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Sum Capacity of Gaussian Vector Broadcast Channels
Wei Yu, Member, IEEE, and John M. Cioffi, Fellow, IEEE

Abstract—This paper characterizes the sum capacity of a class
of potentially nondegraded Gaussian vector broadcast channels
where a single transmitter with multiple transmit terminals sends
independent information to multiple receivers. Coordination is al-
lowed among the transmit terminals, but not among the receive
terminals. The sum capacity is shown to be a saddle-point of a
Gaussian mutual information game, where a signal player chooses
a transmit covariance matrix to maximize the mutual information
and a fictitious noise player chooses a noise correlation to minimize
the mutual information. The sum capacity is achieved using a pre-
coding strategy for Gaussian channels with additive side informa-
tion noncausally known at the transmitter. The optimal precoding
structure is shown to correspond to a decision-feedback equalizer
that decomposes the broadcast channel into a series of single-user
channels with interference pre-subtracted at the transmitter.

Index Terms—Broadcast channel, minimax optimization, pre-
coding, writing on dirty paper.

I. INTRODUCTION

ACOMMUNICATION situation where a single transmitter
sends independent information to multiple uncoordinated

receivers is referred to as a broadcast channel. Fig. 1 illustrates
a two-user broadcast channel, where independent messages
and are jointly encoded by the transmitter , and the re-
ceivers and are each responsible for decoding and

, respectively. An codebook for a broadcast
channel consists of an encoding function where

and and decoding
functions and . An error occurs when

or . A rate pair is achievable if there
exists a sequence of codebooks for which the
average probability of error as . The capacity re-
gion of a broadcast channel is the set of all achievable rate pairs.

The broadcast channel was first introduced by Cover [1], who
also proposed an achievable coding strategy based on superpo-
sition. Superposition coding has been shown to be optimal for
the class of degraded broadcast channels [2], [3]. However, it is
in general suboptimal for nondegraded broadcast channels. The
largest achievable region for the nondegraded broadcast channel
is due to Marton [4], [5], but no converse has been established,
except in special cases such as deterministic broadcast channels
and more capable broadcast channels. (See [6] for a compre-
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Fig. 1. Broadcast channel.

hensive review.) The capacity region for the general broadcast
channel is still an unsolved problem.

This paper makes progress on the broadcast channel problem
by solving for the sum capacity of a particular class of nonde-
graded Gaussian vector broadcast channels. The main challenge
in the broadcast channel problem is that a broadcast channel
distributes information across several receivers, and without the
joint processing of the received signals, it is not possible to com-
municate at a rate equal to the mutual information between the
input and the outputs. The contribution of this paper is to show
that for a Gaussian vector broadcast channel, an equivalent of re-
ceiver processing can be implemented at the transmitter by pre-
coding. Further, the optimal precoder takes the form of a gener-
alized decision-feedback equalizer (GDFE) across the user do-
main. The solution to the sum capacity problem for the broad-
cast channel illustrates the value of cooperation at the receiver.
Without receiver cooperation, the capacity of a Gaussian vector
channel becomes a saddle-point of a mutual information game,
where “nature” effectively puts forth a fictitious worst possible
noise correlation.

The main result of this paper is a generalization of an earlier
result by Caire and Shamai [7], who characterized the sum ca-
pacity of a broadcast channel with two receivers each equipped
with a single antenna. The achievability proof of Caire and
Shamai’s result is based on a coding strategy called “writing on
dirty paper” [8], and the converse is based on an upper bound
by Sato [9]. This paper generalizes both the achievability and
the converse to vector broadcast channels with an arbitrary
number of transmit antennas and an arbitrary number of users
each equipped with multiple receive antennas.

The sum capacity result has also been obtained in simulta-
neous and independent work [10] and [11]. These two sepa-
rate pieces of work arrive at essentially the same result via a
duality relation between the multiple-access channel capacity
region and the dirty-paper precoding region for the broadcast
channel. The proof technique contained in this paper is dif-
ferent in that it reveals an equalization structure for the optimal
broadcast strategy. This decision-feedback equalizer viewpoint
leads directly to a path for implementation. It also makes the ca-
pacity result amenable to practical coding schemes, such as the
inflated-lattice precoding strategy [12] and the trellis shaping
technique [13].

Further, the result in this paper is in fact more general than
that of [10] and [11]. The result of this paper applies to broad-
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Fig. 2. Gaussian vector broadcast channel.

cast channels with arbitrary convex input constraints, while the
results of [10] and [11] appear to be applicable for broadcast
channels with a total power constraint only. However, neither
the present paper nor [10], [11] fully address the capacity re-
gion for the vector broadcast channel. The difficulty appears to
be in proving that Gaussian inputs are optimal for non-rate-sum
points. In fact, as is shown in [14] and [15], the dirty-paper pre-
coding region is the capacity region if an additional Gaussianity
assumption is made. The capacity region of Gaussian vector
broadcast channels is still an open problem.

The remainder of this paper is organized as follows. In Sec-
tion II, the Gaussian vector broadcast channel problem is for-
mulated, and a precoding scheme based on channels with trans-
mitter side information is described. In Section III, the optimal
precoding structure is shown to be closely related to a GDFE. In
Section IV, an outer bound for the sum capacity of the Gaussian
broadcast channel is computed, and the decision-feedback pre-
coder is shown to achieve the outer bound, thus proving the
main capacity result. Section V summarizes the main result of
the paper by illustrating the value of cooperation in a Gaussian
vector channel.

The notations used in this paper are as follows. Lower case
letters are used to denote scalars, e.g., , . Upper case letters
are used to denote scalar random variables, e.g., , , or ma-
trices, e.g., , where context should make the distinction clear.
Bold face letters are used to denote vectors, e.g., , , or vector
random variables, e.g., , . For matrices, denotes the trans-
pose operation and denotes the determinant operation. The
discussions in this paper are confined to the real-valued signals.
However, all results extend easily to the complex-valued case.

II. PRECODING FOR GAUSSIAN BROADCAST CHANNELS

A Gaussian vector broadcast channel refers to a broadcast
channel where the law of the channel transition probability

is Gaussian, and where , , and are vector
valued. Fig. 2 illustrates a two-user Gaussian vector broadcast
channel

(1)

where is the transmit signal, and are receive signals, ,
are channel matrices, and , are Gaussian vector noises.

Independent information is to be sent to each receiver. This
paper characterizes the maximum sum rate . The de-
velopment here is restricted to the two-user case for simplicity.

The results can be generalized easily to channels with more than
two users.

