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Abstract

This paper addresses the design of optimal and near-optimal detectors in an interference channel with fading

and with additive white Gaussian noise (AWGN), where the transmitters employ discrete modulation schemes as in

practical communication scenarios. The conventional detectors typically either ignore the interference or successively

detect and then cancel the interference, assuming that the desired signal and/or the interference are Gaussian. This

paper quantifies the significant performance gain that can be obtained if the detectors explicitly take into account

the modulation formats of the desired and the interference signals. This paper first describes the optimal maximum-

likelihood (ML) detector that minimizes the probability of detection error for a given modulation scheme, and the

joint minimum-distance (MD) detector, which is a lower-complexity approximation of the ML detector. It is then

demonstrated by analysis and by simulation that in an AWGN channel, while interference-ignorant and successive

interference cancellation detectors are both prone to error floors, the optimal ML and joint MD detectors are not.

This paper further analyzes the performance of joint detection in a Rayleigh fading environment. It is demonstrated

that the joint detector can achieve symbol error rates that have the same dependence on the received signal-to-noise

ratio (SNR) as if the channel were interference free. Thus, the performance of joint detection is fundamentally

limited by the SNR rather than the signal-to-interference ratio (SIR). Moreover, the joint detector enables the use of

transmit diversity schemes to achieve the same diversity order as in the absence of interference. These results show

that the use of interference-aware detectors can significantly alleviate the effect of interference thereby improving

the achievable rates and the reliability of future wireless systems.
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I. INTRODUCTION

The exponential growth of terrestrial wireless systems is expected to continue well into the coming

decades. Current research and development efforts in future wireless systems have focused on achievable

peak bit rates of up to 1 Gbit/s [1], [2], [3]. It is envisaged that the attainment of these rates will be

facilitated by the deployment of distributed broadband wireless communications (BWC) systems [4], [5],

where antennas acting as simple transmit/receive terminals are placed densely inside the coverage areas,

and their signals are conveyed to central units with high-bandwidth links such as fiber, where they are

processed jointly.

In order to take full advantage of the potential of a distributed antenna system, full (or at least, aggres-

sive) frequency reuse is desirable. This is in contrast to the traditional practice in wireless system design,

where interference is avoided by employing orthogonal multiplexing schemes (such as FDMA/TDMA/

CDMA/OFDMA) that do not achieve the highest possible area-spectral efficiency. For this reason, the

design of wireless transceivers that have the ability to communicate reliably in the presence of interferers

is of crucial importance in future wireless systems.

In conventional wireless transceiver design, interference is commonly viewed as contributing to an error

floor at high signal-to-noise ratios (SNRs). However, this is true only if the detectors that are employed do

not take into account the structure of the interference properly. In fact, in practical systems, interference

may often be less detrimental than noise of equal power, because contrary to Gaussian noise, the signals

emitted by the interferers belong to discrete constellations. The main point of this paper is to show that in

many cases, the performance of the system is fundamentally limited by the SNR, rather than the signal-

to-interference ratio (SIR). For example, in a Rayleigh fading environment, the symbol error rate (SER)

of an interference-aware detector can be made to decrease monotonically with the SNR, irrespective of

the SIR.

A conventional detector typically uses one of the two following approaches when interference is present.

When the SIR is relatively large, interference is treated as noise. This is the case, for example, in the

development of power allocation algorithms for frequency-selective Gaussian interference channels (ICs)

[6], [7], [8] and in early CDMA system design [9], [10]. When the SIR is small, successive interference

cancellation (SIC) is applied: i.e. the interference is detected first then cancelled. However, in the AWGN

channel, for some range of the SIR, both schemes suffer from an error floor. Thus, conventional detectors
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are typically interference-limited rather than noise-limited. The main result of this paper is that an

interference-limited transmission system can be turned into a noise-limited one if a maximum-likelihood

(ML) detector that incorporates knowledge of the interfering channel and the discrete nature of the

interference is employed. Moreover, the ML detector can be approximated by a joint minimum-distance

(MD) detector whose performance is almost the same for most SNR and SIR values.

The idea of joint detection has been extensively studied in the past both in the code-division multiple

access (CDMA) context (e.g. [11], [12]) and in the single-user or multi-user multiple-input multiple-

output (MIMO) literature (e.g. [13], [14]), where the detector is typically interested in decoding several

independently transmitted signals simultaneously. The setup for the IC differs in that only one of the

transmitted signals is of interest. Thus, one might expect that treating interference as noise is optimal

when the interference is low, while SIC is optimal when the interference is high. This paper shows that

there exists an intermediate range of interference levels where neither ignoring nor completely decoding

the interference is optimal. A good strategy in this regime is to detect the desired and the interfering

signals jointly, then to discard the detector output for the interference (which may be unreliable anyway,

but nevertheless aids the detection of the desired signal).

