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Abstract— This paper describes a methodology for efficient
implementation of binning and block-Markov coding for the
relay channel using powerful features of low-density parity-check
(LDPC) codes. We devise bilayer LDPC codes to approach the
theoretically promised rate of the decode-and-forward relaying
strategy by incorporating relay-generated random linear parity-
bits in a specially designed bilayer graphical code structure.
Bilayer density evolution is devised as a novel extension of the
standard density evolution algorithm to analyze the performance
of the proposed bilayer LDPC code. Based on this bilayer density
evolution technique, an EXIT-chart-based code design method
using linear programming is developed. While conventional
LDPC codes are sensitively tuned to operate efficiently at a
certain channel parameter, the proposed bilayer LDPC code is
capable of working at two different channel parameters, the
signal-to-noise ratio (SNR) at the relay and the SNR at the
destination. In this paper, for specific channel parameters, it
is demonstrated that a bilayer LDPC code can approach the
theoretical decode-and-forward rate of the relay channel within
a 0.19 dB gap to the source-relay channel capacity and a 0.34 dB
gap to the relay-destination channel capacity.

I. I NTRODUCTION

Low-density parity-check (LDPC) codes have proved to be
very powerful in approaching the capacity of conventional
single user communication channels. The key idea of LDPC
codes is to practically implement the random coding theo-
rem of Shannon by enforcing a set of random parity-check
constraints on information bits. While random coding is a
fundamental element of the single-user information theory,
binning is of fundamental importance in multi-user scenarios.
In this paper, we explore the possibility of using LDPC
codes to practically implement binning and to approach the
theoretical results derived by random binning and random
coding arguments for an important example of multi-user
channels: the relay channel.

In a relay channel, a single sourceX attempts to commu-
nicate to a single destinationY with the help of a relay. The
relay receivesY1 and sends outX1 based onY1. The relay
channel is defined by the joint distributionp(y, y1|x, x1).

Although the capacity of the relay channel is still an open
problem, several ingenious methods have been designed to
take advantage of the information available at the relay. The
classic work of Cover and El Gamal [1] describes two basic
strategies: first, a decode-and-forward strategy in which the
relay completely decodes the transmitted message and partially
forwards the decoded message using a binning technique to
allow the complete resolution of the message at the decoder,
and second, a more complex quantize-and-forward strategy in

which the relay does not need to decode the source’s message.
Both coding schemes rely on a clever block-Markov coding
strategy in which each coding block consists of simultaneous
decoding (or quantizing) of the current block at the relay and
the decoding of the previous block at the destination. Further,
Cover and El Gamal [1] proved that the decode-and-forward
strategy is capacity achieving for a class of degraded relay
channels.

Recent interests in wireless ad-hoc and sensor networks
have fueled a new surge of research activities on the relay
channel [2], [3], [4], [5].Several practical decode-and-forward
coding techniques for the relay channel have been developed
in [6], [7], [8], where performances approaching 1-1.5dB
of the theoretical limit of the decode-and-forward scheme
for the relay channel are reported. The coding techniques
of [6] and [7] are based on turbo codes while [8] employs
LDPC codes. In all these schemes, the relay decodes and
retransmits the entire source’s codeword. A key feature of
our proposed coding scheme is that the relay completely
decodes the transmitted codeword, but only forwards some
partial information about the codeword by forming random
parity bits. This coding scheme is inspired by Cover and El
Gamal’s [1] original proof for the capacity of the degraded
relay channel where the binning strategy is implemented using
random parities. The scheme proposed in this paper is related
to [9] in which parity bits are used by the relay to enhance
diversity. The focus of the present paper is on code design for
approaching the capacity.

The main results of our work are as follows. A new bilayer
code structure based on LDPC codes has been developed
to implement the decode-and-forward strategy of [1]. The
proposed bilayer structure allows a single LDPC code to
simultaneously approach the capacities of two channels at
two different signal-to-noise ratios (SNR), corresponding to
the SNR at the relay and the SNR at the destination. We
develop a methodology for the design of bilayer LDPC codes
by generalizing density evolution [10] and EXIT chart analysis
[11], [12] for standard LDPC codes. It is shown that our
design methodology can approach the theoretical decode-and-
forward rate of the relay channel within a 0.19 dB gap to
the source-relay channel capacity and a 0.34 dB gap to the
relay-destination channel capacity.

