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Abstract— This paper deals with the design and analysis
of low-density parity-check (LDPC) codes for the Slepian-
Wolf problem. The main contribution is a code design method
based on a density evolution (DE) analysis for the cases
where multiple LDPC codes are simultaneously decoded at the
decoder. Good source codes are designed both for memoryless
sources and sources with Markov memory. Further, simulta-
neous decoding is generalized to the case of source splitting,
which allows non-corner points of the Slepian-Wolf region
to be achieved even for sources with equiprobable marginal
distributions.

I. INTRODUCTION

Interest in the elegant Slepian-Wolf theorem for coding
of correlated sources recently was invigorated by a prac-
tical scheme to achieve the theorem’s performance bound.
Inspired by some early work by Wyner [1], the method of
distributed source coding using syndromes (DISCUS) [2]
adapted channel codes to give a practical method to perform
both encoding and decoding for two (or more) sources, so
long as the encoders were restricted to particular points on
the boundary of allowed rates (known as corner points). As
a result, a large and growing body of research is adapting
Turbo codes and LDPC codes to approach the Slepian-
Wolf bound, much as they have been used to approach the
Shannon bound for channel coding.

It is well known that corner points are achievable with
LDPC codes, whether the source is memoryless [3] or has
Markov memory [4], [5]. Density evolution (DE) [6], a
technique for determining asymptotic performance of LDPC
codes, has been applied to both these cases. The question
of achieving non-corner points has been addressed in two
ways: the sources x and y can be split up into three virtual
sources x = (x(1), x(2)) and y, to form virtual corner points
[7], [8], or one can encode both sources x and y as LDPC
codes and simultaneously decode the two encoded sources,
so the encoders can offset each others’ rates [9], [10].

Both approaches have certain drawbacks. In source split-
ting, the conventional approach is to decode the source codes
serially, obtaining x(1), then y, then x(2). Although this
approach can theoretically achieve the Slepian-Wolf bound,
it potentially sacrifices flexibility, performance, and code
length. On the other hand, the simultaneous decoding in [9],
[10] has limited applicability. It is only possible to decode
both codes for certain skewed source distributions, where
the marginal source distributions are far from equiprobable.
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rgue that a better approach is to do both rate splitting
ultaneous decoding at once. That is, we can split

rces into x = (x(1), x(2)) and y, and simultaneously
x(2), and y (since, at a virtual corner point, x(1) is

independently). In this paper, we combine source
and simultaneous decoding and use this combined

ork to achieve non-corner points in the Slepian-Wolf
ion, even for sources with an equiprobable marginal
tion. Furthermore, this method applies to sources
th and without memory.
paper makes the following contributions:

ultaneous decoding for sources with memory. Previ-
s work on coding for sources with memory (such as
[4], [5]) has focused on corner points on the Slepian-
olf bound. Simultaneous decoding is used to avoid
s restriction.
nsity evolution analysis of simultaneous decoding.
nsity evolution (DE) [6] has previously been used
LDPC source code design (such as in [3], [5],
, [11]), but it has not been adapted to the case of
ultaneously decoding the LDPC codes.

sign of LDPC codes using density evolution. We
e the density evolution algorithm we derived to
sign good source codes for sources with and without
mory.

remainder of this paper is organized as follows. In
II, we describe the system and discuss simultaneous
g of the LDPC codes. In Section III, we show
rce splitting can be included as a generalization of
ultaneous decoding framework. In Section IV, we
the extension of our framework to cases where the
have memory. In Section V, we present good degree
es for LDPC Slepian-Wolf codes that were found
ur techniques.

II. SIMULTANEOUS DECODING

is section, we discuss the simultaneous decoder first
in [9] and [10], and show how to analyze it using

e following definition will be useful in this section:
ction σ : {0, 1} → {+1,−1} converts between two
t types of binary alphabets, where σ(0) = +1 and
−1.
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Fig. 1. A depiction of a simultaneous LDPC source decoder.

A. Model

Let x ∈ {0, 1}n and y ∈ {0, 1}n represent binary sources
observed at different Slepian-Wolf encoders (expressed as
row vectors), where xi and xj (resp., yi and yj) are
independent for all i �= j. The joint PMF pXi,Yi(xi, yi)
is the same for all i, and parameterizes the source coding
problem by establishing the statistical relationship between
xi and yi.