The existing literature on joint detection in the presence of inter-cell interference has typically focused

on phase shift keying (PSK) modulation or performance measures other than the SER. For example, [15]

examines the bit-error rate of ML and joint MD receivers for PSK modulation with the use of trellis

coded modulation (TCM). In [16], the outage probability of multiuser detection is examined for PSK

modulation with diversity. In [17], the spectral efficiency of multiuser detectors is computed by treating

inter-cell interference as signals that need to be detected correctly (thus rendering an IC to a multiple-

access channel (MAC)). This paper deals with the average SER and SER upper bound in an IC with

higher-order QAM modulation transmission, with possibly unequal power among the different users, and

possibly with transmit diversity. To the best of the authors’ knowledge, the performance analysis in such

a setting has not appeared in the literature.

The analysis in this paper assumes uncoded signal constellation at the transmitter and hard decision

decoding at the receiver. Soft decoding, which calculates a log-likelihood ratio (LLR) for each bit as the

input to the decoder, would result in better performance than hard decoding, but its analysis also depends

on the specific coding scheme. For this reason, this paper focuses on the analysis of hard decoding, which
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already provides insights on the receiver performance.

The optimal ML and the joint MD detectors are more complex to implement than the conventional

detectors, but may not be significantly so when compared to the complexity of other parts of the receiver

(such as a Viterbi decoder that may follow the detector). This is especially the case in a typical interference

environment where only one or two interferers dominate. The significant performance improvement of

joint detection may therefore justify its practical use. The optimal ML and the joint MD detectors also

require synchronization, the knowledge of the modulation format of the interferers, and the knowledge

of the interfering channel gains. Synchronization is a challenging issue, but is possible to implement in

a distributed BWC system. The modulation information is usually heavily encoded in a preamble, so it

can be decodable even at the non-intended receiver. Channel estimation in distributed BWC systems is

typically made possible by appropriate and possibly adaptive placement of pilots (e.g., with fractional

frequency reuse of pilots).

The remainder of this paper is organized as follows. The system model is presented in Section II.

The conventional and the joint interference-aware detectors are described in detail in Sections III and IV,

respectively. The main result of this paper, which is the performance analysis of the detectors, is presented

in Sections V and VI for the AWGN and fading cases, respectively. The performance of the joint detector

with transmit diversity is analyzed in Section VII. Simulation results are given in Section VIII. Finally,

Section IX provides concluding remarks.

II. SYSTEM MODEL

This paper considers the detection problem of the signal of user 1 in a U-user Gaussian IC. The received

signal, y[m], at time m at receiver 1 is given by

y[m] =

U∑
u=1

hu[m]xu[m] + z[m], (1)

where xu[m] is the signal of transmitter u at time m, hu[m] is the gain of the channel from transmitter u

to receiver 1, and z[m] is the Gaussian background noise of receiver 1 with variance N0/2 per dimension.

In vector form, (1) can be written as

y = [ h1 · · · hU ][ x1 · · · xU ]T + z = h∗x+ z, (2)

where h = [h∗
1 · · · h∗

U ]
T and x = [x1 · · · xU ]

T . The transmit signal xu[m] is a symbol from a discrete

signal constellation such as pulse-amplitude modulation (PAM), quadrature-amplitude modulation (QAM),
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and PSK. The power of the transmit signal is defined as Pu = E[|xu|2]. In a Rayleigh fading channel,

hu ∼ CN (0, 1). For convenience, the following quantities are defined

SNR � P1

N0
, SIR � P1∑U

u=2 Pu
, SINR � P1∑U

u=2 Pu+N0
, and INRu � Pu

N0
. (3)

The problem of interest is the symbol-by-symbol detection of the transmit signal x1[m] using y[m] at

receiver 1. It is assumed that receiver 1 knows the channel gains, hu[m], from all interferers and their

modulation formats. These are typical assumptions for any advanced receiver for the IC [18]. This channel

model is applicable to various practical systems, including distributed ones, for example, the downlink of

a distributed BWC, where a mobile station needs to decode its own signal in the presence of interfering

signals intended for other mobile stations.

III. CONVENTIONAL DETECTORS

A. Interference-Ignorant (II) Detector

An interference-ignorant detector for x1 simply divides the received signal y by the direct channel

gain h1 then maps it to the closest point of the signal constellation of transmitter 1. In other words, the

interference term
∑U

u=2 huxu in (1) is lumped together with the background noise z.

In many realistic cellular and distributed BWC systems, there are typically only a few non-negligible

interferers, each employing a discrete and finite constellation. In these cases, the receiver performance

can be significantly improved by using interference-aware detectors that explicitly consider the discrete

constellation. The SIC detector described in the following is such an interference-aware detector.

B. SIC Detector

Consider a two-user IC. Although the detector for receiver 1 is ultimately interested only in x1, it can

first obtain an estimate, x̂2, of x2 by treating x1 as noise, then detect x1 based on y − h2x̂2 by mapping

y − h2x̂2 to the closest constellation point scaled by h1. Note that the SIC detector does not exploit the

knowledge of the modulation scheme of x1 when detecting x2. Thus, the performance of SIC can be

further improved if the discrete nature of both x1 and x2 is taken into account.
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IV. JOINT INTERFERENCE-AWARE DETECTORS

A. Optimal ML Detector

The optimal maximum a posteriori (MAP) detector minimizes the probability of error Pr{x̂1 �= x1} for

the desired signal x1, without the Gaussian assumption on either the desired signal or the interference.