This paper focuses on the Gaussian relay channels at a
relatively low SNR so that binary signaling is optimal. We
restrict our attention to the block-Markov decode-and-forward
strategy, which is optimal for the degraded relay channel but
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Fig. 1. The relay channel.

is also effective in other cases as well.

II. B LOCK-MARKOV DECODE-AND-FORWARD CODING

A. Coding Scheme for Decode-and-Forward

This section briefly reviews the decode-and-forward strategy
of [1, Theorem 1]. In the block-Markov decode-and-forward
scheme, transmissions occur in successive blocks and in each
block i, the source and the relay send two messages to
the destination: the source’s data message denoted bywi ∈
{1, 2, . . . , 2nR} (which is encoded using the random variable
X) and the relay’s messagesi ∈ {1, 2, · · · , 2nR1} (which is
encoded using the random variableX1.) The source rate,R,
is such that the relay is able to decodewi with an arbitrarily
low error probability; however, the destination is unable to
uniquely decodewi because of its poorer channel. The relay’s
message,si, helps the destination decodewi−1 in block i
by restricting wi−1 to be inside a bin of size2n(R−R1)

thus reducing the size of the admissible message space from
which the destination should decode the source’s message. Let
B = {S1,S2, · · · ,S2nR1} be a random uniform partition of
the set{1, 2, · · · , 2nR} into 2nR1 bins of size2n(R−R1). The
relay’s message,si, is determined as the index of the bin in
which wi−1 falls, i.e.,wi−1 ∈ Ssi .

Random codebooks to transmits andw are constructed as
follows. Assume that in blocki, both the source and the relay
know si; as we shall see, this is a valid assumption, sincesi

is determined bywi−1. The source uses different codebooks
for different si’s. To encodewi, the source utilizes a random
codebookX (w|si) of size 2nR generated according to the
probability distributionp(x|x1) and transmits the codeword
x(wi|si) to send wi. In block i, the relay sendssi by
transmitting the codewordx1(si) of the random codebook
X1(s) of size 2nR1 generated according to the probability
distributionp(x1).

In block i, the relay decodeswi which would be successful
as long as:

R < I(X; Y1|X1). (1)

The destination, in blocki, first decodes the relay’s message
si which is possible if:

R1 < I(X1; Y ). (2)

Upon decodingsi, wi−1 is restricted to the binSsi which is
of the size2n(R−R1). Sincewi−1 is encoded by a codebook
generated according top(x|x1), the destination can success-
fully decodewi−1 in block i if R andR1 satisfy:

R−R1 < I(X; Y |X1). (3)

Inequalities (1), (2), and (3) give the decode-and-forward
achievable rate for the relay channel which is also the capacity
if the channel is degraded [1, Theorem 1].

B. Gaussian degraded relay channel

Consider the degraded Gaussian relay channel defined by
Y1 = X + Z1 andY = Y1 + X1 + Z2 whereZ1 ∼ N (0, N1)
Z2 ∼ N (0, N2) are Gaussian noises.

For this channel, the optimal codebookX (w|si) can be
shown to be additive in the sense that codewords ofX (w|si),
x(wi|si), can be constructed viax(wi|si) = x̃(wi) + αx1(si)
wherex1(si) is one of2nR1 codewords ofX1(s), x̃(wi) is
one of 2nR codewords of the codebook̃X (w), and α is a
power scaling factor. The optimal value ofα is determined in
[1, Theorem 5]. See [1, Section IV] for more details.

The binning strategy of the previous subsection can be ap-
plied toX̃ (w) andX1(s). A linear codebook can be partitioned
into bins by considering the syndromes of codewords with
respect to a set of parity equations as bin indices [13]. To
implement binning using this idea, the relay in blocki decodes
the transmitted codeword̃x(wi), generates extra parity bits for
x̃(wi) represented bysi+1, and sends it to the destination in
the next block using the codebookX1(s).

