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Abstract—In this paper, we show that the total downlink in- DS-CDMA networks, which can be utilized effectively in
terference in heterogeneous wireless DS-CDMA networks follows designing radio resource control mechanisms such as outer-
an asymptotically self-similar (as-s) process. The as-s model is|oq, hower control, call admission control, and load balancing
valid for the interference under certain conditions on channel ’ : ! . :
variations and traffic characteristics that cover a range of Thgse cgntrol mechanlsmlsloperate insubstantially longer
practical situations. We derive these conditions and generalize Periods (i.e., from a few milliseconds to seconds) compared
earlier results, obtained for data-centric cellular networks, to to other mechanisms in the lower layers including modulation,
heterogeneous cellular networks. Simulation results for actual detection and fast power control. In this paper, we only focus

cases confirm analytical results, and show that non-uniform o, the gownlink channel since it is more critical than the
spatial distribution of users and their soft-hand-off status do .
uplink channel [5].

not affect the nature of this self-similar process. Furthermore, . . . .
we discuss the impact of the analysis developed in this paper in  Temporal behavior of interference in long time-scales for
designing appropriate mechanisms for controlling radio resources packet data services in a cellular network has been studied in
in such networks. [6], [7], [8], where interference is modeled as a continuous-
Index Terms— Asymptotically self-similar process, downlink time process, graceful degradation of the QoS for limited
interference, heterogeneous cellular DS-CDMA networks, heavy- interferences is assumed, and the effects of call admission
tail distribution. procedure are ignored. In [9], an ON-OFF process is assumed
for user traffic, and the basic concept of heavy-tail processes is
|. INTRODUCTION utilized to explain the self-similarity of the total interference.

T is well known thatDirect Sequence Code DivisionAn ON-OFF process typically refers to the mutually indepen-

Multiple Acces{DS-CDMA) systems have some desirapléent, alternating ON-periods (during which packets are emitted
features such as dynamic channel sharing, wide range of 8p2 constant rate) and OFF-periods (during which no packets
erating environments, graceful degradation of the Quality-c€ sent). Obviously, the above method is not applicable
Service (QoS), and ease of cell planning. DS-CDMA systeri@ heterogeneous DS-CDMA cellular networks that support
can also support a heterogeneous mix of services with a bréydh packet-based and connection-oriented services. Further
range of bursty traffic characteristics and QoS requirementt using an ON-OFF traffic model, [8] makes the following

Since DS-CDMA systems have been shown to ssumptions: the total bandwidth (and as a consequence the
interference-limited [1], multiple-access interference plays d¥mber of users) is infinity; the allocated power to each
important role in the performance analysis of such systenter is the inverse of the slow fading channel gain; and a
Therefore, managing the total interference for all servicspecific wireless channel model is assumed in which the auto-
is a major challenge in heterogeneous wireless networkarrelation function of channel variations and the transmit
[2]. Proper utilization of more accurate information on th@ower process are of the order 6f(k~**!) for k — oo
temporal behavior of the downlink interference can lead ¥herea is the minimum decay exponent of the tail of the
the development of effective resource control mechanisntdN and OFF processes. Under these conditions, [8] shows
However, the conventional approaches for modeling interfdhat the total downlink (and also uplink) interference has
ence in wireless DS-CDMA networks only use the margin@symptotic second-order self-similarity. We will show that,
distribution of the total interference [2], [3], [4], and do notvhile the heavy-tail assumption of channel auto-correlation
consider its temporal behavior. In contrast, here we considépction and the infinite bandwidth are relaxed, the total

such temporal behavior for heterogeneous services in wirelédgrference yet depicts asymptotic second-order self-similarity
in heterogeneous DS-CDMA networks.
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We propose a model for the downlink interference over lorgimultaneous calls, and network load affects only the capacity
time scales, and show that it provides significant insight armd the respective cell. We focus on a network for which the
considerable intuition for designing efficient radio resourcactual arrival rates of new calls are less than the predetermined
control mechanisms. In these time scales, the QoS muatues assumed for designing that network. In such a case,
be considered over the lifetime of a call/session. For thi®ncurrent calls in the systems may cause outage or service
reason, and for better clarity, we will ignore many physicalegradation if the resulting total interference exceeds the
layer effects, as they are pertinent only to much shorter timpeedetermined threshold. We further assume that the allocated
scales. For example, we do not explicitly model the signatupewer to a user is a concave function of its instantaneous rate,
sequence of the DS-CDMA systems, nor the fast multi-paik continuously provided, and is utilized for the provision of
fading. Rather, we take a simplified model of the lower layethe actual discrete bit-rate [18].
that capture enough of the physical layer characteristics for ounVe focus on the asymptotic temporal behavior of downlink
purposes, and which has already been used successfully inidferference for long time-lags, which provides very criti-
[2], [4], [13] and [14]. The network provides a heterogeneousal information for predictive/adaptive radio resource control
mix of services, including data, multimedia and voice. mechanisms. We use a cross-layer model to obtain the auto-