The probability of error can be expressed as

Pe � Pr{x̂1(y) �= x1} =

M1−1∑
m1=0

Pr{x1 = x1,m1}Pr{x̂1(y) �= x1,m1 |x1 = x1,m1}, (4)

where M1 is the constellation size of user 1. When the constellation points of x1 are equiprobable, the

MAP detector reduces to the maximum-likelihood (ML) detector. By definition, the ML estimate of x1 is

x̂1(y) = argmax
x1

fY |X1(y|x1), where (5)

fY |X1(y|x1) =

M2−1∑
m2=0

· · ·
MU−1∑
mU=0

Pr{X2 = x2,m2 , · · ·XU = xU,mU
} · fY |X1,··· ,XU

(y|x1, · · · , xU)

=
1

M2 · · ·MU

M2−1∑
m2=0

· · ·
MU−1∑
mU=0

fZ

(
y − h1x1 −

U∑
u=2

huxu,mu

)
. (6)

Thus, the ML rule is

x̂1(y) = argmax
x1

M2−1∑
m2=0

· · ·
MU−1∑
mU=0

exp

(
−|y − h1x1 −

∑U
u=2 huxu,mu |2

N0

)
(7)

Note that the discrete constellations of all users are explicitly taken into account.

B. Joint Minimum-Distance (MD) Detector

The optimal ML detector requires the calculation of the sum of exponential functions and the calculation

of the Euclidean distance from the received signal to all combined signal constellation points. In the

following, a low-complexity detector is derived by simplifying the optimal ML detector.

When the noise power per dimension N0/2 is small, the following approximation can be used

M2−1∑
m2=0

· · ·
MU−1∑
mU=0

exp

(
−|y − h1x1 −

∑U
u=2 huxu,mu |2

N0

)
≈ max

x2,··· ,xU

exp

(
−|y − h1x1 −

∑U
u=2 huxu,mu |2

N0

)
.

(8)

Then the approximate ML detector can be expressed as

x̂1(y) = argmin
x1

⎡
⎣ min
x2,··· ,xU

∣∣∣∣∣y − h1x1 −
U∑

u=2

huxu,mu

∣∣∣∣∣
2
⎤
⎦ . (9)
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This approximate ML detector can be aptly named as joint MD detector because the estimate of x1 is

obtained from the combined signal constellation point of all users that is closest to the received signal.

The joint MD detector is similar to the optimal ML detector for the MAC where the receiver needs

to minimize the decoding error of all received signals. However, in the IC, each receiver is interested

only in decoding one signal, so the joint MD detector is not quite ML. The joint MD detector is easier

to implement than the ML, and the difference in performance is small especially at large SNR. Further,

unlike the SIC detector, the estimation of the desired signal in the joint MD detector does not rely on the

correct estimate of the interfering signal. Hence, with the joint MD detector, the estimate of the desired

signal may be correct even if the estimates of interfering signals are erroneous. Thus, unlike the sequential

SIC, the joint MD detector does not suffer from error propagation.

V. PERFORMANCE ANALYSIS OF THE DETECTORS IN THE AWGN CHANNEL

The joint MD and the optimal ML detectors are now compared analytically with the conventional

detectors in terms of the SER. This section presents results for the AWGN case, followed by the fading case

in the next section. For simplicity, only the 2-user IC is considered. This results in intuitive expressions.

It is possible to extend the analysis to an IC with more than two users, although the expressions will be

more complicated. The analysis for the 2-user IC is relevant when one single interferer dominates in the

received signal. If more interferers are present, by adding their signals to the background noise, the 2-user

analysis still gives a lower bound on the performance.

The key result here is that the performance of joint detectors is noise-limited, rather than interference-

limited. In an AWGN channel, joint detectors almost never exhibit an error floor. In a fading channel, the

SER achieved by joint detectors is a function of the SNR rather than the SIR.

A. SER with 2-PAM Used by Both Transmitters

When 2-PAM is used by both the desired and the interfering transmitters, the SERs of the conventional

and joint detectors can be easily derived using nearest neighbor union bound (NNUB) analysis. The

expressions serve to highlight the difference among the detectors.

The SER of the interference-ignorant detector is

Pe,II ≈

⎧⎪⎨
⎪⎩

1
2
Q
(√

SNR −√
INR

)
, SIR ≥ 1

1
2
− 1

2
Q
(√

INR −
√

SNR
)
, SIR < 1,

(10)
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where Q(x) = 1√
2π

∫∞
x

e−t2/2dt. The SER of the SIC detector is

Pe,SIC ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2
Q
(√

SNR − 2
√

INR
)
, SIR ≥ 4

1
2
− 1

2
Q
(√

SNR −√
INR

)
, 9

4
≤ SIR < 4

1
2
− 1

2
Q
(
2
√

INR −
√

SNR
)
, 1 ≤ SIR < 9

4

1
2
Q
(√

INR −√
SNR

)
, 1

4
≤ SIR < 1

Q
(√

SNR
)
, SIR < 1

4
.

(11)

Lastly, the SER of the joint MD detector is given by

Pe,JMD ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2
Q
(√

SNR −√
INR

)
, SIR ≥ 1

1
2
Q
(√

INR −√
SNR

)
, 1

4
≤ SIR < 1

Q
(√

SNR
)
, SIR < 1

4
.