This paper focuses on the design of a new LDPC code
structure forX̃ (w) to implement the described decode-and-
forward protocol. First, we note thatX1(s) can be designed
as a conventional LDPC code. However, special considerations
are needed for the design of̃X (w). Let X̃ (w) be a linear
(n, k1) LDPC code with a rate of(n− k1)/n. The codebook
X̃ (w) should be a capacity approaching code for the channel
between the source and the relay, i.e., (1) should be tight. Let
k2 be the number of randomly-generated extra parity-bits for
x̃(wi) generated by the relay and provided to the destination.
Then, anỹx(wi) candidate sequence at the destination should
satisfy two sets of parities,k1 zero parities enforced by the
source’s codebook, andk2 extra presumably nonzero parity-
bits provided by the relay. Thus,̃X (w) with the additionalk2

parity checks should form a(n, k1 +k2) capacity-approaching
code for the source-destination channel.

The objective of this paper is to show that with a modi-
fication to the structure of conventional LDPC codes,X̃ (w)
can be designed to approach the achievable rate promised by
the decode-and-forward protocol for the relay channel. The
main difficulty in the design ofX̃ (w) is that while standard
techniques exist for the design of a single LDPC code tuned
to work for a specific channel, a new method is required to
design a codebook̃X (w) that performs well at both the relay
SNR, SNR1, and the destination SNR, SNR2, with the help
of extra relay-provided parities.

III. B ILAYER LDPC CODES FOR THERELAY CHANNEL

From the discussion of the previous section, the code
structure can be summarized as follows. LetX̃ (w) have the
graphical code structure as shown in Fig. 2, withk1 zero parity
check bits andk2 extra parity check bits generated by the relay.
The source data rate is(n−k1)/n and the source’s codewords
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Fig. 2. Bilayer LDPC codes. The solid part corresponds to the subgraph
and represents a LDPC code designed for the channel between the source
and the relay. The relay decodes the subgraph code and provides extra parity-
check bits for the destination (the dashed part). The destination decodes the
transmitted codeword over the overall hypergraph.

are enforced to satisfyk1 zero parity check bits. The relay
decodes the source’s codeword based on the firstk1 parity bits
and generatesk2 extra parity bits which are then transmitted
to the destination using a separate codebook, i.e.,X1(s). The
destination first decodes thek2 extra parity bits sent by the
relay and then decodes the source’s codeword knowing that
it should satisfyk1 zero parity bits andk2 extra parity bits
generated by the relay. In order to incorporate this protocol,
we consider a bilayer structure for the(n, k1+k2) LDPC code
for X̃ (w). In this bilayer structure, one layer corresponds to a
(n, k1) capacity approaching LDPC code (for the source-relay
channel) consisting of thek1 zero parity bits and a second
layer consists of thek2 extra parity bits which modifies the
first layer in a way that the overall(n, k1 + k2) LDPC code
is capacity achieving for the source-destination channel.

In the following we present the structure of bilayer LDPC
codes and discuss bilayer density evolution and EXIT charts
as fundamental design tools.

A. Bilayer LDPC Codes

Let the LDPC code forX̃ (w) have n variable nodes,k1

check bits and an additionalk2 check bits (generated by the
relay for the destination.) As shown in Fig. 2, the graph
corresponding to this code consists of two layers. Theleft-
graph or subgraphwhich is directly connected to the leftk1

parities and represents the code designed for the source-relay
channel. Theright-graph is defined to be the part of the graph
that is directly connected to the right parities. The right-graph
is designed so that it modifies the subgraph in such a way
that the resultinghypergraphguarantees successful decoding
at the destination.