Several system parameters, such as the total numbercofariance function of the downlink interference that is a
active users (interferers), their call durations, the allocatéghction of channel auto-covariance, call/packet-duration dis-
power to each call in the corresponding base-station, chantriution, call/packet arrivals, and the auto-correlation of the
variations and user mobility, cause temporal fluctuation eflocated power to each call/packets. We show that for long
interferences. To model these effects we take a cross-lajiefe-lags, the auto-covariance of the downlink interference in
approach as in [15] in which the traffic characteristics at thg constant channel, single cell DS-CDMA cellular network
application layer and the information on the wireless channelgth a mix of Poisson and heavy-tail traffics, decays sub-
are combined to model the downlink interference. exponentially. We then extend this result to show that the

We begin by modeling the total transmit power of eacliownlink interference has long-range dependence.
base-station as a time-series representing the aggregate of thgaffic modeling for voice-only DS-CDMA cellular net-
allocated power to each user in the coverage area of the agbrks is based on a Poisson process [14], [19], which has
responding base-station. We limit our consideration to the ¢gs root in telephony, and may not be an adequate model
channel interference, and exclude the thermal noise. A mobiég call/packet durations of multi-media and data traffics with
unit receives the superposition of all transmitted powers frofeavy tail distributions [20]. Therefore, the impact of traffic
adjacent base stations as well as the power allocated to otf¥dracteristics on the downlink interference in a heterogeneous
users in its serving cell affected by wireless channel gain thatggllular network is different from that of voice-only networks.
manifested as path-loss and fading. This approach is similarftRe effect of non-Poisson traffic on the performance of wire-
[9], [16], [17], except that we also consider temporal variationgss network was first addressed in [21], [22], where the re-
in the wireless channel. In cellular DS-CDMA networks, thguirements for supporting a self-similar traffic were examined.
status of a wireless channel depends on the individual wirel@sgas shown in [23] that the capacity of a DS-CDMA cellular
links as well as the network load conditions. We extend thetwork, designed for Poisson traffic, is substantially reduced
results of [16] and [17] for modeling the temporal behaviofhen the input traffic has long-range dependence.
of the downlink interference in heterogeneous DS-CDMA we show that in a cellular network, for heavy-tail distribu-
cellular networks to the case in which channel avallablllty iﬁon of callt durations, the auto-covariance of the downlink
uncertain. This is in contrast to [16] and [17], where onlynterference decays sub-exponentially, and thus, the corre-
provisioning of a single service for a fixed channel conditiogponding interference follows an asymptotic self-similar (as-
is considered. s) process. The respective heavy-tail distribution depends on

In cellular networks, different resource control mechanismgi| durations, bit-rate variations, and channel characteristics.
are performed in discrete time, but in different time scalggsymptotic self-similar processes are used to characterize
ranging from a few milliseconds to seconds, minutes, afmghg-range dependence in local area networks [24], wide-area
longer. In our treatment of the subject, only long time scalgetworks [25], and single-service traffic flows [26].
effects such as path-loss and shadowing are considered, SinCehe main contributions of this paper are as follows. We
short time scale effects such as fading are cancelled partly B¥end the theoretical results in [9], [16], and [17], in which
the fast power control and are also averaged out in long tir‘ﬂﬁ|y provisioning of a single service for a fixed channel
scales. For simplicity, we also assume very low mobility Gfondition was considered, to heterogenous services wireless
fixed mobile terminals. systems in which channel availability is uncertain. By con-

We assume that the call admission procedure is utilized dfyering a general channel model for a heterogenous services
the actual DS-CDMA cellular networks to control the radige|lular network with a mixture of connection-oriented and
resources allocated to each user to satisfy the required Qp§nnectionless services, we also extend the results on the self-
In the literature, it is assumed that in the DS-CDMA ceIIuIagim”arity of the interference in [6], [7] and [8], where a packet

networks, no new call arrivals are blocked and no calls aggjjular network with a particular channel model and infinite
terminated prematurely (see, e.g., [13], [14]). This can be

justified to some extent by ?Of.t't_)lo_Cking in DS-CDMA cellular 1Throughout this paper, *call’ means either a packet of data or a connection-
networks where no hard limit is imposed on the number ofiented service.



bandwidth was considered. +

We simulate a heterogeneous wireless network using the
Universal Mobile Telecommunication System (UMTS) stan-
dard [18]. We observe self-similarity in total downlink interfer-
ence when the call duration of at least one service has a heavy-
tail distribution. Simulation results show that non-uniformity ‘ ‘ ‘ ‘ ‘ ‘ ‘

=3

in the spatial distribution of users and their Soft-Hand-Off
(SHO) conditions do not affect self-similarity in the downlink
interference.

L J

II. TOTAL DOWNLINK INTERFERENCE

We consider a cellular DS-CDMA network that provides
heterogeneous services. In this network, the total downliﬁk?
interference measured in the location of a given user is
represented by a discrete time procéés), with n € Z = A
{...,—1,0,1,...} where for convenience we set the origin o
time to —oo. For a user in the network coverage area, ea
sample ofI(n) is valid over a window of lengtif,, seconds
that is thetime scaleof modeling. The measured value Kfn)
is the average of the received interference withjnseconds,
whereT,, > T, and 1/T. is the spreading bandwidth of the
cellular DS-CDMA network. Therefore[(n) is the sum of
the transmitted power by all base-stations, multiplied by tt = = - {

. 1. The allocated powqf;ii(n) to a calls of servicej in cell ¢ during
call durationrs; versus timeT’, is the modeling time scale.

