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Dual Methods for Nonconvex Spectrum
Optimization of Multicarrier Systems

Wei Yu, Member, IEEE, and Raymond Lui

Abstract—The design and optimization of multicarrier com-
munications systems often involve a maximization of the total
throughput subject to system resource constraints. The optimiza-
tion problem is numerically difficult to solve when the problem
does not have a convexity structure. This paper makes progress
toward solving optimization problems of this type by showing that
under a certain condition called the time-sharing condition, the
duality gap of the optimization problem is always zero, regardless
of the convexity of the objective function. Further, we show that
the time-sharing condition is satisfied for practical multiuser
spectrum optimization problems in multicarrier systems in the
limit as the number of carriers goes to infinity. This result leads to
efficient numerical algorithms that solve the nonconvex problem
in the dual domain. We show that the recently proposed optimal
spectrum balancing algorithm for digital subscriber lines can be
interpreted as a dual algorithm. This new interpretation gives
rise to more efficient dual update methods. It also suggests ways
in which the dual objective may be evaluated approximately,
further improving the numerical efficiency of the algorithm. We
propose a low-complexity iterative spectrum balancing algorithm
based on these ideas, and show that the new algorithm achieves
near-optimal performance in many practical situations.

Index Terms—Digital subscriber lines (DSLs), discrete multitone
(DMT), duality theory, dynamic spectrum management (DSM),
iterative spectrum balancing (ISB), nonconvex optimization, op-
timal spectrum balancing (OSB), orthogonal frequency-division
multiplex (OFDM).

I. INTRODUCTION

THE design of communication systems often involves the
optimization of a design objective subject to various re-

source constraints. The optimization problem becomes numeri-
cally difficult to solve when either the objective function or the
constraint lacks a convexity structure. This paper deals with effi-
cient numerical solutions for nonconvex optimization problems
for a particular class of optimization problems that often arise in
multicarrier communication systems. In a multicarrier system,
the transmission frequency spectrum is partitioned into a large
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number of frequency bins on which parallel data transmissions
take place. The most common examples of multicarrier sys-
tems include wireless orthogonal frequency-division multiplex
(OFDM) systems, such as the 802.11 and digital audio broad-
casting systems, and wireline discrete multitone (DMT) sys-
tems, such as the digital subscriber line (DSL) systems. In both
DMT and OFDM systems, a pair of discrete Fourier transform
(DFT) and inverse discrete Fourier transform (IDFT) is used
to partition the frequency band into independent subchannels.
Adaptive spectrum shaping and bit allocation may be easily im-
plemented on a carrier-by-carrier basis.

A central issue in the design of adaptive multicarrier sys-
tems is that of optimal spectrum and bit allocation across the
frequency domain. The issue is well understood for single-user
systems in which the optimal solution resembles an informa-
tion-theoretically optimal “waterfilling” solution. However, the
problem is nontrivial when multiple users are present at the same
time. In the latter case, the design objective function and the
constraints are often nonconvex, and the optimization problem
becomes computationally difficult to solve.

This paper makes progress toward numerical solution of
nonconvex optimization problems for multicarrier systems
by studying their fundamental properties. In particular, we
focus on the characterization of the Lagrangian dual of these
nonconvex problems. Our main result is that a nonconvex
optimization problem in multicarrier systems has a zero duality
gap whenever a so-called “time-sharing” condition is satisfied.
Further, the time-sharing condition is always satisfied for
practical multiuser spectrum optimization problems in multi-
carrier systems when the number of frequency carriers goes to
infinity. This result is surprising at a first glance, as nonconvex
optimization problems generally have a nonzero duality gap.
Yet, the result is very useful, as it opens up the possibilities
of rigorously solving for the global optimum of nonconvex
problems in the dual domain.

Lagrangian duality theory for general convex optimization
problems is well known [1], [2]. For nonconvex multiuser
spectrum optimization problems, existing approaches in the
literature typically focus on either the convex relaxation of
the problem [3]–[5] or heuristic methods that approximate the
global solution of the problem [6]–[11]. In both cases, the global
optimality of the solution is difficult to prove. Recently, an op-
timal spectrum balancing (OSB) method for the DSL multiuser
spectrum optimization problem is proposed in [12], where a
first proof of global optimality of a bit-loading algorithm for
a nonconvex problem is provided. This paper generalizes the
result of [12] and reinterprets the OSB algorithm in a dual
optimization framework. Our main contribution is a theoretical
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Fig. 1. Multiuser DSLs.

treatment of nonconvex optimization problems for multicarrier
systems, and a precise condition for zero duality gap. Our
general theory is inspired by the earlier work of Aubin and
Ekeland [13] and Bertsekas et al. [14], [15], where an integer
programming problem is considered in a similar context.

The general theory presented in this paper also gives rise to
several algorithmic improvements to the OSB algorithm. First,
by reinterpreting the OSB algorithm as a dual algorithm, we
show that the dual updates may be done efficiently using sub-
gradient and ellipsoid algorithms. This significantly speeds up
the convergence of the implementation. Second, we propose a
low-complexity method to approximate the evaluation of the La-
grangian dual objective, which allows the computational com-
plexity to be further reduced at a small cost to performance. Both
are significant steps toward making the algorithm practical. This
paper aims to provide an optimization-theoretical viewpoint to
the multiuser spectrum optimization problem. Theoretical ap-
proaches to this problem have been proved to be fruitful in the
past. For example, in a recent work [16], a nonlinear comple-
mentarity approach to the spectrum optimization problem is
used to provide very interesting insights to the DSL problem.