By discriminating left edgesto be those edges that are
connected to the leftk1 parities from right edgesthat are
connected to the rightk2 parities, it can be seen that from each
variable node, two types of edges may emanate. Therefore,
for each variable node of the graph two different degrees are
conceivable: theleft degreewhich is defined to be the number
of left edges connected to the variable and theright degree
which is defined to be the number of right edges that are

connected to the variable.
Let λi,j be the variable degree distribution of hypergraph

defined as the percentage of edges in the hypergraph which
are connected to a variable node of degree(i, j), i.e., the
percentage of edges that have left degreei and right degree
j. Note that i ≥ 2 since no variable of degree less than
2 is allowed in the subgraph andj ≥ 0 as some of the
nodes may only be connected to the left parities. For given
λi,j ’s satisfying

∑
2≤i,0≤j λi,j = 1 and for a specific set of

check degrees, both the subgraph and the hypergraph can be
constructed.

In standard LDPC code design, it is common to fix one or at
most two different values for check degrees. Some guidelines
for choosing appropriate check degrees can be found in [14]
and [11]. The rest of this paper focuses on the optimal design
of variable degreesλi,j assuming fixed check degrees.

Fixing check degrees, a bilayer code design problem can
be formulated as that of finding a doubly indexed distribution
λi,j such that the induced subgraph is capacity approaching
at SNR1 and the overall hypergraph is capacity approaching
at SNR2 < SNR1.

The degree distribution of the subgraph code can be found
as a linear combination ofλi,j ’s as follows:

νi =
1
η

∑

j≥0

i

i + j
λi,j (4)

where0 < η < 1 is the ratio of the total number of edges in
the subgraph and the total number of edges in the hypergraph.
Assuming a fixed number of check nodes with fixed degrees,
the total number of edges in the subgraph and the hypergraph
are fixed and thereforeη is a constant.

The coefficientsνi’s are related to the code rate between
the source and the relay. LetE be the total number of edges
in the subgraph. Then, the block length of the code, which is
equivalent to the total number of variable nodes in the graph, is
given byE

∑
i≥2 νi/i; and there areE

∑
i≥2 ρi/i left parity

check nodes (whereρi’s denote the fixed left check degree
distribution.) Hence, the rate of the source-relay code is given
by:

R = 1−
∑

i≥2 ρi/i∑
i≥2 νi/i

. (5)

A capacity approaching code for the decode and forward
strategy should have an appropriate degree distributionλi,j

that maximizes the above rate.

B. Bilayer Density Evolution

Density evolution can be used to analyze the performance of
standard LDPC codes [10]. With the use of density evolution,
the probability density function of messages is tracked as they
pass along the edges through successive decoding iterations.
For a given degree distribution, a cut-off channel parameter
(the largest noise power under which the code can be success-
fully decoded) can be found by density evolution.

In a bilayer graph, however, it is necessary to distinguish
between the output densities of two variables of the same total
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Fig. 3. Bilayer densities and the code structure. A degree(i, j) variable
connects toi edges in the subgraph (solid parts) andj edges in the hypergraph
(dashed parts).pl(m) and pr(m) represent the message densities for the
left and right parts of the graph respectively andpl and pr denote their
corresponding message error probabilities. EXIT charts for degree(i, j)
variables are denoted byf l

i,j(pl, pr) andfr
i,j(pl, pr).

degree but with different left and right degrees. This is because
the qualities of messages coming from left check nodes and
right check nodes may differ. For example, if the left check
degree is 20 and the right check degree is 5, although two
variable nodes of degree(2, 9) and(9, 2) have the same total
degree, there is a significant difference between qualities of
messages produced by each of them, since the quality of a
message produced by a check node of a degree 5 is in general
significantly better than the quality of the one that is generated
by a degree 20 check node. As a consequence, an extension
of the conventional density evolution analysis is required.

An effective way to incorporate the bilayer structure of
the underlying graph in the density evolution is to track the
evolution of two types of message densities (see Fig. 3): the
left density for the messages passing along left edges and the
right density for the messages passing along right edges.