*(n)

corresponding channel gain from each of those base-stati —— > n
to the user under study, so g - o=
J —_ — — — = — =
No
I(n) =Y &°(n)P(n)g"(n) @ _ ‘
—1 Fig. 2. Temporal behavior aP¢(n) for the case that three users of service

) ) ) Jj are served in celt, 75, 755, and 7, are the call durations of users 1, 2,
where N¢ is the number of cells in the networRc(n) is the and 3 respectively.

total transmitted power by the base-station in eelf<(n) is

the cross-correlation between the spreading sequences of other | . ) - )
users and the user of interest, agfdn) is the channel gain otherwise. Fig. 2 illustrates a typic&l°(n). In a broader view,
c C c i i
from the base-station in cell to the user. Note that in (1), Y5 25i(-), and7y; are random processes. Equation (2), which
the power allocated to the user is not includedAh(n). For specifies the total allocated power in each base-station, is an

convenience. we assume that the user is located inccell  €Xtension of a similar equation used in [17] to characterize
and that50(n5 -1 the aggregated traffic in an Asynchronous Transfer Mode

In the time slotn, each base-station serves a set of actifé1 M) switch, in which the channel gain is irrelevant, and
users (calls) in its cell coverage area. For simplicity we ignof8® channel is available during the whole call duration. The
the SHO users and thus each call is served by only one badacertain wireless channel makes the analysis of the downlink
station. We assume that each call is started at the beginniffgrference more challenging and nontrivial. Note that in (1)
of a time slot and its duration is an integer multiplication of"1d (2), there are no assumptions on the traffic characteristics
the time scale of modelingT(,). The transmitted power by and spatial distribution of users in the cell coverage area.

the base-station is the sum of allocated powers to all calis inFO" @ll 7.m & Z and all co, 1, we assume that* (n)
the corresponding cell, thereforeP¢(n) is and g (m) are second-order stationary processes and are

independent from each other. To obtain the total interference in

J Nj(n) (1), in what follows, we obtain the characteristicsitsf(n) and
Pe(n) =YY" p5i(n—vf +1) (2) ¢°(n). We assume that for each given cetnd servicej, the
j=1 i=1 call duration sequence procegss;,i € N}, the arrival rates

where J is the number of services provided by the networig€duence procesgus;(.),i € N}, and the allocated power
N%(n) is the number of calls of servicg in cell ¢ at time Sequence procesgf;(.),i € N} are random processes with
n, P?i(') (Fig. 1)is the allocated power to call of service identically independent distribution (!.I.d.) variable. We denote
jincell ¢, andv¢; € Z is the start time of theth call in  7ji: #5:(n) andpj;(n) by the generic random variables,
cell ¢ that receives servicg Calls are enumerated hiyin the  #5(12) andp§(n), respectively.

order of their arrival, such that in each cellvj;, < vf; ;. _ _

For theith call of servicej in cell ¢ with a call duration of A. Base-station Transmit power

75, € NsecondsN = {1,2,...}, p§;(.) has a real-value equal To obtain the characteristics &°(n), we need to have the

to the allocated power in its call duration, and is equal to zerumber of active calls for different service types and their



corresponding call durations in (2) as well as the allocateer at time slot: is generally a function of its bit-rate, that
power in their respective call durations. In this model, the usir p§,(n) = x;([5;(n)), where R5;(n) is the instantaneous
traffic is specified by three processes(n), 77 and pj(n), bit-rate of theith call of servicej in cell ¢, andy;(z) is an
wherep$(n) is a function of the service typg the bit-rate, and increasing and concave function of[2]. For simplicity, we
the power allocation strategy in the network. It is easy to shassumey;(z) is a linear function ofr for all j, but can also
that the downlink interference can be completely specified Im¢ any concave function af. We also assume that the system
p§(n), g¢(n), pu5(n) andrs, for all j ande. can support any arbitrary bit-rate.

Let u$(n) € Z4 ={0,1,2,...} be the number of new call Given a servicej call in cell ¢ with call duration
arrivals for servicej in cell ¢ at timen. Note that in (2) for 75, = [, the received power can be envisioned as a seg-
a givenu$(n), we can derivevs;. Mobile users are assumedment of a non-negative second-order stationary discrete-time
to be uniformly distributed in the coverage area of each bagemcess which depends oh and is denoted bypj(l) =
station. In the following, we present the models for a new cll. ., p$(—1), p$(0), p$(1), .. .). The mean and auto-correlation
arrival processuj(n), the call duration process?, and the function of Py arems;, andrf, (k) respectively. We also
allocated power procesgs;(n). The channel process will beassume that < m$ g, < oo and0 < 75, (k) < oo.
presented in the next subsection.