Encoding is accomplished using LDPC codes, as follows.
An LDPC code is associated with both x and y, and in
general the two codes are different. Let H(x) and H(y)

represent the parity check matrices of the LDPC code
associated with x and y, respectively. For each source vector,
we form the syndromes (i.e., the vectors of parity bits)
s(x) = xH(x) and s(y) = yH(y). Each encoder transmits
only its syndrome, so the encoded sequence for x and y are
s(x) and s(y), respectively.

As usual for an LDPC code, the decoder may be repre-
sented using a factor graph, and decoded using the sum-
product algorithm (SPA) [12], with a couple of caveats:

• The syndromes s(x) and s(y) represent the parity checks
at which even parity is replaced with odd parity. If
the message m is calculated by the usual SPA at the
output of a parity check node, and the syndrome bit s
is associated with that parity check, the correct value
of the message becomes mσ(s).

• The prior probabilities on the source letters (or intrin-
sic probabilities) are calculated by

∑
xi
pXi,Yi

(xi, yi)
for yi, and

∑
yi
pXi,Yi

(xi, yi) for xi. At sub-
sequent iterations, extrinsic information messages
p
(E)
Xi

(xi) and p
(E)
Yi

(yi) are obtained from the de-
coding of the LDPC code, and the prior proba-
bilities then become

∑
x pXi,Yi

(xi, yi)p
(E)
Xi

(xi) and∑
y pXi,Yi(xi, yi)p

(E)
Yi

(yi) for yi and xi, respectively.
(Messages are passed as log-likelihood ratios.)

This setup is depicted in Fig. 1.
By simultaneous decoding, we mean that the two LDPC

codes are decoded at the same time, and that the two
decoders exchange SPA messages to help each other decode.
(The alternative would be to wait until one LDPC code
completes its decoding before passing messages to the
other, which we call serial decoding.) As a message-passing
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The three decoding subgraphs in a simultaneous LDPC source

e, we propose the parallel update schedule, in which
occur at each variable node simultaneously, and then
factor node simultaneously, regardless of type.

sage calculation and DE

decoder may be broken down into three subgraphs:
PC decoder for the symbols x, the LDPC decoder
symbols y, and the linking channel nodes linking
decoders, as in Fig. 2. The SPA is well understood
two decoder subgraphs. For the linking nodes, the

e passed from source symbol xi to source symbol
ten c

(y)
i , is a function of the extrinsic message for

ignated m(x)
i . Let ψ : {0, 1} × R → [0, 1] represent

ction ψ(a, b) = 1
2 + 1

2σ(a) tanh
(
b
2

)
, and note that

) = ψ(xi,m
(x)
i ). Then we have

(y)
i = log

∑
xi
pXi,Yi

(xi, yi = 0)ψ(xi,m
(x)
i )∑

xi
pXi,Yi

(xi, yi = 1)ψ(xi,m
(x)
i )

, (1)

ilarly for the message from y to x.
n operating at a corner point of the Slepian-Wolf
ion, there is a clear equivalence between a source
inary noise sequence in a binary symmetric channel.
lar equivalence exists for joint decoding. Define a
nary symmetric channel (JBSC) as a channel with
ary inputs [u1,i, u2,i], two binary outputs [v1,i, v2,i],
ary noise [z1,i, z2,i], so that v1,i = u1,i ⊕ z1,i,
i = u2,i ⊕ z2,i. Let PrZ1,i,Z2,i

(z1,i, z2,i) represent
ise process PMF for this JBSC. If the channel
are LDPC codewords from the codes in Fig. 1,
Xi,Yi(z1,i, z2,i) = Pr(z1,i, z2,i) for every setting of
,i], then it is straightforward to show that the two
s have the same probability of error. In particular, for
inary source (x, y), we say that the source decoder is

ent to a channel decoder for a joint binary symmetric
l where (x, y) is the pair of noise sequences.



As a consequence of this equivalence, we can perform DE
with respect to a JBSC rather than the more complicated
case of an LDPC coset code, and the decoder structure
remains the same as in Fig. 2. For the joint nodes, the
message passed from a symbol u1,i to a symbol u2,i, written
c
(u2)
i , is a function of the channel outputs [v1,i, v2,i], and

the extrinsic message for u1,i, designated m(u1)
i . Thus, this

message is given by

c
(u2)
i = (2)

log

∑
u1,i

pV1,i,V2,i
(v1,i,v2,i|u1,i,u2,i=0)ψ(u1,i,m

(u1)
i

)∑
u1,i

pV1,i,V2,i
(v1,i,v2,i|u1,i,u2,i=1)ψ(u1,i,m

(u1)
i

)
.