When a Gaussian broadcast channel has a scalar input
and scalar outputs, it can be regarded as a degraded broad-
cast channel for which the capacity region is well estab-
lished [16]. A broadcast channel is physically degraded if

. Intuitively, this means that
one user’s signal is a noisier version of the other user’s signal.
Consider the Gaussian scalar broadcast channel

(2)

where is the scalar transmitted signal subject to a power con-
straint , and are the received signals, and and are
the additive white Gaussian noises with variances and ,
respectively. This broadcast channel is equivalent to a physi-
cally degraded channel for the following reason. Without loss
of generality, assume . Then, can be rewritten as

, where is independent of
. Since has the same distribution as , is now equiva-

lent to . Thus, can be regarded as a degraded version
of . The capacity region for a degraded broadcast channel is
achieved using a superposition coding and interference subtrac-
tion scheme due to Cover [1]. The idea is to divide the total
power into and and
to construct two independent Gaussian codebooks for the two
users with powers and , respectively. To send two indepen-
dent messages, one codeword is chosen from each codebook,
and their sum is transmitted. Because is a degraded version
of , the codeword intended for can also be decoded by .
Thus, can subtract the effect of the codeword intended for
and can effectively get a cleaner channel with noise power
instead of . Thus, the following rate pair is achievable:

(3)

(4)

In fact, as was shown by Bergman [3], this superposition and
interference subtraction scheme is optimal for the degraded
Gaussian broadcast channel.

When a Gaussian broadcast channel has a vector input and
vector outputs, it is no longer necessarily degraded, and super-
position coding is no longer capacity achieving. The capacity
region for a nondegraded broadcast channel is still an unsolved
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Fig. 3. Channel with noncausal transmitter side information.

problem. The largest achievable region in this case is due to
Marton [4], [5], and it uses the idea of random binning. For a
two-user broadcast channel with independent information for
each user, the Marton’s region is as follows:

(5)

(6)

(7)

where is a pair of auxiliary random variables, and
the mutual information is evaluated under a joint distribution

whose induced marginal distribution
satisfies the input constraint. Although the optimality of

Marton’s region is not known for the general broadcast channel,
it is optimal for several classes of channels [6]. The objective of
this paper is to show that a proper choice of also gives
the sum capacity of a nondegraded Gaussian vector broadcast
channel.

As a first step, let us examine the degraded broadcast
channel more carefully and give an interpretation of the aux-
iliary random variables in the degraded case. The connection
between the degraded broadcast channel capacity region and
Marton’s region lies in the study of channels with noncausal
transmitter side information. A channel with side information
is illustrated in Fig. 3. The channel output is a function of
the input sequence and a channel state sequence . The
channel state is not known to the receiver but is known to the
transmitter as the side information. Further, the transmitter
knows the entire state sequence prior to transmission in a
noncausal way. For such a channel, Gel’fand and Pinsker [17]
and Heegard and El Gamal [18] showed that its capacity can be
characterized using an auxiliary random variable

(8)

The achievability proof of this result uses a random-binning
argument, and it is closely connected to Marton’s achievability
region for the broadcast channel. Such a connection was noted
by Gel’fand and Pinsker in [17], and was further used by
Caire and Shamai [7] for the -by-two Gaussian broadcast
channel. The following argument illustrates the connection.
Fix a pair of auxiliary random variables and a condi-
tional distribution . Consider the effective channel

. Construct a random-coding codebook
from to using an independent and identically distributed
(i.i.d.) distribution according to . Evidently, a rate of

is achievable. Now, since is completely
known at the transmitter, the channel from to is a channel
with noncausal side information available at the transmitter.
Then, Gel’fand and Pinsker’s result ensures that a rate of

is achievable. This rate pair is
precisely a corner point in Marton’s region for the broadcast
channel. The preceding argument ignores the issue that now

Fig. 4. Gaussian channel with transmitter side information.

depends on , but for the Gaussian channel, the argument can
be made rigorous.

When specialized to the Gaussian channel, the capacity of a
channel with side information has an interesting solution. Con-
sider the Gaussian channel shown in Fig. 4

(9)

where and are the transmitted and the received signals, re-
spectively, is a Gaussian interfering signal whose entire non-
causal realization is known to the transmitter but not to the re-
ceiver, and is a Gaussian noise independent of . In a surprising
result known as “writing on dirty paper,” Costa [8] showed that
when and are independent Gaussian random variables, under
a fixed power constraint, the capacity of the channel with inter-
ference is the same as if the interference did not exist. In ad-
dition, the optimal transmit signal is statistically independent
of . In effect, interference can be “pre-subtracted” at the trans-
mitter without an increase in transmit power.

The “dirty-paper” result gives us another way to derive the de-
graded Gaussian broadcast channel capacity. Let ,
where and are independent Gaussian signals with average
powers and , respectively, where . The mes-
sage intended for is transmitted through , and the message
intended for is transmitted through . If two independent
codebooks are used for and , each receiver sees the other
user’s signal as noise. However, the transmitter knows both mes-
sages in advance. So, the channel from to can be regarded
as a Gaussian channel with noncausal side information , for
which Costa’s result applies. Thus, a transmission rate from
to that is as high as if were not present can be achieved,
i.e., . Further, the optimal is statistically
independent of . Thus, the channel from to still sees
as independent noise, and a rate is achievable.
This gives an alternative derivation for the degraded Gaussian
broadcast channel capacity in (3) and (4). Curiously, this deriva-
tion does not use the fact that is a degraded version of . In
fact, and may be interchanged and the following rate pair
is also achievable:

(10)

(11)

It can be shown that, when , the above rate region is
smaller than the true capacity region in (3) and (4).

The idea of subtracting interference at the transmitter is
attractive because it is also applicable to nondegraded broadcast
channels. Consider the following Gaussian vector broadcast
channel:

(12)
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Fig. 5. Coding for vector broadcast channel.

where , , and are vector input and outputs, and are
channel matrices, and , are Gaussian vector noises with co-
variance matrices and , respectively. In general,
and are not degraded versions of each other. Further, they
do not necessarily have the same eigenvectors, so it is gener-
ally not possible to diagonalize and simultaneously. (An
important exception is when and are intersymbol inter-
ference (ISI) channels with cyclic prefix, in which case, both
are Toeplitz and can be simultaneously decomposed into scalar
channels by discrete Fourier transforms [19].) Nevertheless, the
“dirty-paper” result can be extended to the vector case to pre-
subtract multiuser interference at the transmitter, again with no
increase in transmit power.

Lemma 1: Given a fixed power constraint, a Gaussian vector
channel with side information , where and

are independent Gaussian random vectors, and is known
noncausally at the transmitter but not at the receiver, has the
same capacity as if did not exist, i.e.,

(13)

Further, the capacity-achieving is statistically independent
of .

This result has been noted by several authors [20], [21] under
different conditions. Lemma 1 suggests a coding scheme for the
broadcast channel as shown in Fig. 5. The following theorem
formalizes this idea.