1) New Call Arrivals In DS-CDMA cellular networks it g \vireless Channel
has been assumed that no new call arrivals are blocked and nP _ o .
calls are terminated prematurely [13], [14]. This can be justi- h (1), the transmitted power by each base-station is muliti-

fied to some extent due to soft blocking of calls in DS-CDMA)”?d by the corresponding Cha.”?‘e.' gai.n. To obtain the channel
cellular networks, meaning that there is no hard limit on t ain g°(n), assume a deterministic distance-dependent path

number of available channels and all users suffer a grad 1> and two fading effects: fast fading and slow shadowing.

performance degradation as the load is increased. Howev pte that fast fading (e.g., Rayleigh or Rician) affe£t(n)

in reality such networks utilize call admission mechanismy (ﬁ) in smalllle(; Emtehsialeis than the ?h"’;d&wmg' Wh't(;]h |shalsto
to control the resources allocated to users while maintainif§' Y cancelied by the fast power control. Vloreover, the short-

their required QoS. We assume that the arrival rates of né'9e effect of fast fading is averaged out in longer time-scales

calls for each service type are less than the values for WhﬁHCh asl,. Therefore, the channel gay¥(n) is
the network was designed. This means that all requests for g°(n) = L.d;"0%(n) 4)
different service types whose arrival rates are less than the _ _ .
corresponding pre-determined values will be granted at tAf'€réde is the distance between the base-statoand the
cost of other users’ probable graceful QoS degradation. user for which the downllnk_ mtc_erference is measured,is

It has been shown that the Poisson distribution is 4A€ Path loss exponent which is a function of the antenna
appropriate model for call arrivals of voice and non-voicB€ight and the signal propagation environment, is an
services [17], [23]. Here, we also assume tbfj’l(n) has a environmental constant, arfd(n) is the slow fading process.

Poisson distribution with parametat It has been shown that. may vary from slightly less than 1
’ for hallways within buildings, to larger than 2.5 in dense urban

. (Aj)’“e”? environments and hard partitioned office buildings [30]. The
Pr{pj(n) = v} = ] ) slow fading process“(n), has a log-normal distribution with
standard deviatiorr.. The Gudmundson correlation model

Consequently, the total downlink interferend in (1 X .
a Y ) (1) [30] is used for log-normal shadowing as

can be fully specified by\; = E[u(n)], the probability
distribution of 77, as well as the processg$(n) and g°(n). O°(n+1) = p°@°(n) + (1 — p°)r(n) (5)
We further assume that < \$ < oo. ) . i
2) Call Durations We denote both packet duration and'here the time scale i&; (fading period).T; > T, ©°(n) =
call duration as ‘call duration’. Assume that the call duratiolpg ¢“(12) is the log-normal fading in dB,“(n) is a zero-mean
is a random variable with a known distribution. Call duration&hite Gaussian noise with vanan@é(l +0°)/(1 - p°), and
of different service types are assumed to be independent fr8rf #° < 1 is the channel correlation coefficient.
each other. For voice-only wireless and wireline networks, it W& assume thaj“(n) is a second-order stationary process.
is invariably assumed [13], [27] that call durations are expd'€ mean and auto-correlation function of procgss:) are
nentially distributed. Distribution of call durations in future™y @ndrg(k) respectively. We also assume thak mg <
wireless systems are expected to be similar to the onesf @nd 0 < rg(k) < co. The auto-covariance function of
current wireline networks, for which extensive statistical anaf- (%) is denoted byC¢(k). Consequently, the total downlink
ysis and measurements have established that the distribufl¥grferencel(n) in (1) can be obtained from§ = Efuj(n)],
of call durations for data and multimedia services are hea\fyh-e probability distribution of¢, and the characteristics of the
tailed [20], [26], [28], [29]. For a heavy-tailed distribution, théProcesseg;(n) andg“(n).
rate of decay of its density function is much slower than that
of the Poisson distribution. Pareto distribution has been ust¢ T EMPORAL BEHAVIOR OF DOWNLINK INTERFERENCE
in [20], [28] to model call durations. In this Section, we derive the asymptotic temporal behavior
3) Allocated Power to Each Call To obtain p;’f(n), we (i.e., for k — oo) of the auto-covariance function of the
note that for a given channel, the allocated power to a givelownlink interference” (k). Using the assumptions in Section



Il on the independence aP°!(n) and ¢g°2(m) for different Using Lemma 1 in Appendix, the inner summation in (10)
values ofc;, ¢y, n andm?, it is easy to show that the auto-can be written as

covariance function of (n) is 00 o0
Ne ZL(n)niO“l N/ L(z)z™* dux, l—o00. (12)
c c c c c c n= l
Clk) = Y [Ch(R)C5 (k) + Co(k)(mip)? + C (k) (2. !
c=1 Using the Karamata theorem (Theorem 1.5.3 in [31]), (11) can

. . i . ) be written as
Using Theorem 4 in [17], it is straightforward to show that

- i i i oo L
the mean and the auto-covariance functiorP6{n) in (1) are / L(z)a— L ~ %l‘“, |- oo, (12)
l

J oo
mp = Y INPHr = 1kmS,, (7) By the same argument for (12), the auto-covariance function
j=l1i=1 of the transmit powet’r (k) in (10) can be written as
J 0o oo
Cp(k) = > > D APy =nlrjo(k), k€ UB) Cp(k) ~ / L(@) -0 g (13)
j=11=k+1 n=l k «
Before examining the effects of traffic characteristics on the ~ L(k) gotl k- 0o. (14)
auto-covariance of the downlink interference in (6), we define ala—1)
regular and slow varying functions. Thus,
Definition 1: ([31]) A function f(x) >0, 2 € R is called L(k) . 5
aregular varying function(rvf) if there exist ana € R such Crlk) ~ BB+ 1) ¥ b (13)

f(uz)