(12)

The SER of the optimal ML detector is harder to derive, but is upper bounded by the SER of the joint

MD detector: Pe,ML ≤ Pe,JMD.

It is interesting to examine the behavior of the near-optimal joint MD detector for various SIR levels.

From (12), it is clear that, for SIR ≥ 1, the joint MD detector behaves as if the minimum distance of the

constellation of the desired signal is reduced by the interference. For 1
4
≤ SIR < 1, it behaves as if the

minimum distance of the constellation of the interference is reduced by the desired signal. For SIR < 1
4
,

the detection of the desired signal is not affected by the (very strong) interference.

Comparing (10) and (12), it can be seen that the joint MD detector outperforms the conventional

interference-ignorant detector for SIR < 1. Comparing (11) and (12), it is clear that the joint MD detector

outperforms the SIC detector for SIR ≥ 1. The performance of the SIC detector is particularly poor in

the region 1 ≤ SIR < 4. However, it can also be seen that when both transmitters employ 2-PAM, joint

detection is equivalent to the ordered SIC with optimal ordering based on whether SIR is greater than or

smaller than 1. This, however, is not the case when higher-order modulation is used.

B. Error Floor Analysis with Higher-Order Modulation

Unlike the 2-PAM case, the joint MD detector can outperform the ordered SIC detector significantly

when higher-order modulation is employed. This is explained here with an example. Assume that 2-PAM

is used for the desired signal, but 4-PAM is used for the interference, i.e., x1 = ±1 and x2 = ± 1√
5

or

± 3√
5
. h1 = 4 and h2 = 3

√
5 and the background noise is assumed to be zero. When (x1, x2) =

(
−1, 3√

5

)
,
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y = h1x1+h2x2 = 5. The interference-ignorant detector would declare x̂1 = 1( �= x1) because y > 0. In the

case of the SIC detector, the estimate of the interference is x̂2 =
1√
5
( �= x2) because the decision boundaries

for the interference are located at y = 0 and y = ±3
√
5 · 1

2

(
1√
5
+ 3√

5

)
= ±6, and 0 ≤ y = 5 < 6. Then

after interference subtraction ỹ = y − h2x̂2 = 5 − 3
√
5 · 1√

5
= 2 > 0. Since ỹ > 0, x̂1 = 1( �= x1). Thus,

both conventional detectors fail. But, it is clear that the joint MD detector and the optimal ML detector

estimate the transmit signal correctly in this zero-noise case.

In general, when a signal constellation larger than 2-PAM is used, determining the optimal ordering for

SIC is not trivial. Moreover, even given the optimal ordering, the ordered SIC detector does not perform

as well as the optimal ML (or the joint MD) detector. To quantify the performance advantage of the ML

and joint MD detectors over the conventional ones, the following result provides an asymptotic error-floor

analysis for any arbitrary PAM constellation. This asymptotically high SNR case is of practical interest

for distributed BWC systems with densely placed antennas, where interference is much larger than noise.

Proposition 1. Consider the 2-user Gaussian IC where the desired and the interfering user employ M1-

and M2-PAM, respectively. For the interference-ignorant (II) detector, there exists a threshold SIRth,II ,

given by

SIRth,II = (M1 + 1)(M1 − 1)(M2 − 1)/(M2 + 1), (13)

such that, when SIR ≤ SIRth,II , the SER reaches a non-zero error floor as SNR increases to infinity. For

the SIC detector, there exist threshold values SIRth,SIC,1 and SIRth,SIC,2 given by

SIRth,SIC,1 = (M1 + 1)/ {(M1 − 1)(M2 − 1)(M2 + 1)} , and

SIRth,SIC,2 = 4(M1 + 1)(M1 − 1)(M2 − 1)/(M2 + 1),

(14)

such that, when SIRth,SIC,1 ≤ SIR ≤ SIRth,SIC,2, the SER reaches a non-zero error floor as SNR → ∞.

The optimal ML and joint MD detectors do not exhibit error floors, except for a finite number of SIR

values at which the received constellation points for different values of the desired signals are collocated.

Proof: Consider the ML and the joint MD detector first. There are M1 ·M2 decision regions, one for

each combined constellation symbol. Clearly, as SNR → ∞, the perturbation of the combined received

symbol caused by Gaussian noise becomes vanishingly small compared to the radius of the decision

region. Hence, Pe,MD → 0 regardless of the value of the SIR. Note that there is a finite set of SIR values

for which the above do not hold. When the SIR is such that some of the combined points overlap, an

error floor appears. For example, when both users employ 2-PAM and SIR = 0 dB, (x1 = +1, x2 = −1)
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and (x1 = −1, x2 = +1) are both mapped to the combined symbol 0. Clearly, in these cases, an error

floor appears because some input combinations cannot be distinguished, even in the absence of noise.

For the interference-ignorant detector, the region where an SER floor appears can be found by first noting

that, in the absence of signals from other users and noise, the distance between two neighboring points of

the PAM constellation of user 2 at receiver 1 is equal to d2, where du =
√

12h2
u/(M

2
u − 1) [19]. Moreover,

the distance of the outermost symbol of the PAM constellation of user 2 from the constellation center is

equal to r2, where ru = Mu−1
2

du. Then errors will occur when symbols sent by user 1 cross the boundary of

their corresponding decision region. In the absence of noise, this can only happen when r2 exceeds d1/2.