DE in each decoder subgraph is well understood. For the
nodes in the linking subgraph, which calculate the function
in (2), given an input density for m(u1)

i and [vi,1, vi,2], many
methods exist for obtaining the density of c(u2)

i . As one
simple example, the input densities could be sampled, and
each sample associated with a probability. That probability
is then associated with the probability of the corresponding
output c(u2)

i . Furthermore, it is straightforward to show that
the cycle-free assumption is satisfied in a graph such as in
Fig. 1.

C. A remark on SPA decoding

Suppose we had a source distribution given by

pX,Y (x, y) =
{

0.49, x = y = 0, x = y = 1;
0.01, x �= y.

(3)

It is easy to calculate that the conditional entropies for this
source are H(X|Y ) = H(Y |X) = 0.141, which is low
enough to make it an excellent candidate for Slepian-Wolf
encoding. However, the marginal distributions of x and y
are equiprobable, so from the perspective of the decoder in
Fig. 1, the system starts off with no prior information at
all about x or y – in fact, their prior information behaves
exactly like erasures.

Under SPA decoding, for a parity check node with degree
greater than one, if any input message is an erasure, the
output message will always be an erasure. Thus, when
all the input prior information is initially “erased,” such
as in a case like (3), the SPA can never begin decoding,
because the output messages at the parity check nodes will
always be erasures. To initiate the SPA process, there must
be some way of receiving prior information about at least
some fraction of the source symbols. This suggests the use
of source splitting, and in the next section we introduce
a generalization of the simultaneous decoder that we call
source splitting with simultaneous decoding.

III. SOURCE SPLITTING WITH SIMULTANEOUS

DECODING

Source splitting (also called rate splitting) is a technique
used in Slepian-Wolf coding [7]. In the case with two
sources (as before, designated x and y), the source x is
broken into two sub-sources: x(1) and x(2). This is done
using a random sequence t ∈ {0, 1}n, which is available to
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A depiction of source splitting with simultaneous decoding.

encoder and decoder (for example, using a pseudo-
sequence with the same seed), where φ := Pr(ti =
e source splitting parameter. The source alphabets
and x(2) are ternary, so that x(1) ∈ {0, 1, E}n and

{0, 1, E}n. If ti = 0, then x(1)
i = xi and x(2)

i = E;
se, if ti = 1, then x(1)

i = E and x(2)
i = xi.

key observation is that these three pseudo-sources,
(2), and y, can be encoded as a vertex point in
epian-Wolf rate region. We firstly encode x(1) as an
dent source, then we encode y assuming knowledge
and finally we encode x(2) assuming knowledge of

d y.
e that the shared random vector t tells the decoder
when the letter E occurs in both x(1) and x(2),
the {0, 1} portions need to be encoded. Since the
are assumed memoryless, and letting wt represent
ming weight of t, without loss of generality we can

ge the elements of x(1) so that the first wt are the
elements. Similarly, we can re-arrange x(2) so that
n−wt are the {0, 1} elements. The E elements of

d x(2) need not be encoded, and are thus ignored.

multaneous decoding view of source splitting

an encode x(1) in an arbitrary manner (so long as its
at the source entropy), but we wish to encode x(2)

sing LDPC codes. From the perspective of y, all the
of x(1) are perfectly known, but the values of x(2)

vided via an LDPC decoder. From the perspective
, all its inputs are related to values of y, which are
d by its LDPC decoder. This setup is depicted in

erning the encoding of multiple sources, [11] and
ggest that the decoders should not decode seri-
ce under the source-splitting assumption, entropy-
hing codes likely exist that do not require simul-
decoding. We take a different approach, explicitly

g the decoders to operate simultaneously, and de-
them accordingly. This gives the system designer

ty: if serial decoding is enforced, then once φ is
he required rates of x(1), x(2), and y are also fixed;



however, simultaneous decoding permits a range of possible
rates of the three sources for a given φ. Fixing φ may lead
to lower complexity at the encoder by, for instance, fixing
the memory sizes for x(1) and x(2). Certainly, simultaneous
decoding will have a positive impact on probability of error
and required code length.