Theorem 1: Consider the Gaussian vector broadcast channel
, under a power constraint . The

following rate region is achievable:

(14)

where is the covariance matrix for , and is a set
of positive semi-definite matrices satisfying the constraint:

.
Proof: For simplicity, only the proof for the case

is presented. The extension to the general case is straightfor-
ward. Let , where and are independent
Gaussian vectors whose covariance matrices and sat-
isfy . Now, fix and choose the
conditional distribution to be such that it maxi-
mizes . By Lemma 1, the maximizing

distribution is such that and are independent. So, as-
suming that and are independent a priori is without loss
of generality. Further, by (13), the maximizing distribution gives

. Using this choice of
in Marton’s region (5)–(7), the following rates are ob-

tained: , . The mutual
information can be evaluated as

(15)

(16)

which is the desired result.

This theorem is a generalization of an earlier result by Caire
and Shamai [7], who essentially considered the set of rank-one

in the derivation of the -by-two broadcast channel sum
capacity. Theorem 1 restricts in Marton’s region
to be of a special form. Although such restriction may be
capacity-lossy in general, as the results in the next section
show, for achieving the sum capacity of a Gaussian vector
broadcast channel, this choice of is without loss of
generality. Note that finding an optimal set of in (15) and
(16) may not be computationally easy. Linear combinations of

and are nonconvex functions of . Further, the
order of interference pre-subtraction is arbitrary, and it is also
possible to split the transmit covariance matrix into more than
two users to achieve the rate-splitting points. Caire and Shamai
[7] partially circumvented the difficulty for the -by-two
broadcast channel by deriving an outer bound for the sum
capacity. They assumed a particular precoding order, and by
optimizing over the set of all rank-one , succeeded in proving
that Marton’s region coincides with the outer bound for the
two-user two-antenna broadcast channel. Unfortunately, their
procedure does not generalize to the -receiver case easily,
and it does not reveal the structure of the optimal .

In a separate effort, Ginis and Cioffi [22] demonstrated a pre-
coding technique for an broadcast channel based on
a QR decomposition of the channel matrix. The QR method
transforms the matrix channel into a triangular structure, and by
doing so, implicitly chooses a set of based on the matrix in
the QR decomposition. This channel triangularization was also
independently considered by Caire and Shamai [7], who further
proved that the QR method is rate-sum optimal in both low- and
high-SNR (signal-to-noise ratio) regions. However, this choice
of is suboptimal in general.

A main goal of this paper is to find an optimal set of in (15)
and (16) that maximizes the sum capacity of a Gaussian vector
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broadcast channel. The key insight is that the optimal precoder
has the structure of a decision-feedback equalizer.

III. DECISION-FEEDBACK PRECODING

A. GDFE

We begin the development by giving an information-theoret-
ical derivation of the GDFE. The derivation is largely tutorial in
nature. It is useful in fixing the notations used in the develop-
ment and for setting the stage for a subsequent generalization of
GDFE. This section is based on [23].

Decision-feedback equalization (DFE) is widely used to mit-
igate ISI in linear dispersive channels. To untangle the ISI, a
decision-feedback equalizer decodes each input symbol sequen-
tially, based on the entire received sequence. The effect of each
decoded symbol is subtracted before the decoding for the next
symbol begins. Under the assumption of no error propagation
and a channel nonsingularity condition (that rarely occurs by
accident), a generalization of decision-feedback equalizer (that
often consists of several DFEs) can achieve the capacity of a
Gaussian linear dispersive channel [24].

The study of the decision-feedback equalizer is related to
the study of multiple-access channels. If each transmitted
symbol in an ISI channel is regarded as a data stream from a
separate user, the decision-feedback equalizer can be thought
of as a successive interference subtraction scheme for the
multiple access channel. This connection can be formalized by
considering a decision-feedback structure that operates on a
finite block of inputs. This block-based structure, introduced in
[23] as the GDFE, was also developed independently in [25]
for the multiple-access channel. This paper eventually uses the
GDFE structure for the broadcast channel as well.

Consider a Gaussian vector channel , where , ,
and are Gaussian vectors. Let and assume that

. For now, assume also that the covariance matrix of is
nonsingular. (The singular noise case is addressed in later in the
paper.) In this case, it is without loss of generality to assume
that . Shannon’s noisy channel coding theorem
suggests that to achieve a rate

a random codebook can be constructed, in which each codeword
is a sequence of Gaussian vectors generated from an i.i.d. dis-
tribution . Evidently, sending a message using such a
vector codebook requires joint processing of components of
at the encoder. Now, write and suppose further
that and are statistically independent so that the covari-
ance matrix is of the form

In this case, one might ask, is it possible to achieve a rate
using two separate codebooks with the encoding and

decoding of and being performed independently? The
answer is yes, and the way to achieve is to use a receiver
based on a GDFE.

The development of GDFE involves three key ideas. The first
idea is to recognize that in a Gaussian vector channel

Fig. 6. MMSE estimation in a Gaussian vector channel.

, the optimal decoding of from is related to the
minimum mean-square error (MMSE) estimation of given

. Consider the setting in Fig. 6, where at the output of the
Gaussian vector channel, an MMSE estimator is applied
to to generate . First, note that the use of MMSE estima-
tion is capacity lossless. The maximum achievable rate after
MMSE estimation is . The following argument shows
that . The MMSE estimator for a Gaussian
process is linear, so represents a matrix multiplication. Fur-
ther, let the difference between and be . From linear es-
timation theory, is Gaussian and is independent of . So, if

is rewritten as , it can be interpreted as an
achievable rate of a Gaussian channel from to with as the
additive noise

(17)

where and are covariance matrices of and , respec-
tively. This mutual information is related to the capacity of the
original channel. The key observation is the following [24]:

(18)

(19)

where is the uncertainty in given , so ,
and likewise, is the uncertainty in given , so

. Since , this implies that

(20)

Now suppose that and are independently coded with
two different codebooks. The decoding of and , however,
cannot be done on and separately. (Here .)
To see this, write and . Individual
detections on and achieve and ,
respectively. Because and are independent of and
respectively and are both Gaussian, the argument in the pre-
vious paragraph may be repeated to conclude that individual
detections on and achieve and

, respectively. But, and are not nec-
essarily uncorrelated. So, by Hadamard’s inequality,

. This implies

(21)

Thus, although the decoding of based on is capacity-loss-
less, the independent decoding of based on and decoding
of based are capacity-lossy.
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Fig. 7. Forward and backward channels.