Using the expressions for r2 and d2, r2 ≥ d1/2 ⇒ (M2−1)
2

√
(12h2

2)/(M
2
2 − 1) ≥ 1

2

√
(12h2

1)/(M
2
1 − 1).

By rearranging and noting that SIR = h2
1/h

2
2, (13) is obtained.

Finally, the error floor of a SIC detector is analyzed. For an error floor to occur, in the absence of

noise, both conditions below should hold:

1) The received symbol y = h1x1 + h2x2 is outside the decision region of x2 that was actually

transmitted, AND

2) After subtraction of x̂2, y− h2x̂2 is outside the decision region of x1 that was actually transmitted.

Note that 2) cannot hold if 1) does not hold, because the noise is assumed to be zero.

In order for 1) to be true, h1x1+h2x2 > h2(x2+d2/2) or h1x1+h2x2 < h2(x2−d2/2), where d2 is the

minimum distance of the constellation of the interferer. Equivalently, h2
1x

2
1 > h2

2d
2
2/4 ⇒ SIR =

h2
1

h2
2
≥ d22

4x2
1
.

Using the largest possible value of x2
1 = ((M1 − 1)d1/2)

2, which gives the lower bound,

SIR ≥ 1

4

12

(M2
2 − 1)

4(M2
1 − 1)

12(M1 − 1)2
=

M1 + 1

(M1 − 1)(M2 + 1)(M2 − 1)
� SIRth,SIC,1. (15)

In order for 2) to hold, y−h2x̂2 = h1x1+h2(x2− x̂2) ≤ h1(x1−d1/2) or h1x1+h2(x2− x̂2) ≥ h1(x1+

d1/2) ⇒ h2
2(x2 − x̂2)

2 ≥ h2
1d

2
1/4 ⇒ SIR =

h2
1

h2
2
≤ 4(x2−x̂2)2

d21
. For the higher bound, x2 = −x̂2 = x2,max.

Therefore,

SIR ≤ 4

(
4 · 12(M2 − 1)2

4(M2
2 − 1)

)
M2

1 − 1

12
= 4

(M1 − 1)(M1 + 1)(M2 − 1)

M2 + 1
� SIRth,SIC,2, (16)

which completes the proof.

It can be easily shown that, for M1 ≥ 2 and M2 ≥ 2

SIRth,SIC,1 ≤ SIRth,II < SIRth,SIC,2 = 4SIRth,II , (17)
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where the equality between SIRth,SIC,1 and SIRth,II holds only for (M1,M2) = (2, 2). Thus, both the

interference-ignorant detector and the SIC detector have an error floor for SIRth,SIC,1 ≤ SIR ≤ SIRth,II .

Table I shows some sample SIR threshold values. As can be seen in the table, the gap between SIRth,SIC,1

and SIRth,II increases as (M1,M2) increases. Thus, for larger constellation sizes, the optimal ML or the

joint MD detector should be employed instead of the conventional detectors.

The analysis of the U-user case is, in principle, a simple extension of the 2-user case, but the resulting

expressions are more complicated. For example, with the interference-ignorant detector, there exists an

error floor when
∑U

u=2 ru ≥ d1
2

, i.e.,
∑U

u=2

√
Mu−1
Mu+1

1
SIRu

≥ 1√
M2

1−1
, where SIRu � h2

1/h
2
u.

The aforementioned results shed light on the structure of optimal detection in the IC. On one hand, the

fact that the joint detector outperforms the interference-ignorant detector implies that detecting interference

is beneficial even when the interference is not of interest. On the other hand, the fact that the joint

detector outperforms SIC suggests that successive cancellation is too aggressive in relying on the successful

detection of the entire interference signal. (This was also recognized in [20] where a weighting factor is

introduced to alleviate error propagation.) Instead, joint detection should be applied, which allows “soft”

decoding of the interference signal to achieve the optimal performance.

VI. PERFORMANCE ANALYSIS IN THE FADING INTERFERENCE CHANNEL

This section analyzes the performance of various detectors in the fading IC. The primary focus here is

the interference-ignorant and the joint MD detector. The joint MD detector is considered instead of the

ML and SIC detectors, because the joint MD detector has almost the same performance as the optimal

ML detector except at very low SNR. Moreover, the joint MD detector significantly outperforms the SIC

detector, which requires the same kind of channel and modulation information for the interfering users.

The main result of this section is that the SER of the joint MD detector in a fading IC can be

approximated by an expression of the form c/SNR, similar to that in a channel without interference.

The penalty due to the presence of interference is accounted for by the coefficient c, which depends on

the interference, but is upper-bounded by a finite value regardless of the value of the SIR.