The rest of the paper is organized as follows. Section II
contains the system model and the problem formulation.
In Section III, a general theory of nonconvex optimization
problems for multicarrier systems is presented and the main
duality gap result is proved. Section IV provides efficient
ways to update dual variables for OSB. In Section V, a new
low-complexity algorithm is proposed for the evaluation of
dual objective, which further reduces the computational com-
plexity of the algorithm. Section VI contains simulation results.
Concluding remarks are made in Section VII.

II. SPECTRUM OPTIMIZATION PROBLEMS

This paper is primarily motivated by the recent surge of in-
terest in dynamic spectrum management (DSM) for digital sub-
scriber lines. In a DSL system, multiple copper twisted pairs
are bundled together. The electromagnetic coupling between
the copper pairs causes crosstalk interference, which has long
been identified as the primary source of line impairment in DSL
deployments. Current DSL systems use a static spectrum man-
agement (SSM) approach where a fixed transmit power spec-
tral density (PSD) is applied to each line regardless of the loop
topology or user service requirements. The performance pro-
jection under SSM is based on the levels of worst-case crosstalk
interference.

Future generations of DSL services are envisioned to imple-
ment DSM [17], [18], in which, each line is given an ability to
adapt to its loop environment and service requirements individ-
ually across the spectrum. DSM is facilitated by the adoption
of multicarrier modulation by DSL standardization bodies. The
ability to set the PSD level of each frequency carrier individu-
ally gives DSM techniques the potential to greatly improve the
achievable rates and service ranges of current DSL systems. On
the other hand, the large number of design variables also present
a research challenge from an optimization point of view. DSM
is an active area of research, both within the research commu-
nity and within the standardization bodies [19].

Under the SSM scheme, where the line interference is
assumed to be fixed (or assumed to have a worst-case PSD
level), the spectrum optimization problem simplifies to the
following. The design objective is to maximize the overall
system throughput, which is the sum of individual rates in each
frequency carrier. The design constraint is a power constraint
coupled across all the carriers. Let denote the transmit PSD
at the th carrier. The optimization problem is

maximize (1)

subject to

where is the combined noise and interference PSD at the
th carrier normalized by . Here, is the gap to ca-

pacity, is the channel transfer function in the th carrier,
is the total power constraint, and is the number of frequency
carriers. The above problem has a well-known waterfilling so-
lution. Efficient solution readily exists in this case, because the
objective function is concave in the optimizing variable .

The spectrum optimization problem becomes much more
challenging when the PSDs of multiple users need to be opti-
mized at the same time. The need for such a joint optimization
is most clearly illustrated in the situation depicted in Fig. 1,
where the channel transfer functions are heavily unbalanced.
As shown in the figure, when an optical network unit (ONU)
is deployed remotely, it may emit excessive interference to a
neighboring customer-premise modem served from the central
office. DSM enables the joint optimization of the transmit
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PSDs by both the central office modem and the ONU modem,
allowing both to operate at the same time.

Mathematically, the multiuser spectrum optimization
problem may be formulated as follows:

maximize

(2)

subject to

where the effective noise PSD for the th user at the th car-
rier is again normalized by , and the effective in-
terference coefficient is defined as . Here,

is the number of users, is the number of frequency car-
riers, is the channel transfer function from the th trans-
mitter to the th receiver in carrier is the relative weight
given to the th user in the optimization problem, is the op-
timization variable denoting the power allocation for user in
the th carrier, and is the total power constraint for the user

. Throughout the paper, the sidelobe effect between adjacent
carriers is neglected.1 This is realistic for frame-synchronous
DSL systems implementing a zipper-like modulation [20], or
where a sufficient amount of transmit windowing is included.
By solving the above optimization problem with varying ,
the entire achievable rate region can be generated. Because the
objective function is not concave in , numerical optimization
is difficult. Clearly, an exhaustive search is not feasible, as the
complexity would be exponential in the total number of vari-
ables, which is , where can be as large as 4096.

Iterative waterfilling (IWF) [7] is one of the early multiuser
spectrum optimization techniques that take advantage of the
ability for DSL modems to perform spectral shaping. In this al-
gorithm, each user iteratively maximizes its own achievable rate
by performing a single-user waterfilling with the crosstalk inter-
ference from all other users treated as noise. However, the IWF
process does not seek to find the global optimum for the entire
DSL bundle. Instead, each user participates in a noncoopera-
tive game, and the convergence point of the IWF process corre-
sponds to a competitive equilibrium. Although not optimum, the
IWF algorithm has been shown to outperform SSM schemes.

Recently, an exact OSB algorithm to solve this problem glob-
ally and optimally was proposed in [12]. The basic strategy is to
transform the spectrum optimization problem (2) into the dual
domain by forming its Lagrangian dual

maximize

(3)

subject to

1When the desired DMT symbol and the interfering DMT symbols are not
frame-synchronized, the frequency tones of the desired and interfering signals
are not orthogonal to each other, creating sidelobes for each tone. In this case,
S may interfere not only with S , but also with S , S , etc.