Density update at check nodes of a bilayer LDPC code is
the same as the standard density updates at check nodes in
the conventional density evolution procedure [10] assuming
that log-likelihood ratio (LLR) messages are being passed. Let
pl(m) andpr(m) be the left and right output message densities
respectively. Let the channel LLR density be given bypc(m).
At variable nodes, density updates for left edges and right
edges are slightly different as compared to variable updates in
the standard density evolution. Specifically, for a variable of
degree(i, j), pl(m) andpr(m) are updated as follows:

pl(m) ← (⊗i−1p′l(m)
)⊗ (⊗jp′r(m)

)⊗ pc(m) (6)

pr(m) ← (⊗ip′l(m)
)⊗ (⊗j−1p′r(m)

)⊗ pc(m), j ≥ 1 (7)

where p′l(m) and p′r(m) denote the input message densi-
ties, ⊗i denotes convolution of orderi and by convention
⊗0p(x) = δ(x) whereδ(x) is the Dirac delta function.

C. Extrinsic Information Transfer (EXIT) Charts

We use a graphical tool called extrinsic information transfer
(EXIT) chart for LDPC code design. In particular, we use a
special type of EXIT charts known as the probability-of-error
EXIT chart [11], [12], [15] that describes the relation between

the message error probability1 corresponding to the input mes-
sage density and the message error probability corresponding
to the output message density after one iteration of the density
evolution algorithm [10]. EXIT charts are very useful in
characterizing the performance of a LDPC code, because they
can be used to formulate an approximate successful decoding
criterion which is useful in optimizing the degree distribution
of a LDPC code.

In this section, we will also use a powerful tool called the
elementary EXIT chart [16], [12]. The use of elementary EXIT
charts greatly facilitates the LDPC code design process. In this
paper, we generalize both EXIT charts and elementary EXIT
charts for bilayer LDPC codes.

While EXIT charts characterize the overall performance of a
LDPC code,elementary EXIT chartsgive specific information
regarding the decoding performance of variable nodes of
a certain degree. The elementary EXIT charts are defined
as follows. Consider one iteration of the message passing
algorithm in which check updates are performed for a given
set of input messages at check nodes and subsequently variable
updates are applied to the updated messages to obtain a new set
of messages at the input of check nodes. (See for example [10]
for the definitions of check updates and variable updates in the
message passing algorithm.) For a given LDPC code and for a
fixed variable degreed, the function relating the input message
error probability and the output message error probability
along the degree-d edges after one decoding iteration is called
the elementary EXIT chart of degreed [16], [12].

There is a linear dependency between EXIT charts and
elementary EXIT charts. This is because for irregular codes,
the average output message error probability can be obtained
via Bayes’s rule. Equivalently, the EXIT chart of an irregular
code is a linear combination of elementary EXIT charts of var-
ious degrees where the coefficients of the linear combination
are exactly the variable-degree distribution [15]. This linear
combination property makes the error probability EXIT charts
a powerful design tool.

Now consider a bilayer LDPC code. The left part of
the graph represents a conventional LDPC code and it is
straightforward to define the standard EXIT and elementary
EXIT charts for it. Letfs

i (p) be the subgraph elementary EXIT
chart of degreei computed corresponding to the source-relay
channel parameters, i.e., the left graph when it is decoded in
the relay.

Next, consider the entire bilayer graph. Since there are two
types of densities involved in the bilayer density evolution,
we need to define a multivariable counterpart of elementary
EXIT charts for a bilayer graph. Letf l

i,j(pl, pr) : [0, 1] ×
[0, 1] → [0, 1] denote theleft elementary EXIT chart of degree
(i, j) edges wherepl andpr are the message error probability
in the left and right part of the graph. For a givenpl and
pr, f l

i,j(pl, pr) represents the message error probability for
messages passing along left edges of degree(i, j) after one

1A message passing along an edge is said to be correct if it is more biased
toward the true value of the corresponding variable node [10].



decoding iteration. Similarly,right elementary EXIT chart of
degree (i, j), fr

i,j(pl, pr), is defined to be the message error
probability for messages passing along right edges of degree
(i, j).