A. SER in the Absence of Interference

It is useful to establish first the average SER for a fading channel in the absence of interference. In this

case, the received signal is y = h1x1 + z, where h1 ∼ CN (0, 1), z ∼ CN (0, N0), and E[|x1|]2 = P1. The
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average SER can be derived by considering the conditional SER given h1 and then taking the average

over the distribution of h1:

Pr{x̂1 �= x1} = Eh1 [Pr{x̂1 �= x1|h1}] . (18)

For a given h1, and M1-QAM, the conditional SER can be evaluated using the NNUB approach as follows:

Pr{x̂1 �= x1|h1} ≤ 4

(
1− 1√

M1

)
Q

⎛
⎝
√

3|h1|2SNR
M1 − 1

⎞
⎠ , (19)

where 4(1− 1/
√
M1) represents the average number of nearest neighbors over all constellation points. It

is also well known that, when h1 ∼ CN (0, 1) [21],

Eh1

[
Q
(√

a|h1|2
)]

=
1

2
q(a), where (20)

q(a) = 1−
√

a/2

1 + a/2
. (21)

From (18), (19), and (20), the following upper bound can be obtained for the average SER

p
e,no int,UB = 2

(
1− 1√

M1

)
q

(
3SNR
M1 − 1

)
. (22)

To gain more insight on the average SER, a simpler approximate expression is derived using the Taylor

series expansion of q(a) around 1/a = 0. For large a, q(a) ≈ 1/a. Then an approximate upper bound is

p
e,no int,AUB = 2

(
1− 1√

M1

)
M1 − 1

3SNR
. (23)

Thus, pe,no int,AUB is inversely proportional to the SNR. For the special case of M1 = 4, pe ≈ 1
SNR .

A lower bound of the average SER can be obtained by considering only half the nearest neighbors.

Thus, the lower bound is exactly half the upper bound, and both have the form c/SNR. This is true even

in the presence of interference. Thus, in the remainder of this section, only upper bounds are examined.

B. SER for the Interference-Ignorant (II) Detector

The interference-ignorant detector with no knowledge on the channel gains h2, · · · , hU or the modulation

formats of x2, · · · , xU ignores the presence of interference and makes a decision on x1 based on the direct

channel gain, h1, and the modulation format of x1 only. In general, the exact analysis of the interference-

ignorant detector is cumbersome in the case of a fading channel. However, for the special case when all
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interferers employ PSK, the average SER performance can be easily analyzed. With xu a PSK symbol,

huxu is a circularly symmetric complex Gaussian random variable: huxu ∼ CN (0, Pu). Thus

y = h1x1 + w, (24)

where w ∼ CN (0,
∑U

u=2 Pu+N0). Then the average SER, when x1 uses M1-QAM, is upper-bounded by

pe,II,UB = 2

(
1− 1√

M1

)
q

(
3SINR
M1 − 1

)
, (25)

which, for large SINR, can be approximated by

pe,II,App. UB = 2

(
1− 1√

M1

)
M1 − 1

3SINR
. (26)

Therefore, the SER of the interference-ignorant detector is limited by the SINR instead of the SNR,

unlike the case of no interference. In Section VIII, using 16-QAM as an example, it is shown by simulation

that the dependence on 1/SINR is maintained when QAM is employed by the interferer instead of PSK.

C. SER for the Joint MD (JMD) Detector

An upper bound is now derived for the SER of the joint MD detector. However, the NNUB approach

used earlier is complicated by the fact that the nearest neighbors change as the channel gains vary in

the presence of interference. Moreover, the combined constellation
∑U

u=1 huxu of the received signal is

no longer square-shaped even when the constellation of each individual xu is. Thus, counting the nearest

neighbors does not yield a strict upper bound. To address this issue, this paper takes the approach of

considering not only the nearest neighbors, but all signal constellation points that can possibly result in

an error, even though the upper bound obtained in this way may not be the tightest.

With the above new approach in mind, first, the pairwise error probability (PEP) between two transmit

symbol vectors is considered for a fixed h. Then this PEP is averaged over h, leading to a simple expression

for the average PEP. Lastly, the upper bound of the average SER is calculated using the average PEP by

considering all possible transmit symbol vectors.

The PEP for a given h is derived by examining the simple detection problem where the transmit vector

x is either xA or xB. The ML detector for this problem selects the transmit vector x̂ that results in

h∗x̂ closest to y. Hence the PEP, i.e., the probability that xB is erroneously detected given that xA was

transmitted is

P{xA → xB|h} = Q

(
‖h∗(xA − xB)‖

2
√

N0/2

)
. (27)
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The average PEP over all channel realizations is

Pr{xA → xB} = Eh

⎡
⎣Q

⎛
⎝
√

h∗(xA − xB)(xA − xB)∗h
2N0

⎞
⎠
⎤
⎦ . (28)

The matrix (xA − xB)(xA − xB)
∗ is Hermitian. So, it can be written as

(xA − xB)(xA − xB)
∗ = UΛU∗, (29)

where U is a unitary matrix, i.e., U∗U = UU∗ = I, and Λ is a diagonal matrix, i.e., Λ = diag{λ2
1, · · · , λ2

U}.