The idea is to solve the Lagrangian for each set of nonneg-
ative and fixed . Then the solution to the orig-
inal problem may be found by a nested bisection search in the

-space. It can be shown that the OSB algorithm has a com-
putational complexity that is linear in the number of frequency
carriers . As illustrated in [12], the OSB algorithm can pro-
vide a significant performance improvement, as compared with
IWF.

However, the computational complexity of the OSB algo-
rithm, although linear in , is still exponential in the number
of users . This is so for two reasons. First, with users,
nested loops of bisections are needed, one for each . Thus,
the search is exponentially complex. Second, the maximiza-
tion of the Lagrangian for a fixed set of involves
an exhaustive search over in each tone , which
has a computational complexity that is also exponential in .
When the number of users is large, the complexity of OSB be-
comes prohibitive.

The purpose of this paper is to refine the OSB algorithm with
an aim of eliminating its exponential complexity. Toward this
end, we establish a general theory of dual optimization for mul-
ticarrier systems, and show that contrary to general nonconvex
problems, the duality gap for multiuser spectrum optimization
always tends to zero as the number of frequency carriers goes
to infinity, regardless of whether the optimization problem is
convex. This key observation leads to efficient search methods
that optimize the dual objective function directly.

Second, to overcome the exponential complexity of an ex-
haustive search over , we propose iterative and
low-complexity ways to evaluate the dual objective approxi-
mately. The resulting algorithm is a middle ground between
IWF and OSB. We show by simulation that such an iterative
spectrum balancing (ISB) technique achieves most of the gain
of OSB in many cases of practical importance, while having a
much lower computational complexity.

The computational methods proposed in this paper have a
wider implication beyond that of DSL applications. The DSL
spectrum balancing problem is very similar to the optimal power
allocation and bit-loading problem for OFDM systems in wire-
less applications [3], [5], [21], [22]. A low-complexity solution
to the DSL problem is likely to be applicable to wireless sys-
tems, as well.

III. DUALITY GAP OF NONCONVEX OPTIMIZATION

In this section, we present a general duality theory for non-
convex optimization problems in multicarrier systems. In a mul-
ticarrier system, the optimization objective and the constraints
typically consist of a large number of individual functions, each
corresponding to one of the frequency carriers. So, the opti-
mization problem has the following general form:

maximize (4)

subject to
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where are vectors of optimization variables,
are functions that are not necessarily

concave, and are functions that are
not necessarily convex. Power constraints are denoted by
an -vector . Here, “ ” is used to denote a compo-
nent-wise inequality. For the multiuser spectrum optimiza-
tion considered before,

,
and .

The idea of dual optimization is to solve (4) by forming its
Lagrangian dual

(5)

where is a vector of Lagrangian dual variables. Define the
dual objective as an unconstrained maximization of the
Lagrangian

(6)

The dual optimization problem is

minimize

subject to (7)

When ’s are concave and ’s are convex, standard
convex optimization results guarantee that the primal problem
(4) and the dual problem (7) have the same solution. When
convexity does not hold, the dual problem provides a solution,
which is an upper bound to the solution of (4). The upper bound
is not always tight, and the difference between the upper bound
and the true optimum is called the “duality gap.”

The main objective of this section is to characterize a con-
dition under which the duality gap is zero even when the opti-
mization problem is not convex. Toward this end, we define the
following time-sharing condition.

Definition 1: Let and be optimal solutions to the op-
timization problem (4) with and , respec-
tively. An optimization problem of the form (4) is said to sat-
isfy the time-sharing condition if for any and for any

, there always exists a feasible solution , such
that , and

.
The time-sharing condition has the following intuitive in-

terpretation. Consider the maximum value of the optimization
problem (4) as a function of the constraint . Clearly, a larger

implies a more relaxed constraint. So, roughly speaking,
the maximum value is an increasing function of . The
time-sharing condition implies that the maximum value of the
optimization problem is a concave function of .

Note that if ’s are concave and ’s are convex, then the
time-sharing condition is always satisfied. This can be easily
verified by setting , in which case
the concavity of implies

, and the convexity of implies

Fig. 2. Time-sharing property implies zero duality gap.

. However,
the converse is not necessarily true. As is shown later in the
paper, for many multicarrier systems of practical interest, the
time-sharing condition holds even when ’s are not concave
and ’s are not convex.

The main result of this section is that the time-sharing prop-
erty implies zero duality gap. Further, for many practical opti-
mization problems in the multicarrier context, the time-sharing
condition is satisfied.

Theorem 1: Consider an optimization problem of the form
(4). If the optimization problem satisfies the time-sharing prop-
erty, then it has a zero duality gap, i.e., the primal problem (4)
and the dual problem (7) have the same optimal value.

Proof: The theorem is a standard result in convex opti-
mization if ’s are concave and ’s are convex functions. In
this case, the optimization problem (4) is a convex program-
ming problem, which has a zero duality gap under general con-
straint qualification conditions. The main novelty of the the-
orem resides in cases where (4) is not convex, but for which the
time-sharing condition nevertheless holds. The proof is divided
into two parts.