B. Message calculation and DE

To take the perfectly known source symbols x(1) into
account, we notice that perfect knowledge of one source
letter is equivalent to perfect knowledge of the correspond-
ing symbol xi. Let ĉ(y)i represent the message from x to y
if xi is perfectly known. Then

ĉ
(y)
i = log

pXi,Yi
(xi, yi = 0)

pXi,Yi(xi, yi = 1)
.

The actual value of the overall message from x to y is a
function of ti, as follows:

c
(y)
i (ti) =

{
ĉ
(y)
i , ti = 0,
c
(y)
i , ti = 1;

(4)

where c(y)i is the quantity calculated in (1). Meanwhile, the
message c(x)i from y to x is always given by the value from
(1), since the values of y are never revealed.

Once again, we may invoke the equivalence of this
decoder to that of a JBSC to simplify DE for this system,
and maintain the analogy of u1,i to x and u2,i to y. The
case where ti = 0 is equivalent to exact knowledge of the
element z1,i (or the symbol u1,i), and ĉ

(u2)
i is a function

of [v1,i, v2,i]. In density evolution, we perform a mixture
of the densities of these two message, weighted by the
source-splitting parameter φ. Techniques such as those used
to calculate DE in section II may be re-used in this case.

IV. SOURCES WITH MEMORY

A. Model

Although it is commonly assumed for convenience’s sake
that consecutive source values are memoryless, in reality it
is extremely common for physical phenomena to be time-
correlated. Once again, let x ∈ {0, 1}n and y ∈ {0, 1}n
represent binary sources observed at different encoders.
Furthermore, for some discrete, finite alphabet S, let s ∈ Sn
represent a vector of hidden source states, and we assume
that s forms a Markov chain with transition probability
matrix P, where the state transition probabilities are inde-
pendent of x and y. For each possible state ρ ∈ S, there
exist source statistics pXi,Yi(xi, yi|si = ρ), so the source is
parameterized by the matrix P and the set of source statistics
{pXi,Yi

(xi, yi|si = ρ) : ρ ∈ S}. For the remainder of the
paper, we will be concerned with the case where S = {1, 2},
and as a slight generalization of the model in [4], we allow
the two conditional joint source PMFs to be arbitrary.

Encoding is performed in the same manner as in the
memoryless case. In terms of decoding, the operations in the
LDPC subgraphs are clearly the same as before, but the joint
channel nodes must contend with the hidden Markov chain.
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he forward message α, passed from state si to si+1;
kward message β, passed from state si+1 to state si,
re functions of the extrinsic messages p(E)

Xi
(xi) and

). These messages are given by

si+1) = K
∑

xi,yi,si

pXi,Yi
(xi, yi|si)α(si)

·pSi+1(si+1|si)p(E)
Xi

(xi)p
(E)
Yi

(yi)

β(si) = K
∑

xi,yi,si+1

pXi,Yi(xi, yi|si)β(si+1)

·pSi+1(si+1|si)p(E)
Xi

(xi)p
(E)
Yi

(yi)

represents an optional normalization constant. The
ion of the messages c1,i and c2,i are also modified,
omit them for reasons of space.

mment on source splitting

e memoryless case, the source was split using a
sequence t, which divided the original source x into
-sources. In a source with memory with length n, we
first nφ source symbols as x(1), and the remaining
) source symbols as x(2). Since x is an arbitrarily

dden Markov source, then if φ > 0 and for almost
he entropy rates and conditional entropy rates for the
x(1) and x(2) will be H(X(1)) = H(X(1)|X(2)) =
, and H(X(2)) = H(X(2)|X(1)) = (1 − φ)H(X).

heir combined entropy rate will be H(X(1)) +
)|X(1)) = φH(X) + (1 − φ)H(X) = H(X).
lly, the asymptotically small loss in splitting the
x down the middle can be mitigated by using the

version of x(1) to aid in decoding x(2), which is
ed under source splitting.

the perspective of source y, splitting x into two
seems to lead to two different channels, one benefit-

the perfectly known x(1), and the other having no
nefit. We instead create a single equivalent channel
lementing an interleaver (known by the decoder) at
oder for y. Because the interleaver is known at the
, the source memory is preserved, but the known
of x(1) are spread randomly throughout the source
e perspective of the decoder for y. This step is

l, and we do it to reduce the complexity of density
n.

sity evolution

rstly extend our observation on decoder equivalence
case of joint sources with Markov memory. De-
Markov-modulated joint binary symmetric channel
SC) as a generalization of the JBSC to the case
a hidden Markov channel state selects the joint
n probabilities. That is, there exists a hidden Markov
quence s with transition probability matrix P, and
ned on the state si, the channel at any given time
C with noise process PMF PrZ1,i,Z2,i

(z1,i, z2,i |si).