By defining h̃ as U∗h, the average PEP can be represented as

Pr{xA → xB} = Eh̃

⎡
⎣Q

⎛
⎝
√

h̃∗Λh̃

2N0

⎞
⎠
⎤
⎦ = Eh̃

⎡
⎣Q

⎛
⎝
√∑U

u=1 |h̃i|2λ2
i

2N0

⎞
⎠
⎤
⎦ , (30)

where h̃ has the same distribution as h since hu for u = 1, · · · , U are i.i.d. CN (0, 1) and U is unitary.

Because (xA − xB)(xA − xB)
∗ has rank 1, λu = 0 for u = 2, · · · , U . It can also be seen easily that

λ1 = ‖xA − xB‖ (the Euclidean distance between xA and xB). Thus, as is well known from the analysis

of Rayleigh fading channels [21], the average PEP can be expressed in closed form as

Pr{xA → xB} =
1

2
q

(
λ2
1

2N0

)
=

1

2
q

(‖xA − xB‖2
2N0

)
. (31)

Using this expression for the average PEP, it is now possible to derive an upper bound for the average

SER for the detection of x1. In the following, the upper bound is first derived for the 2-user case with

both users employing 4-QAM. Then an upper bound is derived for any constellation sizes.

From the symmetry of 4-QAM, the average PEP does not depend on the transmitted symbol. Thus,

Pr{x̂1 �= x1} = Pr{x̂1 �= x1,00|x = x0000}, (32)

where xpqrs = [ x1,pq x2,rs ]T and x1,pq and x2,rs are Gray-coded. In other words,

x1,pq =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√
P1

2
(1 + j), for (p, q) = (0, 0)√

P1

2
(−1 + j), for (p, q) = (0, 1)√

P1

2
(−1− j), for (p, q) = (1, 1)√

P1

2
(1− j), for (p, q) = (1, 0)

. (33)

x2,rs can be similarly represented. Then

Pr{x̂1 �= x1,00|x = x0000} ≤
1∑

a=0

1∑
b=0

[P{x0000 → x10ab}+ P{x0000 → x01ab}]

+P{x0000 → x1101}+ P{x0000 → x1110}+ P{x0000 → x1111}, (34)
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where Pr{x0000 → x1100} was not included because the error event of x0000 → x1100 is covered by the

error events of x0000 → x1000 and x0000 → x0100. Each term in the upper bound (34) can be evaluated

using the average PEP (31). The squared Euclidean distance between xpqrs and x0000 is

‖xpqrs − x0000‖2 = d21,pq + d22,rs, (35)

where d2u,00 = 0, d2u,01 = d2u,10 = 2Pu, and d2u,11 = 4Pu for u = 1, 2. Thus, the upper bound of the average

SER of the joint MD detector is

pe,1,JMD,UB = q(SNR)+2q(SNR+INR)+q(SNR+2INR)+q(2SNR+INR)+
1

2
q(2SNR+2INR). (36)

For sufficiently high SNR, the upper bound can be approximated as follows:

pe,1,JMD,UB ≈ 1

SNR
+

2

SNR + INR
+

1

SNR + 2INR
+

1

2SNR + INR
+

1

4SNR + 4INR
=

f(SIR)

SNR
, (37)

where

f(α) = 1 +
α

2α + 1
+

9

4
· α

α + 1
+

α

α + 2
. (38)

Hence, at sufficiently high SNR, for fixed SIR, pe,1,JMD,UB is inversely proportional to SNR. The

coefficient f(α) in (37) is monotonically increasing in α for α ≥ 0, i.e., f ′(α) > 0 for α ≥ 0. Moreover,

f(0) = 1 ≤ f(α) <
19

4
= f(∞). (39)

Hence, regardless of the value of SIR,

Pr{x̂1 �= x1} <≈ 19

4SNR
. (40)

Note that f(∞) = 19/4 is an overestimate, because all the possible pairwise error events (and not just

nearest neighbors) are considered for the derivation of the upper bound. When SIR = ∞, the actual SER

should be Pr{x̂1 �= x1} ≈ 1
SNR .

The above analysis sheds light on the behavior of the average SER when user 1 and user 2 employ a

constellation of size M1 and M2, respectively, in which case (M1−1)M2 PEP terms need to be considered

for the calculation of the average SER upper bound. Note that, for any xA and xB ,

‖xA − xB‖ ≥ |x1,A − x1,B|, (41)

where x1,A and x1,B are the symbols of user 1 corresponding to xA and xB, respectively. Furthermore,

|x1,A − x1,B| ≥
√

6P1

M1 − 1
, (42)
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where 6P1

M1−1
is the minimum distance between any pair of signal constellation points of user 1. Then the

average PEP bound becomes

Pr{xA → xB} =
1

2
q

(‖xA − xB‖2
2N0

)
≤ 1

2
q

(
3SNR
M1 − 1

)
, (43)

since q(x) is a monotonically decreasing function of x. Thus,

pe,1,JMD,UB =
(M1 − 1)M2

2
q

(
3SNR
M1 − 1

)
≈ (M1 − 1)2M2

6SNR
, (44)

for sufficiently large SNR. In the special case where (M1,M2) = (4, 4), the above bound becomes

pe,1,JMD,UB = 6q (SNR) ≈ 6

SNR
. (45)

This upper bound is looser than the bound of (40) because the contribution of |x2,A − x2,B| was ignored

in (41) and the minimum distance was used instead of the actual distance |x1,A−x1,B| in (42). If a tighter

bound is desired, the actual distance |x1,A−x1,B| can be calculated in a straightforward way. For example,

for M1 = 16, the following tighter approximate upper bound can be obtained:

pe,1,JMD,UB,16-QAM ≈ 2965M2

208SNR
≈ 14.3M2

SNR
, (46)

whereas, according to (44), the bound would have been 37.5M2

SNR . An even tighter bound can be obtained by

considering |x2,A − x2,B|. Nonetheless, the bound (44) shows that the average SER decreases according

to c/SNR, where c depends on the constellation sizes of the signal of interest and the interferer.