The goal of GDFE is to use a decision-feedback structure
to enable the independent decoding of and . This is ac-
complished by a diagonalization of the MMSE error , while
preserving the “information” in . First, let us write down the
MMSE filter

(22)

(23)

(24)

where (22) follows from standard linear estimation theory and
(24) follows from the matrix inversion lemma [26], which is
used repeatedly in subsequent development

(25)
Now, it is clear that may be split into two parts: a matched
filter and an estimation filter , as shown
in Fig. 7. This creates a pair of channels. The forward channel
goes from to

(26)

where . The backward channel goes from to

(27)

where . The forward channel has the
following property: the covariance matrix of the noise is the
same as the channel matrix . The second key idea in GDFE
is to recognize that the backward channel has the same property
as verified below

(28)

where the matrix inversion lemma (25) is again used.
The goal is to diagonalize the MMSE error . The third key

idea in GDFE is to recognize that diagonalization may be done
using a block Cholesky factorization of , which is simulta-
neously the backward channel matrix and the covariance matrix
of

(29)

where

is a block upper-triangular matrix, and

is a block-diagonal matrix. The Cholesky factorization diago-
nalizes in the following sense. Define

(30)

Then, the components and are uncorrelated because

(31)

which is a block-diagonal matrix. Further, the diagonalization
preserves the determinant of the covariance matrix

(32)

The next idea is to recognize that the diagonalization can be
done directly by modifying the backward channel to form a de-
cision-feedback equalizer. Because the channel matrix and the
noise covariance matrix are the same, it is possible to split the
channel matrix into the following feedback configuration:

(33)

(34)

(35)

(36)

Writing out the matrix computation explicitly

(37)

It is now clear that the backward canonical channel is split into
two independent subchannels whose respective noises are un-
correlated. The subchannel for is

(38)

Once is decoded correctly, can be subtracted from the
subchannel for to form

(39)

where is defined as , and
. This interference subtraction scheme is called

a GDFE. The GDFE structure is shown in Fig. 8. The combina-
tion of and is called the feedforward filter;
is called the feedback filter.

The main result in the development of the GDFE is that the
decision-feedback operation gives rise to equivalent indepen-
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Fig. 8. Generalized decision feedback equalizer.

dent channels that have the same achievable sum rate. To see
this, note that the maximum achievable rate with a GDFE is

. This mutual information can be more easily com-
puted if written as , which can be interpreted as the
achievable rate of the channel . Now, is in-
dependent of , so it is independent of and thus independent
of . Also, is Gaussian, so the achievable rate of the channel

is just

(40)

This is precisely the achievable rate of the original channel, be-
cause by (19) and (32)

(41)

Further, and are both diagonal, so

and

Thus, the GDFE structure has decomposed the vector channel
into two subchannels that can be independently encoded and
decoded. The achievable rates of the two subchannels are

(42)

(43)

and the sum rate is

(44)

Thus, GDFE is capacity lossless.

B. Precoding

For a Gaussian vector channel with independent inputs and
, the GDFE decomposes the vector channel into two subchan-

nels for which encoding and decoding can be performed inde-
pendently. As long as the decision-feedback operation is error
free, the achievable sum rate of the two subchannels is the same
as the achievable rate of the original vector channel. Thus, if
and are independent, transmitter coordination is not neces-
sary to achieve the mutual information . On the
other hand, receiver coordination is required in a decision-feed-

back equalizer. This is so for two reasons. First, the feedforward
structure operates on the entire vector . Second, the feedback
operation requires the correct codeword from one subchannel to
be available before the decoding of the other subchannel. It turns
out that the second problem can be avoided using ideas from
coding for channels with transmitter side information. In this
section, a precoding scheme based on “writing on dirty paper”
is described. The main result is that the decision-feedback op-
eration can be moved to the transmitter, and it is equivalent to
interference “pre-subtraction.”

Theorem 2: Consider a Gaussian vector channel

where ’s are independent Gaussian vectors and .
Under a fixed transmit covariance matrix , the sum rate

with is
achievable in two ways: either using a decision-feedback
structure with the knowledge of assumed to be
available before the decoding of each , or using a precoder
structure with the knowledge of assumed to be
available before the encoding of each .

Proof: The development in the preceding section shows
that a GDFE achieves . To show the first part of
the theorem, it is necessary to compute the individual rates of
the two subchannels. As before, let and be independent.
Let . (Note that in the rest of the paper, and
are defined as . For the rest of this proof only,

.) Also, let , and write the vector
channel in the form of a multiple access channel

(45)

The block Cholesky factorization (29) may be computed explic-
itly as

(46)

where

(47)

and (48) (at the top of the following page). Thus, by (32)

(49)

So, from (42)
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(48)

(50)

where the matrix identity is used. Writing
it out in another way

(51)

Also,

(52)

(53)

where the matrix inversion lemma is used. Then, from (43)

(54)

(55)

which can be verified by directly multiplying out the respective
terms and by repeated uses of the identity .
Thus,

(56)

This verifies that the achievable sum rate in the multiple-access
channel using GDFE is

(57)

Therefore, the generalized decision feedback equalizer achieves
not only the sum capacity of a multiple-access channel, but also
the individual rates of a corner point in the multiple-access ca-
pacity region. Interchanging the order of and achieves the
other corner point. This, together with time sharing or rate split-
ting, allows GDFE to achieve the entire capacity region of the
multiple-access channel.

An induction argument generalizes the above result to
more than two users. Assume that a GDFE achieves

for a -user multiple-access channel.
In a -user channel, users 1 and 2 can first be considered
as a super-user, and the GDFE result can be applied to the re-
sulting -user channel with
for and

Then, a separate two-user GDFE can be applied to users 1 and 2
to obtain , for .

Next, it is shown that the same rate-tuple can be achieved
using a precoding structure for channels with side information
at the transmitter. Consider the output of the feedforward filter,
the vector in Fig. 8. Write , and consider the

achievable rates of the two subchannels: one from to and
the other from to . Note that . So, the subchannel
from to is the same as in a GDFE

(58)

Now, consider the subchannel from to with available
at the transmitter. Because is Gaussian and is independent of

, Lemma 1 applies. The achievable rate of this subchannel is
then . The rest of the proof shows that this
conditional mutual information is equal to the corresponding
data rate in GDFE: . Toward this end, it is necessary
to explicitly compute . Since

(59)

using (48) and (47), can be expressed as

(60)

where , . It can be shown
that has a covariance matrix

(61)
So, is equivalent to

(62)

On the other hand, can be computed explicitly from

(63)

Since , , and are jointly independent, it follows from
(62) and (63) that

(64)

Therefore, a precoder achieves the same capacity as a decision-
feedback equalizer. This proof generalizes to the -user case
by a similar induction argument as before.

Figs. 9 and 10 illustrate the two coding strategies for the
Gaussian vector channel. Fig. 9 illustrates the decision-feedback
configuration. and are coded independently. After is
decoded, its effect, namely, , is
subtracted before is decoded. This decision-feedback con-
figuration achieves the vector channel capacity in the sense that

Fig. 10 illustrates the precoder configuration. In this case, is
coded as before. The channel for is a Gaussian channel with
transmitter side information , whose effect can be completely
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Fig. 9. Decision feedback decoding.