Let and be vectors of power constraints with
for some . Let , ,

and be the optimal solutions to the optimization problem (4)
with constraints and , respectively. In the first part of
the proof, we show that time sharing implies that
is a concave function of . The concavity follows from the
definition of the time-sharing property. Since

, the time-sharing property implies that there ex-
ists a such that and

. Since is
a feasible solution for the optimization problem, this means that

,
thus proving the concavity.

Second, we show that the concavity of the optimal in
implies zero duality gap. Fig. 2 is a graphical illustration of

the proof. Consider a sequence of the optimization problem pa-
rameterized by the constraint . The solid line in Fig. 2 is a plot
of optimal as the constraint varies. The
curve is plotted with on the -axis. The -axis is lo-
cated at the point where . Thus, the intersection
of the curve with the -axis is exactly the primal optimal solu-
tion to (4), which is denoted as on the plot.
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Fig. 3. Duality gap is nonzero without the time-sharing condition.

Now, consider the dual objective function for a fixed

(8)

Let be the optimal solution to the above optimization
problem. The value of can be graphically obtained by
drawing a tangent line to the curve
through the point . By the definition of

, it is not difficult to see that the tangent line has a slope
. Further, the intersection of the tangent line with the -axis

is , which is exactly the
value of , as illustrated in Fig. 2. This allows the minimiza-
tion of to be visualized. The dual optimum, denoted as ,
is the minimum over all nonnegative ’s. Clearly, when
the optimal curve is concave, among
all tangent lines with various slopes , the that minimizes
the -axis intersection is precisely the one that intersects the

-axis at . Thus, and the duality gap is zero.
To illustrate the importance of the time-sharing condition,

Fig. 3 depicts a situation in which time sharing does not hold.
In this case, the curve is not concave,
and the minimum is strictly larger than the maximum

.
It turns out that the time-sharing condition is always satisfied

for practical spectrum optimization problems in multicarrier ap-
plications in the limit, as the number of carriers goes to in-
finity. The intuitive reason is as follows. The time-sharing con-
dition is clearly satisfied if an actual time-division multiplexing
may be implemented. Let and be two spectrum alloca-
tions. In this case, the entire frequency band can be assigned to

for percentage of the time, and for percentage of
the time. The overall then becomes a linear combination

. The constraint becomes a linear
combination also, thus satisfying the time-sharing condition.

In practical multicarrier systems with a large number of
frequency carriers, channel conditions in adjacent carriers are
often similar. Then, time sharing may be approximately im-
plemented with frequency sharing. By interleaving and
in the frequency domain with a proportionality , the overall

becomes approximately ,
and the same applies to the constraints. The approximation is
exact when .

To make the intuition precise, consider the spectrum opti-
mization problem (2) with continuous frequency variables

maximize

subject to

(9)

where the effective noise PSD is again normalized by
, and the effective interference coefficient

is defined as . Again, is the
channel transfer function from the th transmitter to the th
receiver.

Theorem 2: Consider an optimization problem (9) in which
and are both continuous functions of . Then,

the time-sharing condition is always satisfied. In addition, its
discretized version (2) also satisfies the time-sharing condition
in the limit as .

Proof: Let and be the optimal solutions to
the spectrum optimization problem (9) with power constraints

and , respec-
tively. Let and be their respective optimal values. To
prove the time-sharing property, we need to construct an
such that it satisfies a power constraint and
achieves a rate equal to or higher than for all

between zero and one.
We first prove the theorem for the case in which and

are constant functions of for all and . First, observe
that the optimal solution to (9) is always a frequency-division
multiplex (FDM) of at most frequency bands, where each
frequency band corresponds to a transmission strategy for which
a subset of users transmit. Further, within each frequency
band, the optimal and must be constant. This
is because within each band, the same Karush–Kuhn–Tucker
(KKT) condition (which is a necessary condition even for
nonconvex problems) must be satisfied for each frequency ,
and the optimal set of spectra is the KKT point that maximizes
the weighted sum rate. As the same condition applies to all
frequencies, the power allocation within each band must be flat.

Now, let be the optimal solution of
(9) with a power constraint , and be
the optimal solution of (9) with a power constraint . Let the
achievable rate in the two cases be and , respectively.
To prove the time-sharing property, we need to construct an

that achieves at least ,
with a power that is at most for all between
zero and one. Such a may be constructed by taking the
union of the two frequency partitions corresponding to and

, then further subdividing each frequency band in the union
into two, proportion of which has , and

proportion of which has . Clearly,
the resulting satisfies the power constraint

. Further, it also achieves a rate
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. Therefore, for an optimization problem with con-
stant channel gain and noise power spectrum, the time-sharing
property holds.

To show that the time-sharing property holds for all optimiza-
tion problems with continuous channel gains and noise spectra,
a limiting argument is needed. The idea is to divide the total
frequency into a set of infinitesimal frequency bands. By conti-
nuity, the channel gains and noise spectra within each band ap-
proaches a constant value as the subdivision becomes finer and
finer. Then, the constant channel result proved earlier applies
in each infinitesimal band. Therefore, the time-sharing property
applies to the entire optimization problem.