that for allu € Ry, — u®, asx — oo. The value
of « is the regularity indexof f(z). If a = 0, then f is
called aslow varying functionsvf). We denoteR),, as the

whereg = a—1,0 < 3 < 1. Sinceg < 1, the auto-covariance
function in (15) decays sub-exponentially (slower thigft)
and therefore

set of regular varying functions such thatfifz) € RV, then oo
f(x) = L(x)z™, whereL(z) is a sVf. > 1Cp(k)| =00 (16)
A random variableX is said to be heavy-tailed with infinite k=—o00
variance if P(|X| > z) € RV, for 0 < a < 2. Eqg. (16) indicates that in constant channels, the downlink
Example 1: Downlink asymptotic temporal behaviorjnterference exhibits extended temporal correlatidihs.
(single-cell case) Assume a single-cell system (.&c =1) A process whose auto-covariance function satisfies (16)

with constant channel gaig(n) = go. For brevity, we drop s called along-range dependentLRD) process [32]. For
the cell index in the Sequel. Suppose that there are two SerVigﬂS LRD process, the correlation between its two Samp|es
(i.e., J = 2) both with Poisson distributions for call arrivaISdeCreaSes very SlOle with an increase in the tempora| dis-
with rates ofA; and A,. Servicej = 1 has an exponentially tance between those samples. In general, the auto covariance
distributed call duration, and Service = 2 has a heavy- fynction of an LRD process fok — oo is C(k) ~ L(k)k=5,
tail distribution of call durations. Assume further that thQ\/hereL(k) is a slow Varying function’ anf < ﬁ < 1. In
call duration of servicej = 2 has a discrete Pareto-typethe above example, if the distributions of call durations are
distribution, exponential for both services, their auto-covariance functions
Pr{ry =1} = Ly(1)I7* 1, l<a<? (9) are absolutely summable, and therefore the resulting auto-
) ] ) ) correlation function decays exponentially, and creatshaat-
where Ly(1) is a slow varying function, and is the ‘shape ange dependentSRD) process. The auto-correlation of a
parameter’ of the distribution. A small value for parametesrp process does not have a heavy tail. Note that for most
a results in a distribution with a heavier tail. Intuitively, (9)standard time series, such as ARMA and Markovian models,

implies that there is no ‘typical’ distribution of call durations¢na 4uto-covariance function decays exponentially [33], and
i.e., call durations are highly variable, exhibit infinite variancqhuszzfo |C(k)| < oo [32].

and fluctuate over a wide range of values.
In the simplest case, we assume that, m ;) andr;)(n)

are constants. Therefore, using (6) and (8), we get A. Asymptotic Behavior of the Auto-covariance Function of

the Downlink Interference

Cpk)~ > Y Lnn™7', k- oo, (10)  In Example 1, we showed that for a constant channel,
I=k+1 n=l the heavy-tailed distribution of call durations results in LRD
where L(n) is a rvf and the symbol~' means behaves downlink interference. We now extend this observation for

asymptotically a& Equation (10) does not include the term&°re general channel conditions. Assume that the auto-
corresponding tg = 1, since they diminish aé — oco. covariance function of the channel process is

c c — B¢
2Note that here we assume a fast power control mechanism to deal with Cg(k) ~ Lg(k)k™", k— o0 a7

the undesirable effects of fast fading. Fast fading and shadowing processes . . .
are also assumed to be independent. Therefore we asBt(mg andg©(m) where i denotes time with a temporal resolutidp,, L;(k)

are also independent for all andm. is a slow varying function angy > 0 is the channel auto-
34(k) behaves asymptotically as(k) meansilimy,_, o % =1 covariance decay exponent. Fgf < 1, the channel process

N



is LRD, and forg; > 1, the channel process is SRD. For thasymptotically self-similar proceggs-s), with self-similarity
corresponding tlme scales, this model is consistent with threlex H =1—3/2,0< 38 < 1, if
Gudmundson correlation model for fading channels [34]. Com (0)

It is easy to show thaCy(k)Cg(k) € RV_g;—g:. USING  lim C(,, (k) = (m) ((k+1)2P —2k2F 4 (k—1)2F)
(6) and Lemma 2 in the Appendlx we conclude tﬁ&(k) m=eo 2 (20)
RV_ge, where C(k) £ Cp(k)CS(k) + CS(k)(m$)® + wherek € Z. , Cyn(k) is the auto-covariance function of
Cp(k)(mg)* and ¢ = min{G5, 5% }. If we employ Lemma fm — (... [™(—1),I™(0),1™(1),...) andI™(n), as defined
2 repeatedly we gef'(k) € RV_s-, where3* = min.°. in (19), is the average process over blocks of length
Asymptotically, the regular varying functiofi(k) is equal to A process/ is as-s if the correlation coefficients of the
a slow varying functionZ* (k) multiplied by an exponential average process of block length asm — oo are identical
part. Now, we present the following proposition. to those of a self-similar processA sufficient condition for a

Proposition1: For a finite-mean total transmit power prosecond-order stationary processto be asymptotically self-
cessP“(n), a channel gaiy“(n), and fork — oo, Cp(k) ~  similar is that fork € Z, k& — oo, the auto-covariance
L% (k)k=% and Cg(k) ~ Lg(k)k™%, the auto-covariance function of I, i.e., C(k) ~ L(k)k=?, in which 0 < 8 < 1,
function of the total interferenc€'(k) satisfies and L(k) is a svf [17]. From (20) we conclude that an as-s

