rate will guarantee a real-time playback of the video
stream, it will require a large allocated bandwidth and will
lead to a conservative network design.

On the other hand, if the allocated bandwidth is smaller
than the peak rate, some packets will not arrive in time for
playback. In such cases, a buffer will be used to store the
packets. The packets will be played back after an appro-
priate amount of traffic is accumulated in the buffer. The
packets will be collected in the playback buffer and will
be read into the decoder in a constant rate. In practice,
there exists a relationship between the size of the playback
buffer, the induced delay, the speed of transmission, and
the percentage of data that will be buffered. In this paper,
we will formulate this relationship and use it to estimate
the performance of video streaming applications in a wire-
less environment. Due to lack of space, we will not provide
the proofs of lemmas and theorems; for proofs refer to [9].



II. Problem Formulation

A video stream is represented by the sequence
{. . . , r−1, r0, r1, . . .} where ri is the size of the encoded
video packet at time ti = i∆, with i = . . . ,−1, 0, 1, . . .,
and ∆ the time difference between two consecutive frames.
We assume that each frame is encoded in a single packet.
The aggregated input traffic over the interval [s, t] is rep-
resented by

R(s, t) =
btc∑

i=dse
ri (1)

where dse is the smallest integer larger than or equal to s
and btc is the largest integer smaller than or equal to t.
Throughout this study, we assume that the input traffic is
generated by a discrete stationary stochastic process with

sup
i

ri

∆
= ρ

M
(2)

lim
t→∞

R(s, t)
t− s

= ρ̄ uniformly in s. (3)

ρM is the maximum rate of the traffic and ρ̄ is the average
rate.

Backlogged traffic at time t is defined as

Qt
∆= sup
−∞≤s≤t

{R(s, t)− S(s, t)} (4)

where S(s, t) is the amount of traffic served in the interval
[s, t]. For a server with the constant rate ρ, the total service
given over the interval [s, t] will be S(s, t) = (t− s)ρ. The
backlogged traffic will then be represented by

Qt(ρ) = sup
−∞≤s≤t

{R(s, t)− (t− s)ρ}. (5)

Since the system is stationary, one might be able to repre-
sent the queue size at the origin by

Q0(ρ) = sup
t≥0

{R−t − tρ} (6)

where R−t is the aggregated traffic over the interval [−t, 0].
Definition 1: For a given 0 ≤ ε ≤ 1, the ε-weak bursti-

ness curve is defined as

b(ε, ρ) ∆= inf
{

b |Pr(Q0(ρ) ≥ b) ≤ ε
}

. (7)
The ε-weak burstiness curve is, in fact, the (1 − ε)-

percentile of the burstiness curve [10] [11]

b(0, ρ) = sup
t

{
Qt(ρ)

}
. (8)

Proposition 1: The ε-weak burstiness curve satisfies the
following properties:
(i) For any 0 ≤ ε ≤ 1, b(ε, ρ) is a non-increasing convex
function of ρ;
(ii) For any ρ ≥ 0, b(ε, ρ) is a non-increasing function of ε.
(iii) If Qt(ρ) ≤ Q′

t(ρ) for all t, then b(ε, ρ) ≤ b′(ε, ρ) where
b(ε, ρ) and b′(ε, ρ) are, respectively, the ε-weak burstiness
curves associated to Qt(ρ) and Q′t(ρ).

The following theorem shows that a mix of traffics will
have an ε-weak burstiness curve smaller than the sum of
the ε-weak burstiness curves of individual flows.

Theorem 1: Consider the traffic of L users being mul-
tiplexed over a single link with the constant rate ρ (nor-
malized over ∆ seconds). Let the aggregated input traf-
fic for user i over the interval [−t, 0] be represented by
R

(i)
−t. The corresponding backlog at the origin will be in-

dicated by Q
(i)
0 (ρ) = supt≥0{R(i)

−t − ρt}. Define b(i)(ε, ρ) =
inf{b |Pr(Q(i)

0 (ρ) ≥ b) ≤ ε} for i = 1, . . . , L. Let the
aggregated multiplexed traffic over the interval [−t, 0] be
represented by RΣ

−t
∆=

∑L
i=1 λiR

(i)
−t where

∑L
i=1 λi = 1.

Also define QΣ
0 (ρ) = supt≥0{RΣ

−t − ρt}, and bΣ(ε, ρ) =
inf{b |Pr(QΣ

0 (ρ) ≥ b) ≤ ε}. Then

bΣ(ε, ρ) ≤
L∑

i=1

λib
(i)(ε, ρ). 2 (9)

This theorem shows that multiplexing can reduce the ε-
weak burstiness curve. In fact, the total burstiness of the
multiplexed traffic is smaller than the summation of the
burstiness of all users.