Finally, the above argument also shows that in a discretized
version of the optimization problem (4), as , the time-
sharing property holds in the limit.

For the ease of presentation, Theorem 2 has been stated and
proved for the continuous bit-loading problem. However, the
theorem continues to hold even when an additional integer bit
constraint is imposed. The steps of the proof follow exactly the
same way. First, the theorem can be shown to hold when
and are constants. With integer bit loading, there are
clearly only a finite number of frequency bands in which optimal

and are constants. Then, FDM of the two gives the
desirable time-sharing points.

Note that for practical systems with a large but finite ,
although the duality gap is not strictly zero, it is nearly so.
This is because the carrier width in multicarrier systems is al-
ways chosen so that the channel response in adjacent subchan-
nels are approximately the same. In this case,
are sufficiently similar (and likewise for ) so that
time-sharing may be implemented via FDM.

The main consequence of Theorems 1 and 2 is that as long
as is sufficiently large, even nonconvex spectrum optimiza-
tion problems can be solved by solving its dual. For optimiza-
tion problems of the form (4), solving the dual problem can be
much easier. This is so because of the following two observa-
tions. First, the dual objective function decouples into
independent problems

(10)

Thus, the evaluation of has a complexity which is linear
in . Note that the per-carrier optimization problem does not
have a convexity structure. So, solving the per-carrier problem
globally may still involve an exhaustive search. However, as the
optimization problem is unconstrained, it is more manageable.

Second, the function is convex even if is not
concave and is not convex. (This is because
is linear in for each fixed , and is the maximum of
linear functions, and is, therefore, convex.) The complexity of
optimizing depends on the dimension of , which is the
number of constraints in the original problem. For the spectrum
optimization problem, the number of constraints is , which is
independent of .

Putting these two facts together, the entire dual optimization
process has an complexity. As can be large in multi-
carrier spectrum optimization problems, the reduction from an

exponential complexity to a linear complexity in is signifi-
cant.

We note here that Theorems 1 and 2 guarantee that the op-
timal value of the original optimization problem is exactly the
minimal value of over . However, in some cases,
extra care must be taken when recovering the optimal primal
solution of the original optimization problem from the op-
timal dual solution . In particular, there are cases in which
the optimal that solves the maximization problem (10) is not
unique. In this case, a set of that satisfies the constraints of
the original problem must be chosen. Such a set of feasible
always exists when the time-sharing condition is satisfied. For
the spectrum optimization problem, this corresponds to the case
in which many equivalent FDM solutions exist.

As mentioned earlier, our treatment of duality gap for the non-
convex optimization problem is inspired by Aubin and Ekeland
[13] and Bertsekas et al. [14], [15], who derived estimates of
the duality gap for nonconvex integer programming problems.
Although the main ideas of the proofs are similar, the problem
setup of [13]–[15] is somewhat different, and the earlier results
are not directly applicable to this setting.

IV. DUAL UPDATE METHODS

The OSB algorithm developed in [12] is one of the first dual
optimization algorithms for nonconvex spectrum optimization
problems. In [12], the implementation of OSB is based on a bi-
section search in each component of . It is proved in [12] that
the optimal power allocation in a multicarrier system is a con-
tinuous and monotonic function of . Thus, bisection search is
guaranteed to converge to the optimum. However, as the mul-
tiuser spectrum optimization problem (2) consists of con-
straints, successive bisection on each component of has a com-
plexity that is exponential in . One of the main motivations for
developing a general duality theory for nonconvex problems, as
presented in the previous section, is that such a general result
allows a direct optimization of . This gives rise to efficient
dual-update methods that have a polynomial complexity in .

The main idea is to minimize directly by updating all
components of at the same time along some search direction
(instead of successively updating one component at a time). Be-
cause is convex, a gradient-type search is guaranteed to
converge to the global optimum. However, the main difficulty
is that , although convex, is not necessarily differentiable.
Thus, it does not always have a gradient. Nevertheless, it is pos-
sible to find a search direction based on what is known as a sub-
gradient. A vector is a subgradient of at , if for all

(11)

Subgradient is a generalization of gradient for (possibly) nondif-
ferentiable functions. Intuitively, is a subgradient if the linear
function with slope passing through lies entirely
below . Fortunately, for the defined in (6), a subgra-
dient is easy to find.
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Proposition 1: For the optimization problem (2) with a dual
objective defined in (6), the following choice of is a
subgradient for :

(12)

where is the optimizing variable in the maximization
problem in the definition of .

Proof: By definition,
. Let be the optimizing variable

in the definition of . Then

thus verifying the definition of subgradient (11).
The subgradient search direction suggests that the th com-

ponent of should increase if the corresponding constraint is
exceeded, i.e., the th component of exceeds ,
and decrease otherwise. This is intuitive, as represents a price
for power. Price should increase if the power constraint is ex-
ceeded. Price should decrease, otherwise. In fact, updates can
be done systematically. In the following, we propose two up-
date methods based on the well-known subgradient and ellip-
soid methods. These methods, for example, were used recently
in [23] for a joint routing and resource allocation problem.