Fig. 10. Decision feedback precoding.

pre-subtracted. This precoder configuration achieves the vector
channel capacity in the sense that

In the decision-feedback configuration, is assumed to be de-
coded correctly before its interference is subtracted. This im-
plies a decoding delay between the two users. Further, if an er-
roneous decision on is made, error would propagate. In the
precoding configuration, error propagation never occurs. How-
ever, because noncausal side information is needed, cannot
be encoded until is available. This implies an encoding delay.
The two situations are symmetric, and they are both capacity
achieving.

The decision-feedback configuration does not require trans-
mitter coordination. So, it is naturally suited for a multiple-ac-
cess channel. In the precoder configuration, the feedback opera-
tion is moved to the transmitter. So, one might hope that it corre-
sponds to a broadcast channel in which receiver coordination is
not possible. This is, however, not yet true in the present setting.
The capacity-achieving precoder requires a feedforward filter
that acts on the entire received vector, so receiver coordination
is still needed. However, under certain conditions, the feedfor-
ward filter degenerates into a diagonal matrix, which eliminates
the need for receiver coordination entirely. The condition under
which this happens is the focus of the next section.

IV. BROADCAST CHANNEL SUM CAPACITY

A. Least Favorable Noise

The main challenge in deriving of the broadcast channel sum
capacity is in finding a tight capacity outer bound. Consider the
broadcast channel

(65)

where and do not cooperate. Fix an input distribution .
The sum capacity of the broadcast channel is clearly bounded by
the capacity of the vector channel where and

cooperate. As recognized by Sato [9], this bound can be fur-
ther tightened. Because and cannot coordinate in a broad-
cast channel, the broadcast channel capacity does not depend on
the joint distribution and only on the marginals
and . This is so because two broadcast channels with the
same marginals but with different joint distribution can use the
same encoder and decoders and maintain the same probability of
error. Therefore, the sum capacity of a broadcast channel must
be bounded by the minimum mutual information

(66)

where the minimization is over all that has the same
marginal distributions as the actual noise. The minimizing noise
distribution is called the “least favorable” noise. Sato’s bound
is the basis for the computation of -by-two broadcast channel
capacity by Caire and Shamai [7].

The following example illustrates Sato’s bound. Consider
the two-user two-terminal broadcast channel shown in Fig. 11,
where the channel from to and the channel from to

have unit gain, and the crossover channels have a gain .
Assume that and are independent Gaussian signals and
and are Gaussian noises all with unit variance. The broadcast
channel capacity is clearly bounded by . This
mutual information is a function of the crossover channel gain

and the correlation coefficient between and . Consider
the case . In this case, the least favorable noise correlation
is . This is because if and were correlated, decoding
of would reveal from which can be partially inferred.
Such inference is possible, of course, only if and can
cooperate. In a broadcast channel, where and cannot take
advantage of such correlation, the capacity with correlated

and is the same as with uncorrelated and . Thus,
regardless of the actual correlation between and , the
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Fig. 11. A simple two-user broadcast channel.

broadcast channel capacity is bounded by the mutual informa-
tion evaluated assuming uncorrelated and

. Consider another case . The least favorable noise here
is the perfectly correlated noise with . This is because

implies and . So, one of and is
superfluous. If and were not perfectly correlated,
collectively would reveal more information than or alone
would. Since is the least favorable noise correlation,
the broadcast channel sum capacity is bounded by the mutual
information assuming . This example
illustrates that the least favorable noise correlation depends on
the structure of the channel. The rest of this section is devoted
to a characterization of the least favorable noise.

Consider the Gaussian vector channel (1)

Again, a two-user broadcast channel is considered for sim-
plicity, and the results extend easily to the general case. Assume
for now that is a Gaussian vector signal with a fixed covari-
ance matrix , and are jointly Gaussian noises with
marginal distributions . Then, the task of finding
the least favorable noise correlation can be formulated as an
optimization problem. Let . The optimization
problem is

minimize

subject to

(67)

where is the covariance matrix for with ,
and refers to the th block-diagonal term of . The op-
timization is over all off-diagonal terms of subject to the
constraint that is positive semi-definite.

In writing down the optimization problem (67), it is implic-
itly assumed that the minimizing is strictly positive definite,
i.e., . This is an additional assumption that will even-
tually be removed. Note that the minimizing can often be
singular. For example, for the two-user broadcast channel con-
sidered earlier with , the least favorable noise has a co-
variance matrix

which is singular. A sufficient condition for the minimizing
to be nonsingular is that . This is because when-

ever , it must also be true that
(as, otherwise, the mutual information goes to infinity). But

cannot be zero unless is zero.
Thus, is sufficient to ensure that .
This sufficient condition holds, for example, when both and

are full rank.
The following lemma characterizes an optimality condition

for the least favorable noise assuming that such a noise is non-
singular. For now, the transmit signal for the broadcast channel

is assumed to be Gaussian with a fixed covariance matrix. It
will be shown later that the Gaussian restriction is without loss
of generality.

Lemma 2: Consider a Gaussian vector broadcast channel
, where and .

Let . Then, the least favorable noise distribution
that minimizes is jointly Gaussian. Further, if the
minimizing is nonsingular, then the least favorable noise
has a covariance matrix such that
is a block-diagonal matrix. Conversely, any Gaussian noise
with a covariance matrix that satisfies the diagonalization
condition and has is a least favorable noise.

Proof: Fix a Gaussian input distribution ,
and fix a noise covariance matrix . Let be a
Gaussian random vector, and let be any other random vector
with the same covariance matrix, but with possibly a different
distribution. Then, . This fact
is proved in [27] and [28]. Thus, to minimize , it is
without loss of generality to restrict attention to that
are jointly Gaussian. In this case, the cooperative capacity is just

. So, the least favorable noise is
the solution to the optimization problem (67).

The objective function in the optimization problem is convex
in the set of semidefinite matrices . The constraints are
convex in , and they satisfy the constrained quantification
condition. Thus, the Karush–Kuhn–Tucker (KKT) condition is
a necessary and sufficient condition for optimality. To derive
the KKT condition, form the Lagrangian

(68)

where are dual variables associated with the block-
diagonal constraints, and is a dual variable associated with the
semi-definite constraint. ( are positive semi-definite
matrices.) The coefficient is omitted for simplicity. Setting

to zero

(69)

The minimizing is assumed to be positive definite. So, by
the complementary slackness condition . Thus, at the op-
timum, the following block-diagonal condition must be satis-
fied:

(70)
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Fig. 12. GDFE with transmit filter.

Conversely, this block-diagonal condition combined with the
constraints in the original problem form the KKT condition,
which is sufficient for optimality. Thus, if a noise covariance
matrix satisfies (70), it must be a least favorable noise.

Note that the diagonalization condition may be written in a
different form. If assuming, in addition, that is non-
singular and are invertible, (70) may be rewritten using
the matrix inversion lemma as follows:

(71)

Curiously, this equation resembles a Ricatti equation. Neither
(70) nor (71) appears to have a closed-form solution.