Sinceλi,j represents the percentage of degree (i, j) edges
in the graph, the overall average output probability of error is
given by:

pout(pl, pr) =
∑

i≥2,j≥0

λi,j

f l
i,j(pl, pr)i + fr

i,j(pl, pr)j
i + j

(8)

which also determines theaverageEXIT chart or more simply
EXIT chart of the code. (Forj = 0, fr

i,j(pl, pr)j is defined
to be zero.) In other words, the EXIT chart (8) is alinear
combination of elementary left and right EXIT charts with
combination factors beingλi,j ’s.

IV. OPTIMIZATION

EXIT charts can be used to formulate a successful decoding
condition for a LDPC code [15]. For simplicity, let’s consider
first the successful decoding criterion for the subgraph. Con-
sider the output error probability of the subgraph after one
decoding iteration. After one iteration, the output error pro-
bability can be written as a linear combination of elementary
EXIT charts as follows:

∑

i≥2

νif
s
i (p). (9)

In order to decode the codeword successfully, the output error
probability should decrease after each iteration. In terms of the
above formulation, at any iteration, the output error probability
given by (9) should be smaller than the input error probability.
This can be formulated as:

∑

i≥2

νif
s
i (p) < p ∀ 0 < p < 1. (10)

The above linear condition gives a simple yet very effective
approximate successful decoding condition that can be used to
optimize the code rate while ensuring the resulting code can
be successfully decoded.

Now, let’s consider the successful decoding condition for
the hypergraph. Using elementary left and right EXIT charts,
a condition similar to (10) can be formulated. Mathematically,
using (8) for the average output error probability, the degree
distribution coefficients,λi,j , should satisfy:

∑

i≥2,j≥0

λi,j

f l
i,j(pl, pr)i + fr

i,j(pl, pr)j
i + j

< ηpl + (1− η)pr

for any input left and right error probabilities,0 ≤ pl, pr ≤
1. The above inequality generalizes the open EXIT chart
concept to the hypergraph of a bilayer LDPC code. Successful
decoding is ensured in (11) by forcing the average error
probability of the hypergraph to monotonically decrease as
the number of iterations increases.

The overall data rate between the source and the destination
in the decode-and-forward coding scheme is determined by

the maximum rate at the source which is given by (5). The
optimization problem would then be to maximize the source
code rate subject to the condition that EXIT charts of the
subgraph and the hypergraph, (10) and (11), are both open.

This optimization problem can be formulated as the follow-
ing linear programming problem:

maximize 1−
∑

i≥2 ρi/i∑
i≥2 νi/i

(11)

subject to
∑

i≥2

νif
s
i (p) < µkp, ∀ 0 ≤ p ≤ 1 (12)

∑

i≥2,j≥0

λi,j

f l
i,j(pl, pr)i + fr

i,j(pl, pr)j
i + j

< µk (ηpl + (1− η)pr)
∀ 0 ≤ pl, pr ≤ 1 (13)

νi =
1
η

∑

j≥0

i

i + j
λi,j . (14)

The optimization variables areλi,j andνi. All other variables
are assumed to be fixed.

In practice, the successful decoding conditions, (12) and
(13), do not need to be enforced for all0 ≤ p ≤ 1 and all
0 ≤ pl, pr ≤ 1. This is because the message error probabilities
p, pl and pr correspond to the evolving message densities
through successive decoding iterations and are only updated
at discrete number of iteration points. As a result, we only
need to consider those values ofp, pl, andpr that correspond
to message densities in each decoding iteration.

Strictly speaking, the elementary EXIT chartsf l
i,j(pl, pr),

fr
i,j(pl, pr) and fs

i (p) also depend onλi,j , since they are
obtained via density evolution which assumes some fixed de-
gree distributions. In practice, the above optimization problem
is repeatedly solved, withf l

i,j(pl, pr), fr
i,j(pl, pr) and fs

i (p)
updated in each step. Because the elementary EXIT charts
are slightly modified in each iteration, we find it beneficial to
introduce an extra variableµk, where0 ≤ µk ≤ 1, to com-
pensate the potential inaccuracies inf l

i,j(pl, pr), fr
i,j(pl, pr)

andfs
i (p). Constraints (12) and (13) withµk < 1 ensure that

the EXIT charts of the subgraph and hypergraph are open
by a factor ofµk at SNR1 and SNR2 respectively. An open
EXIT chart by a factor ofµk wherek denotes the optimization
iteration number, enforces the output probability of error to be
less thanµk times the input error probability. As we solve the
sequence of linear programming problems,µk is successively
increased until it eventually approaches 1.