A. Subgradient Method

The idea of the subgradient update method is to design a step-
size sequence to update in the subgradient direction. More
specifically, the update may be performed as follows:

(13)

where is the iteration number, is a sequence of scalar step
sizes, and is defined as . The above subgra-
dient update is guaranteed to converge to the optimal as long
as is chosen to be sufficiently small [24]. A common criterion
for choosing the step sizes is that must be square summable,
but not absolute summable [25], [26]. When the norm of the
subgradient is bounded, the following choice:

(14)

for some constant is guaranteed to converge to the optimal
. Other update rules include and .

B. Ellipsoid Method

The update of the dual variables may also be done using the
so-called cutting-plane methods. The idea is to localize the set
of candidate ’s within some closed and bounded set. Then, by
evaluating the subgradient of at an appropriately chosen
center of such a region, roughly half of the region may be elimi-
nated from the candidate set. The iterations continue as the size
of the candidate set diminishes until it converges to an optimal

. More precisely, the definition of subgradient (11) guarantees
that . Thus, for all that satisfies

(15)

we must have . So, all ’s that are in the half-plane
defined by (15) can be eliminated in each step. The cutting-
plane method is a generalization of the one-dimensional (1-D)
bisection method to higher dimensions.

A common choice of the candidate region is the minimal-
sized ellipsoid containing all candidate ’s. An ellipsoid with
a center and a shape defined by positive semidefinite matrix

is defined to be

(16)

Let be the subgradient of at the center of the ellipsoid
. In each iteration, half of the ellipsoid is eliminated based

on . A new ellipsoid, which is the minimal-volume ellipsoid
containing the other half, is formed. Mathematically, the update
algorithm is as follows [26]:

1) (17)

2) (18)

3)

(19)

where is the dimension of , i.e., the number of users in the
problem. Fig. 4 illustrates the update process.

To choose an initial ellipsoid, we need to bound all candidate
’s in a closed and bounded set. The following result gives a

suitable choice of the initial set.
Proposition 2: For the -user spectrum optimization

problem (2), the optimal set of dual variables must satisfy

(20)

where is the relative weight for the user , and is the
optimal dual variable in the single-user spectrum optimization
problem (1) with and .
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Fig. 4. Graphical illustration of ellipsoid update.

Proof: To be the optimal for the problem (2), must
satisfy a set of KKT conditions. Differentiating the Lagrangian
of (2) with respect to , we obtain

negative terms

(21)
Intuitively, only user ’s rate is an increasing function of , so
only one term in the derivative is positive. Now, in the single-
user problem, may be computed directly as

(22)

From the above two equations, it follows that

(23)

Using the above result, the following initial ellipsoid may be
chosen to enclose a rectangular region in which the optimal
must reside:

...
...

. . .
...

(24)

The ellipsoid updates (17)–(19) can then be carried out from
this starting point.2 When the subgradient of the dual objective
function has a bounded norm [26], the ellipsoid update is
guaranteed to converge to the optimal . The bounded norm

2If at any given point in the iteration, the center of the ellipsoid moves out of
the feasibility region, i.e., some components of � become negative, they can be
simply set to zero.

Fig. 5. Comparison between the ellipsoid method and the subgradient method.
Various step-size sequences are used for the subgradient method. Constant (�)
refers to the update rule s = �. Square Summable (�) refers to the update rule
s = �=l. Diminish (�) refers to the update rule s = �=

p
l.

TABLE I
THE ISB ALGORITHM

TABLE II
COMPUTATIONAL COMPLEXITY COMPARISON

condition is satisfied for this problem, because is constrained
to be in a closed and bounded set.

Fig. 5 compares the convergence behaviors of the subgradient
update and the ellipsoid update. As seen in the figure, the con-
vergence speed of subgradient methods depends heavily on the
choice of step size, while the ellipsoid method appears to con-
verge faster and is more stable across a wide variety of situa-
tions. However, the subgradient algorithm is more suitable for
distributed implementation, where each user may update its own
dual variable autonomously. This is not possible with the ellip-
soid method. We also note that the computational costs per iter-
ation for the two methods are similar.
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Fig. 6. Loop topology for two downstream ADSL users. The OSB and ISB algorithms are compared with the IWF and SSM approaches.

V. ITERATIVE SPECTRUM BALANCING

The results of the previous section show that the exponential
complexity of the search can be avoided by using subgradient
or ellipsoid updates. However, the complexity of evaluating

, although linear in , is still exponential in , as it
involves solving nonconvex optimization problems, corre-
sponding to the tones, each with variables. Nevertheless,
for practical problems, suboptimal low-complexity methods
often exist. In this section, we propose an iterative method that
eliminates the exponential complexity in evaluating .

We begin the discussion by reviewing the approach taken
in OSB [12]. Our prior discussion has focused on the spec-
trum optimization problem (2) with continuous bit loading. In
practice, the bit allocation on each frequency carrier must be
integer-valued. With discrete bit loading, the solution to the
per-tone nonconvex optimization problem simplifies into an ex-
haustive search. More specifically, for a spectrum optimization
problem (2) with discrete bit constraints, define

(25)

The evaluation of is exactly that of exhaustively
searching through the set of discrete ’s

(26)

The strategy of [12] is to map each discrete
into a set of via (25), then to select the
that maximizes

(27)

Clearly, such an exhaustive search has a computational com-
plexity in each frequency carrier, where is the max-
imum allowable bit cap.