C(k) ~ L*(k)k™*, b oo (18) process is LRD.

where Ly (k), Lg(k) and L*(k) are svf, and g* =
min, min{3g, 85}

From Proposition 1 we conclude that for the above exam-We now develop an as-s model for the downlink
ple whose channel auto-covariance is as (17), the downlitierference. Suppose that the total interferende, =
interferencel (n) is LRD. (...,I(-1),1(0),I(1),...), is a finite-mean, finite-variance
second-order stationary process. We assume that the auto-
covariance function of the channel procegdn) is as in
(A7) forc = 1,...,C, 0 < g5 < 1, in which for g5 =

We now propose an as-s model for the downlink interfethe channel process is SRD. In the following proposmon
ence which extracts the values of its LRD parameters. Thig derive the necessary conditions on traffic and channel
model is valid under certain conditions on channel and traffiharacteristics under which the downlink interference is an

B. As-s Model for the Downlink Interference

IV. SELF-SIMILARITY OF DOWNLINK INTERFERENCE

characteristics, which we derive in this Section. as-s process.

For a given channel model, the arrival times and the Proposition2: Consider the downlink interference process,
durations of all calls in the downlink, we derive the time, and let3%, ¢ = 1,...,C satisfy
series] = (I(n) : n = ...,—1,0,1,...) that represents the

interference in successive non-overlapping time intervals ofzJ: o o . . oo

unit lengths ,, seconds). Assume thdtis a second-order 2 NPT = K} (k) ~ L (k)E™7F 75, k — oo.
stationary process with a finite mean. We define the aggregaﬂe:1 1)
process/ (™) of I at the aggregation leveh > 1 by

Im(n):%(I(nm—m—i—l)—&—...—&—[(nm)). (29)

where L}, (k) is a svf. Now,I is an as-s process with self-
similarity index H = 1 — 8*/2 if there exists at least one
c such thatd < g5 < 1or0 < g; < 1, and whereg* =

The processI(™ is obtained fromI by partitioning the  © min{ (s, 4} A

observation interval into non-overlapping blocks of sizand ~ Proof: We definef(n) = Z] 1 ASPHT = n}prf,, (n)m €
averaging/ in each block. For each > 1, 1™ defines anew N. From (21), f(n) € RV_g; _». Since there exists at least
second-order finite-mean stationary process, and the fanfij€c such thald < g3 <1, from Lemma 1 in Appendix, we
(I™) . m > 1) of aggregate processes is useful for studying€t

the temporal behavior of the total interference at different time 0o

scales corresponding to different resource control mechanisms. Z f(n) ~ / LS (z)z~ P2 dg, S 7))

It is also useful for developing some mathematical concepts ,—; !

such as self-similarity that relate statistical propertied &b
those of I(™ through a judicious scaling of time. To this;
end, the standard model for the total interference is a se
similar process in the asymptotic sense, or equivalently, an

Using (22) together with Karamata’s Theorem (Theorem 1.5.3
R [31]), for I — oo, we get

LRD process [32]. In what follows, we use the concepts >, . . . LS (1)1~ Bt
presented in [16] and [17] to define an as-s process. Z Z )‘jpr{Tj =n} Ti(n) (n) ~ 751% 1 . (23)
n=l j=1
A. Asymptotically Self-Similar Process 4Equation (20) is the auto-covariance function of a fractional Gaussian noise

o . . fGn) process, where fGn is the incremental process of a fractional Brownian
Definition 2: ([17]) A real-valued second-order stationar otion (fBm) process. A fBm typically (but not always) is the limit in a

random processy = (...,I(—1),1(0),I(1),...) is called fractional central limit theorem of properly scaled LRD processes [32].



Using the same argument for (23), we get

i LpMIPrTt LW e
I=kt1 Bp+1 Bp(B% +1)
Thus,
i i i NPHre = m)re, (ny o LEWETTE
J Tj = j(n) N e TAc LAV’ - 3
I=k+1 n=1 j=1 ! Bp(Bp + 1) 5)

where from (8), the left-hand-side of (25) @8»(k). Thus,
L% (k)k=Pp

Ork) ~ el T 1)

(26)

k — oo.

with heavy-tailed packet length is self-similar. This was
also reported in [6]-[8]. However, in Proposition 2, we
have the channel gain condition (17), which is more
general than those considered in [6]-[8].

V. SIMULATION RESULTS

We consider a two-tier hexagonal cell configuration with
a wrap-around technique [35]. A UMTS cellular wireless
network [18], with a fast power controller running at 1500
updates per second, is simulated. The average cross-correlation
between the codess¢!) is assumed to bé.5. Three types of
services are used: 12.2 kbps voice (with the required bit energy
to the interference spectral densify, /I, of 5dB), 32 kbps

From (6), together with the channel auto-covariance functiaata (withE, /I, of 3 dB) and 64 kbps data (wit#, /I, of 2
asymptote given in (17), as well as from (26) and Lemm@B). We assume 5 Erlangs of voice traffic. For data services,