In particular, letting PrXi,Yi
(xi, yi|si) represent the joint

conditional source statistics, if PrXi,Yi
(z1,i, z2,i|si) =

PrZ1,i,Z2,i(z1,i, z2,i|si) for every setting of [zi,1, zi,2] and
si, and the transition probability matrices P are the same,
then it is easy to show that the two decoders have the same
probability of error.

Armed with this observation, we can use density evolution
to analyze the simultaneous decoder for a source with mem-
ory. There are many possible ways to do so; for instance, the
density evolution may be computed explicitly, as in the case
of the Gilbert-Elliott channel in [15]. Another possibility is
to use Monte Carlo simulation to obtain a histogram of the
output messages for the source state estimator. We used the
Monte Carlo method, since it easily scales to a large number
of states.

V. RESULTS

We are given two correlated sources, possibly with time
dependence. In designing our two encoders, we fix the
two check degree sequences, ρ(x) and ρ(y), and vary the
variable degree sequences, λ(x) and λ(y), to minimize the
transmission rate for a given source and a given rate-splitting
parameter φ. A maximum variable degree was enforced, and
differential evolution was used to search for good codes. The
total rate of the Slepian-Wolf encoder is given by

R =
∑
i ρ

(y)
i /i∑

j λ
(y)
j /j

+
∑
i ρ

(x)
i /i∑

j λ
(x)
j /j

φ+Rx(1) ,

where Rx(1) is the rate used in encoding the independently
coded portion of x. The objective is then to get as close
to the Slepian-Wolf bound as possible while preserving the
ability to decode the codes. For each candidate, consisting
of (λ(x), ρ(x)), (λ(y), ρ(y)), and φ, we use DE to verify
successful decoding.

For a memoryless source with joint probabilities given by

pXi,Yi
(xi, yi) =

{
0.473, xi = yi,
0.027, xi �= yi;

,

with joint entropy H(X,Y ) = 1.3032. Setting φ = 0.2, we
have found degree sequences given as follows:

λ(x) = [0 0.4068 0.4347 0.0425 0 0 0.0804 0.0356]
ρ(x) = [0 0 0 0 0 1]
λ(y) = [0 0.4333 0.2866 0.0357 0 0 0.1132 0.1312]
ρ(y) = [0 0 0 0 0 1]

with rates Rx(2) = 0.4446 and Ry = 0.4712. Assuming
x(1) is encoded at entropy, the overall rate is R = 1.3602,
roughly 4% greater than the joint entropy. For higher check
degrees, we have found a code

λ(x) = [0 0.3119 0.4255 0.125 0 0 0.0843 0.04 0.0133]
ρ(x) = [0 0 0 0 0 0 1]
λ(y) = [0 0.3317 0.2722 0.0078 0 0 0.0678 0.2783 0.0422]
ρ(y) = [0 0 0 0 0 0 1]

with ra
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roughly
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tes Rx(2) = 0.4110 and Ry = 0.4643. Assuming
encoded at entropy, the overall rate is R = 1.3465,
3% greater than the joint entropy.
source with memory, with pXi,Yi

(xi, yi|si) given

xi, yi 0,0 0,1 1,0 1,1
si = 1 0.86 0.02 0.02 0.1
si = 2 0.6 0.05 0.05 0.3

sition probability matrix P with 0.95 in the diagonal
ts and 0.05 in the off-diagonal elements, we have
egree sequences given by λ

(x)
2 = 0.1661, λ(x)

3 =
λ

(x)
5 = 0.0024, λ(x)

7 = 0.1132; λ(y)
2 = 0.2608,

0.6356, λ(y)
4 = 0.0024, λ(y)

7 = 0.0988, λ(y)
9 =

and ρ(x)
6 = ρ

(y)
6 = 1, again with φ = 0.2. The joint

rate of the source is given by H(X,Y ) = 1.1154,
two given codes have rates of Rx(2) = 0.4914 and

0.4665 (assuming x(1) is encoded at entropy rate),
pproaches to about 6% of the bound.
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