III. Empirical Approach

In the previous section, we defined the ε-weak burstiness
curve assuming stationary traffic over an infinite interval.
The assumption of infinite interval is however unrealistic
in practice. In the present section, we investigate the case
of finite intervals.

We consider the discrete time observation over the grid
i∆, for i = 0, 1, . . .. Without loss of generality, in the
sequel, we assume ∆ = 1. The queue size for a constant
rate server in a discrete time setting satisfies the Lindley’s
equation,

qm = [qm−1 − ρ]+ + rm (10)

where qm is the backlog at time m, ρ is the service given
over a unit time (∆), rm is the amount of traffic arriving
at time m, and [a]+ = max{a, 0}.

For a given threshold σ one is able to define

µn(σ) ∆=
1
n

n−1∑

i=0

1
{

qi > σ
}

min
{qi − σ

ρ
, 1

}
(11)

where 1{.} is the indicator function — 1{A} = 1 if the
predicate A is true, and 1{A} = 0 if the predicate A is
false. Note that µn(σ) is also a function of ρ (for simplicity
of notation we have dropped this parameter). Let

Qt(ρ) = qm − (t−m)ρ, for m ≤ t < m + 1. (12)

If qm is the sample of the queue size Qt(ρ) at the mth time
instant, then µn(σ) will be the proportion of time that the
queue size stays above the threshold, σ (see Fig. 1 for an
illustration). Therefore, µn(σ) is, in fact, the extent of
the time for which Qt(ρ) > σ, normalized over the whole
window of observation.



qm

σ

m m + 1

Fig. 1. The queue size in a discrete input setting and constant
service rate. The time extent over which Qt(ρ) is larger than σ has
been illustrated in heavy lines.

Definition 2: The empirical ε-weak burstiness curve for
the observations over the interval [0, n] is defined as a func-
tion bn(ε, ρ) that satisfies

µn

(
bn(ε, ρ)

)
= ε. (13)

Using (12), we can prove the following lemma.
Lemma 1: For all n ≥ 1,

1
n

∫ n

0

1{Qt(ρ) > bn(ε, ρ)}dt = ε. 2 (14)

Lemma 2: For any fixed ρ̄ < ρ < ρ
M

, the empirical ε-
weak burstiness curve, bn(ε, ρ), is a non-increasing function
of ε. 2

Theorem 2: For any 0 ≥ ε ≤ 1, the empirical ε-weak
burstiness curve, bn(ε, ρ), is a convex decreasing function
of ρ. 2

Theorem 3: The empirical ε-weak burstiness curve is a
consistent estimator of the ε-weak burstiness curve, that is

lim
n→∞

bn(ε, ρ) = b(ε, ρ). 2 (15)
In the sequel, we will propose a water-filling algorithm to

obtain the empirical ε-weak burstiness curve that satisfies
(15).

A. Water-filling

If µn

(
bn(ε, ρ)

)
≤ ε for all n, then one can guarantee that

in the limit

lim
n→∞

Pr{qn > bn(ε, ρ)} ≤ ε. (16)

We would like to obtain the smallest bn(ε, ρ) that satisfies
(16). Assume that the empirical ε-weak burstiness curve is
selected such as to satisfy µn(bn(ε, ρ)) = ε for all n. The
solution to this problem is with “water-filling”.

Consider the case n = 1 and define δ
∆= ερ. It is straight-

forward to notice that (13) is satisfied for b1(ε, ρ) = q0− δ.
Now let n = 2. Without loss of generality, assume q0 > q1.
There are two cases:
(i) q1 ≤ q0 − 2δ;
(ii) q1 > q0 − 2δ.

The solution for case (i) is

b2(ε, ρ) = q0 − 2δ (17)

(a)

(b)

b2(ε, ρ)

b2(ε, ρ)q0 − 2δ

q0 − 2δ

q0

q0

q1

q1

0 1 2

0 1 2

Fig. 2. The queue size and the empirical 0.25-weak burstiness thresh-
olds for two consecutive samples of the queue size for: (a) q0 ≥ q1+2δ
and (b) q0 < q − 1 + 2δ.

and for case (ii) is

b2(ε, ρ) =
q0 + q1

2
− δ. (18)

Fig. 2 illustrates the two cases with their corresponding
solutions for ε = 0.25.

We continue this process by letting n = 3. Note first
that any percentile of the queue size is independent of the
ordering at which the queue sizes q0, q1, and q2 arrive. One
might visualize the queue size by considering the quadran-
gles with the maximum height qi and the decreasing slope
of the upper line ρ. The quadrangles can be arranged in
any arbitrary order. Therefore, without loss of generality,
one can assume q0 ≥ q1 ≥ q2. There exist three cases:
(i) q2 ≤ q1 ≤ q0 − 3δ;
(ii) q1 ≥ q0 − 3δ and q0 − 3δ ≤ q2 ≤ q0+q1−3δ

2 ;
(iii) q1 ≥ q0 − 3δ, and q2 ≥ q0+q1−3δ

2 .
For case (i), the empirical ε-weak burstiness curve is

b(ε, ρ) = q0 − 3δ. (19)

For case (ii), we have

b(ε, ρ) =
q0 + q1 − 3δ

2
. (20)

And for case (iii), we have

b(ε, ρ) =
q0 + q1 + q2 − 3δ

3
. (21)
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Fig. 3. The water-filling procedure for n = 2 with q1 < q2 + 2δ.