Fig. 7. Rate region for two downstream ADSL users.

The main contribution of this section is an efficient algorithm
that approximately evaluates . The main idea is
to locally optimize via coordinate descent. For
each fixed set of , our proposed approach first finds
the optimal while keeping fixed, then finds the
optimal keeping all other fixed, then , then

, and so on. Note that when optimizing each , only
a small finite number of power levels (corresponding to a finite
number of integer bits) need to be searched over. Further, such
an iterative process is guaranteed to converge, because each iter-
ation strictly increases the objective function. The convergence
point must have integer bit values for all users, and it is guaran-
teed to be at least a local maximum for .

This new approach bears some resemblance to the IWF al-
gorithm [7]. However, it differs from IWF in the following two
key aspects. First, unlike the IWF algorithm, where each user
maximizes its own rate in each step of the iteration, the above
algorithm optimizes an objective function that includes the joint
rates of all users. Thus, the new algorithm has the potential to
reach a joint optimum. Second, the power constraint in the IWF
process is handled on an ad hoc basis, while the new algorithm
proposed in this paper dualizes the power constraint in an op-
timal fashion. The correct values of the dual variables are then
used in a subgradient or ellipsoid search. We call this approach
ISB. Table I summarizes the algorithm.
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Fig. 8. PSDs of OSB (left) and ISB (right) for the two distributed ADSL users at equal rate. PSDs for both CO-based (top) and RT-based (bottom) lines are plotted.

It should be noted that the ISB algorithm is a suboptimal al-
gorithm. In particular, the local optimum depends on the ini-
tial starting point and the ordering of iterations. Further, with an
approximate evaluation of , the subgradient property (i.e.,
Proposition 1) can no longer be guaranteed, and the proof of
convergence becomes an issue. Nonetheless, the ISB algorithm
has been observed to converge in all simulation settings that we
have tried. In addition, as the simulation results in the next sec-
tion show, its performance can be near-optimal in many practical
situations. Further, the ISB algorithm may be implemented au-
tonomously in a distributed environment, provided that suitable
bit-allocation information is shared by the neighboring lines.

The computational complexity of this new iterative ap-
proach is significantly lower than that of the OSB algorithm
proposed in [12]. In the evaluation of , each
iteration has a computational complexity that is linear in .
Let be the number of iterations needed in the evaluation of
each . Let be the number of subgradient or
ellipsoid updates needed. The total computational complexity
of ISB is . Computational experience suggests
both and are polynomial functions of . This is sig-
nificant, as is usually large in realistic DSL deployment
scenarios. Table II summarizes the computational complexity
comparison. Here, is the number of iterations needed in
IWF. In actual implementation, is comparable with . Both
are relatively small. Fig. 5 shows the values of for different
dual-update methods.

Finally, we note that a slightly different ISB algorithm has
been independently and simultaneously proposed by Cendrillon
and Moonen [27]. As compared with the algorithm proposed in
this paper, the iteration and the dual updates are interchanged in
this alternative approach.

VI. SIMULATIONS

In this section, we present an extensive set of simulation
results to evaluate the performance of the proposed low-com-
plexity ISB algorithm for the DSL spectrum optimization
problem. In the simulation, all DSL lines are 26-gauge twisted
pairs with a background noise level of dBm/Hz. Users

Fig. 9. Rate region for five-user full duplex VDSL.

are assumed to be symbol-synchronized so that the sidelobe
interference is not in effect. No spectral masks are enforced.

A. Two-User ADSL Downstream

The first set of simulations examines a two-user asymmetric
DSL (ADSL) downstream distributed environment with both
users having a loop length of 12 k ft and with a crosstalk dis-
tance of 3 k ft. No other crosstalk sources are assumed to exist
in the binder. The loop topology is shown in Fig. 6. Such a dis-
tributed environment is expected to benefit significantly from
DSM because of its highly unbalanced crosstalk channels. The
power constraint for each user is set to 20.4 dBm, as defined in
[28].

Fig. 7 shows the achievable rate regions of OSB, ISB, IWF,
and SSM algorithms. As can be seen in the figure, the rate
regions for OSB and ISB are almost identical to each other.
Both outperform IWF significantly. Interestingly, although the
achievable rates of OSB and ISB are identical, the optimal
spectra obtained from the two algorithms can be different.
Fig. 8 shows the downstream spectra obtained from the two
algorithms. The main difference between the spectra of OSB
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Fig. 10. Downstream (top) and upstream (bottom) PSDs for five-user full duplex VDSL at equal rate. The power spectra depend on the ordering in iteration in
ISB. Downstream–upstream order is on the left, and the upstream–downstream order is on the right.

and ISB is in the FDM region (frequency beyond 380 kHz).
Both PSDs essentially achieve the same rates because there are
many equivalent permutations of FDM possible. We note that
in the simulation for ISB, the iteration order of CO-modem
followed by RT-modem is found to have a superior perfor-
mance, as compared with the RT-CO order. This is because
the CO-modem is more susceptible to crosstalk interference
in this configuration. Therefore, it is advantageous to let the
CO-modem occupy the best spectrum.