B. GDFE With Nonsingular Least Favorable Noise

The main result of this paper is that the cooperative capacity
of the Gaussian vector channel with a least favorable noise is
achievable for the Gaussian broadcast channel. An outline of
the proof of this result is as follows. It is shown that a general-
ized decision feedback precoder designed for the least favor-
able noise does not require receiver cooperation in the sense
that first, the feedback operation can be moved to the trans-
mitter by precoding, and second, the feedforward operation can
be made to have a block-diagonal structure so as to totally elim-
inate the need for receiver coordination. The derivation is most
transparent when the least favorable noise is nonsingular. In this
case, the least favorable noise satisfies the noise diagonalization
condition (70). The general case where the least favorable noise
covariance matrix may be singular is dealt with in the next sec-
tion.

Consider a GDFE designed for the Gaussian vector channel
, with a Gaussian transmit signal

and a Gaussian noise . The implementation of
the GDFE requires noise whitening at the receiver and input
diagonalization at the transmitter. At the receiver, assume that

is full rank. Let have an eigenvalue decomposition

(72)

where is an orthogonal matrix and is a diagonal matrix.
Then is the appropriate noise whitening filter.

At the transmitter, if is not already block diagonal, then
a Gaussian source and a transmit filter can be created such
that and . An intelligent choice of is crucial
in the derivation. For reasons that will be apparent later, it is con-
venient to make the dimension of the source vector to be equal
to the dimension of the received vector , so that the effective
channel is a square matrix. This is always possible since the op-
timal will eventually be a water-filling covariance matrix.
So, the rank of is always equal to or lower than the rank

of the channel. When is of strictly lower rank, zeros can
be padded in the channel to make the effective channel matrix a
square matrix.

More specifically, a transmit filter that satisfies this require-
ment can be synthesized as follows. First, let

(73)

be an eigenvalue decomposition of the transmit covariance ma-
trix . Let

(74)

Then, the appropriate transmit filter is of the form

(75)

where is an arbitrary orthogonal matrix of the same dimen-
sion as . In this case, .

A different GDFE can be designed for each choice of . The
following lemma states that under the noise diagonalization con-
dition, there exists a choice of that makes the GDFE feedfor-
ward matrix diagonal.

Lemma 3: Consider the Gaussian vector channel
, where . Fix a Gaussian source .

If the noise covariance matrix is nonsingular and it satisfies
the condition that is a block-di-
agonal matrix, then there exists a transmit filter such that

has a covariance matrix and the induced GDFE
has a feedforward filter that is block diagonal.

Proof: The GDFE configuration is as shown in Fig. 12.
Let , , and . As stated
before, the transmit filter must be of the form ,
where is an orthogonal matrix. The noise whitening filter
is . The combined transmit filter and the noise whitening
filter give the following effective channel:

(76)

The GDFE depends on the following Cholesky factorization:

(77)

(78)

(79)

Now, choose a matrix such that

(80)
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(For example, can be chosen to be a triangular matrix using
a Cholesky factorization.) Because the right-hand side of the
above is positive semi-definite, all matrices that satisfy

must be of the form where is an orthogonal matrix
[29]. Therefore, the Cholesky factorization (79) can be written
as

(81)

where is a block lower-triangular matrix. For a fixed ,
it is possible to choose a to make block-triangular.
Such a can be found via a block QR-factorization of .
Similarly, for each fixed , it is possible to choose an that
makes block-triangular. Such an can be found by a
block QR-factorization of .

The feedforward filter of a GDFE, denoted as , can now be
computed as follows:

(82)

(83)

(84)

Next, it is shown that the condition under which there exists
a suitable to make the feedforward filter a block-diagonal
matrix is the same as the diagonalization condition on the noise
covariance matrix. First, assume that
is block diagonal. Then, we get (85) at the bottom of the page,
where the matrix inversion lemma is used in the last step. Now,
substituting (80) into (85)

(86)

Note that the right-hand side is a block-diagonal matrix and the
left-hand side is in the form of a matrix factorization. Thus, the
factor on the left must be of the form , where is orthogonal
and

(87)

But, this is exactly the diagonalization condition for . By
choosing in (84), becomes

(88)

. . . (89)

which is block diagonal. Finally, an appropriate transmit filter
can be found by finding an that makes block lower-tri-
angular. This is possible by performing the following QR-fac-
torization: , where is upper-triangular and
is orthogonal. Then, is lower-triangular.

Combining Lemmas 2 and 3, it is now clear that the Gaussian
vector channel with the least favorable noise admits a GDFE
structure with a block-diagonal feedforward filter, provided that
the least favorable noise is nonsingular. This means that at the
feedforward stage, only individual processing of is needed.
This, together with the fact that decision feedback can be moved
to the transmitter as a precoder, completely eliminates the need
for receiver cooperation.

C. GDFE With Singular Noise

To complete the argument, it remains to show that Lemma 3
holds even when the least favorable noise is singular. Part of the
following proof has also appeared in [36]

Lemma 4: Consider the Gaussian vector channel
, where . There exists a GDFE structure for

the Gaussian vector channel with a block-diagonal feedforward
matrix if and only if is the minimizing solution of (67).

Proof: Let be the solution to the minimization
problem (67)

(90)

The result follows directly from Lemmas 2 and 3 if the mini-
mizing is singular. To show that there exists a GDFE struc-
ture whose feedforward section is diagonal even when is
nonsingular, both the KKT condition and the GDFE structure
need to be generalized.

Again, let the transmit covariance matrix be fixed
and with an eigenvalue decomposition . Set

. The channel matrix is now effectively ,
and the input covariance matrix is now an identity matrix. The
choice of will be made later.

Suppose that is a low-rank solution to the minimization
problem (90). Decompose in the following form:

(91)

(85)
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where is invertible and is an orthonormal matrix.
The null space of must be a subspace of the null space of
the channel (as otherwise the rate would be infinite). Thus, it is
possible to express the new effective channel as

(92)

The minimization problem now becomes

s.t. has identity matrices on the diagonal (93)

A necessary condition for the least favorable noise is

(94)

The objective is to show that if the noise covariance matrix sat-
isfies the above condition, then there exists a decision-feedback
equalizer whose feedforward matrix is diagonal.

Recall that the derivation of the decision-feedback equalizer
is based on MMSE estimation. The key to generalizing the
GDFE structure to the singular noise case is to recognize that
the MMSE estimator is not unique when both the channel and
the noise are rank deficient. Consider the MMSE estimation
of given . The MMSE estimation is a matrix
multiplication , where satisfies a normal equation

(95)

Because both and are low rank, is also low rank. It
is easy to verify that

(96)

satisfies the normal equation for any choice of . Thus, a dif-
ferent DFE can be designed for each choice of . To prove the
lemma, it remains to show that there exists one choice of
(along with a choice of ) that makes the DFE feedforward
matrix diagonal.