This procedure can be continued for other values of n. We
now devise a water-filling algorithm to obtain the empirical
ε-weak burstiness curve at a fixed ρ.

The solution of the above problems can indeed be inter-
preted in terms of the concept of water-filling (see Fig. 3).
Let the queue size over the interval [i, i + 1) be the linear
decreasing function Qt(ρ) = qi−(t−i)ρ. Each time instant
is represented by a container holding δ = ερ units of liquid.
The height of the container is equal to qi + δ. The liquid
in the container, δ, is obtained by solving

∫ i+1

i

1{Qt(ρ) > qi − δ}dt = ε. (22)

The whole liquid is distributed over all containers with the
water-filling process. In the water-filling algorithm, the
height of the empty portion of the container at any time
instant n represents the empirical ε-weak burstiness curve
bn(ε, ρ).

IV. Numerical Results

In this section, we represent the simulation results. We
apply the concept of empirical ε-weak burstiness curve to
video traces. We use an MPEG-4 encoded video trace of
the movie Star Wars IV which was taken from [12]. Fig. 4
illustrates the trace as a function of time. The total num-
ber of frames is 54000 with 30 frames arriving in each sec-
ond. We assume that each frame is encapsulated in a sin-
gle packet. Therefore, ∆ = 1/30 seconds. The maximum
packet size is 9370 bytes and is located at the 154th frame.

The queue size for a single constant rate server has
been illustrated in Fig. 5. The service rate is ρ = 60
KByte/second. The prominent peak in the queue size is
due to the large size of the earlier packets of the trace.

The empirical ε-weak burstiness curve for ε =
0, 0.1, 0.2, 0.3, 0.4 and 0.5 has been illustrated in Fig. 6.
The curves have been obtained for n = 54000. As ex-
pected, the empirical ε-weak burstiness curve is a convex
non-increasing function of the service rate ρ.

The empirical ε-weak burstiness curve of the movie has
been shown in Fig. 7 in a semilog plot along with the delay
lines corresponding to 10 msec and 100 msec delay limits.
Different curves correspond to ε = 0, 0.01, 0.02, 0.03, 0.04
and 0.05. As illustrated, there exists a fairly large difference
between the empirical maximum burstiness curve and the
empirical 0.01-weak burstiness curve. Therefore, using ε =
0.01 instead of ε = 0 will save the bandwidth. In this
example, using ε = 0.01 will save approximately 43% of
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Fig. 4. The MPEG-4 encoded trace of the movie Star Wars IV.
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Fig. 5. The queue size of a constant rate server for the movie Star
Wars IV. The service rate is 60000 bytes/second.
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Fig. 8. The percentage of bandwidth saved, when the empirical
ε-weak burstiness curve is used, as a function of the maximum delay.

the required bandwidth reducing from 220 KByte/second
to 125 KByte/second for a maximum delay of D = 10 msec.
In other words, with the service rate of 125 KByte/second
for the trace, only 1% of the packets will be delayed beyond
10 msec.

Fig. 8 illustrates the percentage of bandwidth that can be
saved if the empirical maximum burstiness curve is replaced
by the empirical ε-weak burstiness curve. The curves have
been found by locating the intersection of the empirical ε-
weak burstiness curve and the delay lines. The percentage
depends on the parameter ε. It is obvious that the required
bandwidth decreases with ε.

V. Conclusion

In this paper, we have focused on the development of
a new resource allocation scheme for video streaming in
wireless networks. The proposed technique is based on the
ε-weak burstiness curve. The ε-weak burstiness curve is
the (1 − ε)-percentile of the queue size for a constant rate

server. We have shown that the ε-weak burstiness curve is a
convex non-increasing function of the service rate and also
that the ε-weak burstiness curve of a multiplexed traffic is
smaller than the summation of the corresponding curves
of individual flows. Therefore, multiplexing can reduce the
ε-weak burstiness curve.

We have devised a “water-filling” algorithm to obtain
the empirical ε-weak burstiness curve, which provides a
sequence of convex decreasing curves that converge to the
true ε-weak burstiness curve. The proposed approach has
been applied to MPEG-4 encoded video traces. It has been
shown that, for these traces, considerable saving in terms
of bandwidth and allocated buffer size can be obtained if
the maximum burstiness curve is replaced by 0.01-weak
burstiness curve.
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