V. CODE CONSTRUCTION

This section presents code construction for a bilayer LDPC
code assuming binary-valued codeword sequences forX̃ (w)
and additive white Gaussian noise at both the relay and
the destination. The relay’s noise power is0.4356 and the
destination’s noise power is assumed to be0.6084. The noise
at the destination is assumed to be independent from that of



TABLE I

DESIGNED DEGREE DISTRIBUTION FOR THE BILAYER GRAPH. AN ENTRY

(i, j) CORRESPONDS TOλi,j , THE PERCENTAGE OF EDGES OF LEFT

DEGREEi AND RIGHT DEGREEj.

(i, j) j = 0 j = 1 j = 2 j = 3
i = 2 0.1153 0.0623 0 0
i = 3 0.1220 0.0921 0 0
i = 5 0 0.1897 0 0
i = 8 0 0 0.0591 0
i = 9 0 0 0.0166 0
i = 20 0 0 0.3296 0.0132

the relay. (In this case, the channel is not degraded and the
decode-and-forward is suboptimal.)

For these channel parameters, we restrict the code to have
a regular left check degree of 18 and a right check degree
of 5. These two values for check degrees are determined
experimentally by testing several different values for check
degrees and studying the behaviors of the different EXIT chart
functions. The key to selecting a good check degree is to
ensure that there is a wide variety of elementary EXIT charts
some of which are widely open and others are overly blocked.
This guarantees that a narrowly open overall EXIT chart can
be formed by a linear combination of available EXIT charts
[14].

In this construction, variable degrees(i, j) are restricted
to have i and j less than 20. Note that the performance
of LDPC codes improves as the maximum allowed variable
degree increases [17]. Using the described iterative linear
programming approach of the previous section, an optimized
degree distribution sequenceλi,j is computed for the given
channel parameters. The nonzero degree coefficients are listed
in Table I. In this table, entry(i, j) corresponds to the value
of λi,j in the resulted bilayer code.

The gap from the theoretical limit can be calculated by
comparing the rate of the code with the theoretical limits as
expressed in (1) and (3) for binary±1 valued codewords. For
the source-relay channel, the designed bilayer code is within
a 0.19 dB gap to the capacity and has a code rate equal to
0.7520. The corresponding gap for the hypergraph is 0.34 dB
and the resulting code rate is 0.6280. The code rate of the
subgraph code representsR and the rate of the hypergraph
code corresponds toR−R1.

VI. CONCLUSION

Binning is of fundamental importance in multiuser informa-
tion theory. This paper provides a practical implementation of
the binning strategy for the relay channel from a linear coding
perspective in which extra parity-check bits are generated at
the relay to facilitate the overall communication between the
source and the destination.

A key feature of our code design is the construction of
a bilayer LDPC code that incorporates the presence of extra
parity-check bits from the relay in the decoding process at the

destination. Whereas conventional LDPC codes are optimized
at a certain SNR, a bilayer LDPC code is tuned to successfully
operate at two different SNRs depending on the layer that is
being decoded.

In order to analyze the performance of bilayer LDPC codes,
the bilayer density evolution is developed as an extension of
the conventional density evolution. A new interpretation of
elementary EXIT charts based on bilayer density evolution is
then applied to the optimization of degree sequence parameters
of bilayer LDPC codes via linear programming optimization.

For specific channel parameters, it is demonstrated that a
bilayer LDPC code can achieve the theoretical decode-and-
forward rate of the relay channel to within a 0.19 dB gap to
the source-relay channel capacity and a 0.34 dB gap to the
relay-destination channel capacity.
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