The first step in the design of a decision-feedback equalizer
is noise whitening. Define

(97)

The MMSE estimator matrix can be rewritten as

(98)

(99)

where the second equality follows from the matrix inversion
lemma. The structure of the feedforward matrix involves a
Cholesky factorization of . A com-
putation shows that is

(100)

which is independent of the choice of . Let
be a Cholesky factorization. In a deci-

sion-feedback equalizer, half of the Cholesky factor is placed
in the feedback section and the remaining half is placed in the
feedforward section. Thus, the feedforward matrix has the form

(101)

Recall that the objective is to use the generalized least favorable
noise condition (94) to show that can be made diagonal. Using
the matrix inversion lemma

(102)

Following the same derivation as in (84)–(89), it now becomes
clear that by an appropriate choice of , the Cholesky factor-
ization of can be made to give

(103)

Therefore, by choosing

(104)

the feedforward matrix becomes

(105)

which is diagonal since

(106)

To summarize, when the least favorable noise is singular,
it must satisfy a modified KKT condition (67). The deci-
sion-feedback equalizer structure with the singular noise is not
unique, and among this class of decision-feedback equalizers,
there exists one whose feedforward matrix is diagonal. Thus,
in a Gaussian vector broadcast channel, the minimum mutual
information is an achievable sum rate, even
when the least favorable noise covariance matrix is singular.

The minimum mutual information is achieved under a fixed
input covariance . So, one might expect the sum capacity of
the broadcast channel to be the minimum mutual information
maximized over all subject to a power constraint. This is
proved in the next section.

D. Sum Capacity

The development so far contains the simplifying assump-
tion that the input distribution is Gaussian. To see that the
restriction is without loss of generality, a result concerning the
saddle-point is useful. Consider the mutual information expres-
sion , where and are independent. Let
and be constraint sets for and , respectively. If some

is such that for all and

(107)

then is called a saddle-point. The main result con-
cerning the saddle-point is as follows.

Lemma 5 ([28]): The mutual information expression
, where and are convex

constraints, has at least one saddle-point. Further, there exists a
saddle-point whose distributions are Gaussian.

The proof of this result can be found in [28]. It goes as fol-
lows: First, it is shown that the search for the saddle-point can
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be restricted to Gaussian distributions without loss of gener-
ality. With Gaussian distributions, the mutual information can
be written as . Because
is a concave function over the set of positive definite matrices,

is convex in and concave in
. The constraints are convex. So, from a minimax theorem

in game theory [30], there exists a saddle-point such
that

(108)

for all in the constraint sets.
A saddle-point (when exists) is the solution to the following

max-min problem:

(109)

This can be easily seen as follows. Suppose is a saddle-
point. Then,

So

On the other hand, fixing gives

So

By the same argument, the saddle-point is also the solution to
the min-max problem

(110)

For any arbitrary function , it is always true that

However, if a saddle-point exists, then max-min equals min-max

(111)

The main result of this paper is that max-min corresponds to
achievability, min-max corresponds to the converse, and the
saddle-point corresponds to the sum capacity of a Gaussian
vector broadcast channel.

Theorem 3: Consider a Gaussian vector broadcast channel
, under a power constraint .

Let . The sum capacity is a saddle-point

of the mutual information with
the following constraints: has block-diagonal entries that
are the covariance matrices of , and satisfies

.
Proof: First, the converse is shown as follows. Sato’s

outer bound states that the broadcast channel sum capacity is
bounded by the capacity of any discrete memoryless channel
whose noise marginal distributions are equal to . The
tightest outer bound is then the capacity of the channel with
the least favorable noise correlation. The capacity of a discrete
memoryless channel is , hence,

(112)

where the maximization is over the power constraint
, and the minimization is over all noise

distributions whose marginals are the same as the actual noise.
The solution to this minimax problem is the saddle-point for

. Since the constraint sets are convex, by Lem-
ma 5, a saddle-point exists. Further, the saddle-point can be
chosen to be Gaussian, so the outer bound can be written as

(113)

where belongs to the set of positive semidefinite matrices
satisfying the power constraint , and belongs
to the set of noise covariance matrices with

, as block-diagonal terms.
Next, the achievability is shown as follows. The existence of

a saddle-point implies that min-max equals max-min. So, it is
only necessary to show that

(114)

Since the saddle-point can be chosen to be Gaussian, the devel-
opment leading to the theorem, which restricts consideration to
Gaussian inputs, is without loss of generality.

Now, at the saddle-point, is a least favorable noise for
. So, by Lemmas 2–4, there must exist an appropriate

transmit filter such that a GDFE designed for this and
has a block-diagonal feedforward matrix. Consider now

the precoding configuration of the GDFE. The feedforward
section is block-diagonal. The feedback section is moved to
the transmitter. So, the decoding operations of are
completely independent of each other. Further, because the
feedback filter is block-diagonal, the GDFE receiver is obliv-
ious of the correlation between ’s. Thus, although the actual
noise distribution may not have the same joint distribution as
the least favorable noise, because the marginal distributions are
the same, a GDFE precoder designed for the least favorable
noise performs as well as with the actual noise. Since by
Theorem 2, this GDFE precoder achieves , so

is achievable. Further, it is possible
to maximize the above over . Therefore, the outer bound
(114) is achievable.

Note that the GDFE transmit filter designed for the
least favorable noise also identifies the set of sum ca-
pacity-achieving in Theorem 1. Let . Set
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. Then, it is easy to verify that
the sum capacity is achieved with

Theorem 3 suggests the following game-theoretical interpre-
tation for the Gaussian vector broadcast channel. There are two
players in the game. A signal player chooses an to maximize

subject to the constraint . A noise
player chooses a fictitious noise correlation to minimize

subject to the constraint . A Nash equi-
librium in the game is a set of strategies such that each player’s
strategy is the best response to the other player’s strategy. The
Nash equilibrium in this mutual information game exists, and
the Nash equilibrium corresponds to the sum capacity of the
Gaussian vector broadcast channel.

The saddle-point property of the Gaussian broadcast channel
sum capacity implies that the capacity achieving is
such that is the water-filling covariance matrix for ,
and is the least favorable noise covariance matrix for .
In fact, the converse is also true. If a set of can be
found such that is the water-filling covariance for , and

is the least favorable noise for , then consti-
tutes a saddle-point. This is because the mutual information is
a concave–convex function, and the two KKT conditions, cor-
responding to the two optimization problems are, collectively,
sufficient and necessary at the saddle-point [31], [32]. Thus, the
computation of the saddle-point is equivalent to simultaneously
solving the water-filling problem and the least favorable noise
problem.

One might suspect that the following algorithm can be used to
find a saddle-point numerically. The idea is to iteratively com-
pute the best input covariance matrix for a given noise co-
variance, then compute the least favorable noise covariance ma-
trix for the given input covariance. If the iterative process
converges, both KKT conditions are satisfied, and the limit must
be a saddle-point of . Although
such an iterative min-max procedure is not guaranteed to con-
verge for a general game even when the payoff function is con-
cave–convex, the iterative procedure appears to work well in
practice for this particular problem. The convex–concave na-
ture of the problem also suggests that general-purpose numer-
ical convex programming algorithms can be used to solve for
the saddle-point with polynomial complexity [31], [33], [34].