B. Five-User VDSL Full Duplex

The current very-high-speed digital subscriber line (VDSL)
standard [29] uses a fixed frequency bandplan (the so-called 998
bandplan [30]) to separate upstream and downstream. This is not
optimal, because no overlapping of upstream and downstream
transmissions is allowed. In this set of simulations, we explore
the achievable rate region and the optimal power allocations
with overlap spectra for full duplex transmission in a VDSL en-
vironment. The simulation setup consists of five users with the
same loop length (3-k-ft long) in the same binder. As the loop
characteristics for the five users are identical, this is essentially
a two-user scenario between upstream and downstream. Perfect
echo cancellation is assumed. The near-end crosstalk (NEXT) is
modeled in addition to the far-end crosstalk (FEXT). The down-
stream transmission has a power constraint of 11.5 dBm, and the
upstream transmission has a power constraint of 14.5 dBm, in
accordance with [30].

Fig. 9 shows the achievable rate regions obtained from the
OSB and ISB algorithms. As can be seen, the performance of
ISB is very close to that of OSB, although ISB is clearly a
suboptimal algorithm. Furthermore, it is observed that the so-
lution provided by ISB is not unique. The nonuniqueness of
this algorithm is exposed by choosing a different order of users
during the iteration procedure in ISB. ISB gives slightly dif-
ferent rate regions for different iteration orders. Interestingly,
no particular order has a rate region that is completely supe-
rior to the rate regions of all other orders. In addition, as seen
in PSD plots, ordering affects the power spectral densities as
well. Fig. 10 shows the PSD pairs corresponding to the down-

Fig. 11. Loop topology for 10-user VDSL.

stream–upstream ordering and the upstream–downstream or-
dering. As can be seen, a narrow low-frequency spectrum is
always shared by both directions. In the high-frequency range,
frequency-division duplexing (FDD) separates the upstream and
the downstream. FDD is optimal in the high-frequency range
because of the strong NEXT interference. Interestingly, if the
downstream–upstream ordering is used in ISB, the resulting fre-
quency division follows an up–down–up pattern. The situation
is reversed when the upstream–downstream ordering is used.
The upstream–downstream ordering produces a FDD solution
that follows a down–up–down pattern.

C. 10-User VDSL Full-Duplex

In this final set of simulations, we explore the full duplex
transmission of a 10-user VDSL scenario with the topology
shown in Fig. 11. Again, overlapping spectra is allowed and per-
fect echo cancellation is assumed. The OSB algorithm as pro-
posed in [12] is not computationally practical in this case.
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TABLE III
MAXIMUM MINIMUM RATE FOR 10-USER FULL DUPLEX VDSL

Fig. 12. PSDs for 10-user full duplex VDSL at maximum minimal rate.

With four types of transmitters, the rate region is 4-D, which
is difficult to visualize. Instead, we use the maximum minimal
rate as the performance metric. The maximum minimum rate
is defined as the maximum subject to the
power constraint on the four types of transmitters. The dual al-
gorithm developed in this paper is applicable to general non-
convex optimization problems. So, it can be applied to the max-
imum minimal-rate problem as well. Table III compares the
maximum minimum rate computed using the proposed ISB al-
gorithm with that computed from IWF. As seen in Table III,
IWF is able to support a minimal data rate of 11.3 Mb/s, while
ISB is able to achieve at least 14.3 Mb/s. A minimum gain of
3 Mb/s is possible.

The PSDs obtained from the ISB algorithm are shown in
Fig. 12. Interestingly, a small low-frequency band is shared by
all four transmitters with full duplex operation. In the middle
frequency band, FDM separates upstream and downstream
transmissions of the 2 k ft and 4 k ft users. The high-frequency
band is used exclusively by the 2 k ft lines. Again, FDD is used
there. This type of optimal spectrum usage is nonobvious, and
is channel- and user-data-rates-dependent. In this example, the
choice of initial ordering is also found to be important. The
best results are obtained with the following order: five 4 k ft
upstream transmitters first, then five 2 k ft upstream transmit-
ters, then five 4 k ft downstream transmitters, and finally, five
2 k ft downstream transmitters.

VII. CONCLUSION

A duality theory for nonconvex optimization problems in
multicarrier communication systems is presented in this paper.

It is shown that the duality gap for a nonconvex optimiza-
tion problem is zero if the optimization problem satisfies a
time-sharing condition. Further, the time-sharing condition
is always satisfied for the multiuser spectrum optimization
problem in multicarrier systems when the number of frequency
carriers goes to infinity. This observation leads to two improve-
ments to the OSB algorithm for DSL. First, the reinterpretation
of the OSB algorithm as a dual algorithm leads to effective
dual-update methods, such as the subgradient method and the
ellipsoid method. Second, we propose a low-complexity and
iterative algorithm to approximately evaluate the dual objective.
When compared with previous OSB methods, this new ISB
algorithm offers a significant complexity reduction with a small
loss of optimality in many practical situations. The proposed
iterative algorithm is a significant step forward in making OSB
practical.
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