2 in Appendix, we conclude that'(k) ~ L(k)k=?", where
f* = min, min{#%, G5 }. Theorem 2 in [17] gives an asds
with the decay factor equal t6*, thereforeH = 1—3*/2. R

we assume a Pareto call duration with = 1.5, Er; = 2
sec andas = 1.8, E» = 1.5 sec. The modeling time scale
is T,, = 10 msec. The arrival rates of both data services

Remarks on Proposition: 2
1) Consider the case that for a base-statiey,

have a Poisson distribution with an average rate of 10 arrivals
per second. Channel fading is based on the Gudmundson
Pea(n)g°s(n) > P(n)g°(n), ¢ = 1,...,C,c # cq model witho. = 8 dB andT; = 100 msec. A distance-
thus I(n) ~ P°(n)g°(n). Therefore, the LRD in dependent channel loss with path exponept= —4 for

the downlink interference is not a practical concer, = 1,---,C is considered. Users of different services are
In other words, even though there is# obtained distributed uniformly, and there are no users with soft-hand-
by ac that is ‘dominant-in-correlations’, that does noff (SHO) condition. A power-based call admission control

values of k. For the results of Proposition 2 to bedffival is granted if serving that user does not cause the total

valid in actual cases, we assume thategular power Dase-station transmitted power to exceed its corresponding

which the transmitted power by any base station Is The heavy-tail call durations of data services satisfy the
not substantially higher than the transmitted power Pnditions of Proposition 2 witif = 0.75.
other base stations. This assumption is valid if users!n the above configuration, we study the time trace of the
of different services are uniformly distributed in theeceived downlink interference measured at different locations.
coverage area of the network, or if a load balancinfP estimate the self-similarity indeX/, we use the variance
mechanism in the network layer is applied. plot method in [32], and divide/(n) into non-overlapping
Proposition 2 shows that ',fc_(k)(k) is heavy-tailed, the blocks each withrn samples. For an asymptotic self-similar
condition (21) will be Satisﬁed and this may (subject t®rocess with self-similz_arity indekg}[thze variance of the mean
other conditions in Proposition 2) result in an as-s tot@rocesses forn — oo is L(m)m=""% 0.5 < H <1 [17].
downlink interference. A heavy-taile;d?(k)(k) can be a Therefore, in a logarithmic scale, the variance is a straight
J . . . . . .
consequence of self-similarity emanating from bit-ratée. Using the slope of this line, we can estimafe Fig. 3
variations during a call. shows the variance in the logarithmic scale. Using a linear
Proposition 2 gives the sufficient conditions for asymgeurve fitting, we obtaind = 0.63. We also estimate the

totic self-similarity in the total downlink interference. Itvalues ofH using the Whittle estimator [36], which is more
combines service call arrival rate,;, the service call accurate than the variance plot. The Whittle estimator gives

duration distribution, Rr; = k} for k — oo, and the H = 0.65. The discrepancy between the estimated valu# of
asymptote of the correlation function of the allocate@nd its value obtained. from Proppsition 21is mainly due to the
power ¢, (k) for k — oo, to give the sufficient fact that th_e base-station transmit power exceeds its maximum
conditions. predetermined value.

An important observation in Proposition 2 is that the To study the effect of the channel fading process, we use the
asymptotic behavior of the auto-covariance functiofbove network with a perfect power controller to completely
of the total downlink interference in a mixed voiceeliminate the fast fading effect. A very large interference
and multimedia or packet data, with regular channéireshold is also assumed, and the call admission procedure
variations and regular power transmission is a result isF disableg. In Fig. 4, the variance is shown for two different
providing the requested services to the respective us¥pdues of --. Note that the self-similarity indeX! increases
with heavy-tailed call durations. with % As Ty decreases (moving toward fast fadingj,

A straightforward application of Proposition 2 is that thébecomes smaller and the self-similarity level decreases. There-
total interference in data-centric cellular packet networKere, fast fading decreases the long-range dependence in the

2)

3)

4)

5)



TABLE | 0 ‘

SIMULATION SETTINGS. x T,=10T,
X * Tf=2Tw
[ Parameter [ Value -
Number of BSs 19 0S¢ LT )
Cell Radius 100 m " " H0.74
BSs Transmit Power 10W - *
Physical Layer UMTS g
Thermal noise spectral density -174.0 dBm/Hz s Y
Power Control Fast Power Control 1500/s g
Tw 10ms g
Standard Deviation of Fading 8 dB 2 sl
Loss Exponent q 3
T; 100ms .
ET 05
Services 12.2 kbps voice, 32 and 64 kbps data -2t
For 12.2 kbps voice E,/Io = 5dB, 5 Erlangs
For 32 kbps data Ey/Ip = 3dB
Pareto Dist.ccy = 1.5, E1 =2
For 64 kbps data Ey/Ip =2 dB 25, o5 1 s 5
Pareto Dist.co = 1.8, ETo = 1.5 Log10 m