Finally, the main sum capacity result can be easily general-
ized to broadcast channels with an arbitrary convex input con-
straint. This is so because the achievability result using GDFE
works with any arbitrary Gaussian input distribution, and the
saddle-point for the mutual information expression is Gaussian
as long as the input and noise constraints are convex. The gen-
eralization is stated as a corollary.

Corollary 1: Consider a Gaussian vector broadcast channel
, under a convex input constraint

. Let . The sum capacity is a saddle-
point of the mutual information
with the following constraints: has block-diagonal entries

that are the covariance matrices of , and
satisfies the input constraint .

V. VALUE OF COOPERATION

A principal aim of this paper is to illustrate the value of co-
operation in a Gaussian vector channel . When
cooperation is possible both among the transmit terminals and
among the receive terminals, the capacity of the vector channel
under a power constraint is the solution to the following opti-
mization problem:

maximize

subject to

(115)

This leads to the well-known water-filling solution based on the
singular-value decomposition of [35]. Assume that

, then the optimum must have its eigenvectors equal to
the right singular vectors of and its eigenvalues obeying the
water-filling power allocation on the singular values of . Fur-
ther, the receive matrix can be chosen to match the left singular
vectors of , so that the vector Gaussian channel is diagonal-
ized into a series of independent scalar channels onto which
single-user codes can be used to collectively achieve the vector
channel capacity.

When coordination is possible only among the receive termi-
nals, but not among the transmit terminals, the vector channel
becomes a Gaussian multiple-access channel. Although the sum
capacity of a multiple-access channel is still a maximum mutual
information , the transmit terminals of the multiple-ac-
cess channel must be uncorrelated. Thus, the water-filling co-
variance, which is optimum for a coordinated vector channel,
can no longer necessarily be synthesized. The optimum covari-
ance matrix for the multiple-access channel must be found by
solving an optimization problem that restricts the off-diagonal
entries of the covariance matrix to zero

maximize

subject to

uncoordinated

(116)

where denotes the -entry of . Thus, in terms
of capacity, the value of cooperation at the transmitter lies in the
ability for the transmitters to send correlated signals. In addition,
the lack of transmitter coordination makes the diagonalization
of the vector channel impossible. Instead, the vector channel can
only be triangularized [23], [25]. Such a triangularization de-
composes a vector channel into a series of single-user subchan-
nels each interfering with only subsequent subchannels. This en-
ables a coding method based on the superposition of single-user
codes and a decoding method based on successive decision feed-
back to be implemented. The optimal form of triangularization
is a GDFE. If decisions on previous subchannels are assumed
correct, GDFE achieves the sum capacity of a Gaussian vector
multiple-access channel [25].
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When coordination is possible only among the transmit ter-
minals, but not among the receive terminals, the vector channel
becomes a Gaussian vector broadcast channel. The main result
of this paper is that the sum capacity of a Gaussian vector broad-
cast channel is the saddle-point of a minimax problem

subject to

coordinated

(117)

Because of the lack of coordination, the receivers can no longer
distinguish between different noise correlations and the capacity
is as if “nature” has chosen a least favorable noise correlation.
Thus, from a capacity point of view, the value of cooperation at
the receiver lies in the ability for the receivers to recognize and
to take advantage of the true correlation among the noise sig-
nals. Further, the result of this paper reveals that the structure
of the sum-capacity achieving coding strategy for the Gaussian
vector broadcast channel is a decision-feedback equalizer. The
optimal coding strategy again decomposes the vector channel
into independent scalar subchannels each interfering into sub-
sequent subchannels, with the interference pre-subtracted using
“writing on dirty paper” coding. When full coordination is not
possible, GDFE has emerged as a unifying structure that is ca-
pable of achieving the sum capacities of both the multiple-ac-
cess channel and the broadcast channel sum capacity.

APPENDIX

The following numerical example illustrates the design of a
precoder for the Gaussian vector broadcast channel. Consider
the following channel:

(118)

where , , and are uncoordinated receivers, and , ,
and are i.i.d. Gaussian noises with variance . The total
power constraint is set to . The iterative algorithm described
at the end of Section IV is used to solve for the saddle-point

. The water-filling step is standard. The least favor-
able noise problem is solved using an interior-point method.
The algorithm converged in 3 to 4 steps. The numerical solution
is

(119)

To verify that the above solution satisfies the KKT conditions

(120)

and

(121)

The vector channel capacity with the least favorable noise cor-
relation is

(122)

The objective is to design a generalized decision-feedback pre-
coder that achieves the vector channel capacity without receiver
coordination. This is accomplished by finding an appropriate
transmit filter which would induce a diagonal
feedforward filter in a GDFE. Following the proof of Lemma 3,
compute the eigendecomposition with

(123)

and with

(124)

Then, compute as a square root of the following as in (80):

(125)

In particular, can be found by a Cholesky factorization. In this
example, because is the water-filling covariance, the matrix

diagonalizes the channel, so that is already diagonal.
So, finding an is trivial. Numerically

(126)

The next step is to find an orthogonal matrix such that
is diagonal. The proof of Lemma 3

shows that can be found as follows:

(127)

The final step is to find an orthogonal matrix such that
is lower-triangular. This is done by computing the QR-factor-
ization of , where is upper-triangular, and
is orthogonal. Then, is lower-triangular. In this
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(128)

example, we get (128) at the top of the page. This gives the ap-
propriate for the desired transmit filter .

Now, design a GDFE for the effective channel

(129)

with an input covariance and a noise covariance
. Compute

(130)

As expected, the choice of transmit filter makes the feedforward
filter a diagonal matrix

(131)

First, let us compute the capacities of individual subchannels
in the GDFE feedback configuration. The effective channel is

(132)

Thus, the capacities of the three subchannels are

(133)

(134)

(135)

The sum capacity is , which agrees
with the vector channel capacity.

Now, compute the capacity of individual subchannels in the
precoding configuration. The effective channel is

(136)

Decoding from , the capacity is

(137)
The signal from may be pre-subtracted from , leading to

(138)

The signals from and may be pre-subtracted from ,
leading to

(139)

Therefore, without receiver coordination, a sum capacity of
is also achievable. In fact, it is

now possible to identify the appropriate transmit covariance
matrices for each user as in Theorem 1. Let , , and be
the column vectors of the transmit filter . Then
information bits , , and are modulated with covariance
matrices , , and .
Let , , and be the row vectors of the channel

. Then, by Theorem 1, the following rates
are achievable:

(140)

(141)

(142)

Finally, it is easy to verify that is
achievable with no coordination at the receiver side.
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