05 Fig. 4. The normalized variance of the total received downlink interference
for two different fading conditionsT(y).

LN ‘ : ] TABLE I
N
S H/Hq FOR DIFFERENTSHO CONDITIONS.
* N _
ol . H=0.63 | [ SHO condition [ H/Hy |

e 0.2 (1dB SHO gain)] 0.995
by 0.3 (2dB SHO gain)| 0.983
0.4 (2dB SHO gain)| 0.977

log10(normalized variance)
I
N
T
L

|

=

o
T

spots, the average number of which in each cell is 2 and
are randomly distributed in a uniform manner in the coverage
area of the corresponding cell. Non-uniformly distributed users
are then distributed uniformly in hot-spots. A load balancing

mechanism as in [18] is used to satisfy the regular power

25 os 1 15 2 25 » transmission assumed in Proposition 2. The valuesHof

foatom normalized with respect to the same for a uniform distribution,
namely Hy, is presented in Table Ill. Self-similarity indexes
_Fig. 3. _Normalized variance plot for the total received downlink interferenGey, these cases are also obtained using the Whittle estimator.
in the simulated network. . . . L .
It is evident now that non-uniform distribution of users and
their SHO conditions do not affect the self-similarity of the
total interference. Similar results have been reported for dafiewnlink interference. This is because self-similarity emanates
centric wireless DS-CDMA networks in [6] from the users’ traffic characteristics.

We also simulate different SHO conditions in the air inter-
face and evaluate their effects on the self-similarity index of
the downlink interference. We study three hand-off conditions,
in which the averages of 0.2, 0.3 and 0.4 of users are inin this paper, we have formulated the total downlink inter-
the SHO condition. The corresponding SHO gains [18] aference in a heterogeneous cellular DS-CDMA network as a
assumed to be 1dB, 2dB and 2dB respectively. The valuesstbchastic process that depends on the traffic characteristics of
H normalized with respect tdi, (the Hurst parameter for users, the transmit power, and the channel variations. We have
no SHO) are presented in Table Il. Self-similarity indexes ishown that under certain conditions the auto correlation func-
these cases are evaluated using the Whittle estimator. tion of the total interference is a regularly varying function. We

We also study the effects of non-uniform spatial distributiohave showed that for heavy-tailed data and multimedia traffic,
of users on the self-similarity of the downlink interferencethe auto-covariance function of the total interference decays
Non-uniform spatial distribution of users in the network covsub-exponentially. We have further proposed an as-s model
erage area is expressed by an average non-uniformity fadtar the total interference and derived the conditions for the
wp Which is the percentage of users that are non-uniformthannel and traffic characteristics under which the as-s model
distributed. The value ofl —wp) is the percentage of the totalfor the total downlink interference is valid. The simulation
active users that are distributed uniformly. For non-uniformesults confirm the presence of self-similarity in the downlink
spatial distribution of users, we consider a number of hotterference. They also show that non-uniform distribution of

2+

VI. CONCLUSIONS ANDFUTURE WORK



TABLE Il

Thus

H/Hg FOR DIFFERENT USERSSPATIAL DISTRIBUTIONS.
[ Non-Uniformity Indexwp [ H/Hop |

0.10 0.923
0.25 0.954
0.50 0.967

L

users and their SHO conditions do not affect the self-similarit@v

in the downlink interference.

Having established this fact, now the question is ‘what
are the implications of self-similarity on the performance off1l
cellular networks and their resource control mechanisms?’
The long-range correlation manifest itself in extended periods
of time over which the downlink interference exceeds thé?l
performance threshold, and may lead to long outage period[§]
In the engineering sense, the presence of self-similarity in thej
downlink interference can be regarded as ‘good news’. This
can lead to the development of innovative new approachefﬁ
for resource control mechanisms in heterogeneous DS-CDMA
cellular networks.

A very important idea that emerges from the existence
LRD in the downlink interference is the possibility of utilizing
the predictive nature of the total downlink interference to de-
velop novel adaptive-predictive resource control mechanisn@
in the appropriate time scales. A very simple application can
be found in [6]. Also, in theory (i.e., assuming an idealized

: ; g . 18]
Gaussian setting), it is now possible to represent an mﬂmt[a
family of distributions by only three parameters over the entire
scaling region: the mean, the variability of the traffic procesd?!
and the self-similarity or Hurst parameter. This is a substantial
simplification and can be quite useful in network resourgeo]
management [37].

[11]
APPENDIX

Lemmal: If f(z) ~ L(z)z? in which p < —1, and L(x)
is a bounded svf iril, c0), then

(12]

(27) [13]

Zf(n) ~ / L(z)zdz, [ — oc.
n=I !
Proof: Let a; 2 f(i) andb; 2 [* f(a)dz, and without

loss of generality assumec N. To show that forl — oo,
oo i~ Yoo, b, we write

‘iai *ibi < ibi
i=l i=l i=l

We use the inequalityn; < b; < M;, for p <0

(14]
(18]

1 — (a;/b;) (28) 18]

(17]
inf(f(z) :z<i+1),
sup(f(z) : x > ).

Theorem 1.5.3 in [31] shows that far — oo, m; ~ a;41

and M; ~ a;. Lemma 1.9.6 in [31] states that ~ a;; for

1 — oo. Therefore, fori — oo we havea; ~ b;. So, there
exists ane(l) such that

e} [e'S)
‘ E a; — E bL
i=l =l

m;

M, (18]

(19]

(20]

[21]

<€)y bi—0,l—o00.  (29)
i=l

Zf(i)w/oo flx)dz, 1 — oo, (30)
i=l !

and [ f(z)dx ~ [ L(z)z". Thus Eq. 27 holdsl

emma2: In [31] it is established that if; € RV,,, f2 €
Qg then fl + f2 S Rvmax(al,ag)-
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