The average SER bound (44) can be compared with (22) in the absence of interference:

pe,1,JMD,UB
pe,no int, UB

=

√
M1(

√
M1 + 1)M2

4
. (47)

This shows that the interference created by a signal belonging to one of M2 constellation points increases

the SER by a constant factor that depends on M1 and M2, instead of changing the dependence of the

SER from the SNR to the SINR. Note that the above technique can be extended to the case with more

than two users, where the SER bound would be increased by a factor of
∏U

u=3Mu. As in most realistic

environments there is only a limited number of dominant interferers, the SER bound remains manageable.

D. SER Bound for the MAC Channel

The preceding technique can in fact be applied to the case where the detector wishes to estimate not

only the signal of user 1, but also the signals of the other users. In this case,

Pr
{
[x̂1 x̂2]

T �= [x1 x2]
T
}

= Pr {x̂1 �= x1}+ Pr {x̂2 �= x2|x̂1 = x1} . (48)
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The first term is the SER of user 1 in the presence of interference. The second term is the SER of user

2 in the absence of interference. Thus, when both users employ 4-QAM,

pe,12,JMD,UB = pe,1,JMD,UB + q(INR) ≈ g(SIR) · 1

SNR
= g

(
1

SIR

)
· 1

INR
, (49)

where

g(α) = 1 +
α

2α+ 1
+

9

4
· α

α + 1
+

α

α + 2
+ α = f(α) + α. (50)

The above approximation holds for high SNR or high INR. The coefficient g(α) is a monotonically

increasing function of α for 0 ≤ α ≤ 1, and it is bounded as follows:

g(0) = 1 ≤ g(α) ≤ 91

24
= g(1). (51)

(49) clearly shows that for SIR < 1 the SER is limited by SNR, whereas for SIR ≥ 1 the SER is limited

by INR. Thus, the SER is limited by the weaker signal, which agrees with intuition.

In general, when x1 and x2 belong to an M1-QAM and an M2-QAM constellation, respectively, an

upper bound can be similarly derived. In fact, the SER can be bounded by the minimum of two ways of

partitioning the error probability Pr
{
[x̂1 x̂2]

T �= [x1 x2]
T
}

, i.e. from (26) and (44), we have

pe,12,JMD,UB =

min

{
(M1 − 1)2M2

6SNR
+ 2

(
1− 1√

M2

)
M2 − 1

3INR
,

(M2 − 1)2M1

6INR
+ 2

(
1− 1√

M1

)
M1 − 1

3SNR

}
. (52)

VII. RECEIVER PERFORMANCE WITH TRANSMIT DIVERSITY

This section shows that the use of the joint MD detector retains full diversity order in the presence

of interference when simple transmit diversity schemes are employed. When the user of interest employs

repetition coding over two time slots, or when both transmitters are synchronized and employ repetition

coding over the same two time slots, a joint MD detector at receiver 1 achieves an SER proportional to

1/SNR2. This is in contrast to conventional detectors, where the limiting factor is 1/SINR2.

Consider the channel model (1) over two transmissions. In matrix form, we have

yT = h̄∗X+ zT , (53)

where yT = [y[1] y[2]], zT = [z[1] z[2]], h̄∗ = [h1[1] h2[1] h1[2] h2[2]], and X =

⎡
⎣ x[1] 0

0 x[2]

⎤
⎦, where

x[1] = [x1[1] x2[1]]
T , x[2] = [x1[2] x2[2]]

T . Similar to the analysis of Section VI, using transmit matrices



17

XA and XB in place of transmit vectors, the average PEP between XA and XB is given by

Pr{XA → XB} = Eh̄

⎡
⎣Q

⎛
⎝
√

h̄∗(XA −XB)(XA −XB)∗h̄
2N0

⎞
⎠
⎤
⎦ = Eh̃1,h̃2

⎡
⎣Q

⎛
⎝
√

|h̃1|2λ̄2
1 + |h̃2|2λ̄2

2

2N0

⎞
⎠
⎤
⎦ ,

(54)

where the matrix (XA − XB)(XA − XB)
∗ is Hermitian and of rank 2, so its two nonzero eigenvalues

are λ̄2
i = ‖XA(i) − XB(i)‖2, with X(i) denoting the i-th column of X, and further we write (XA −

XB)(XA − XB)
∗ = ŪΛ̄Ū∗ and define ¯̃h � Ū∗h̄ = [h̃1 h̃2 h̃3 h̃4]. Substituting the expressions for the

eigenvalues in (54), and using the fact that Q(x) ≤ e−x2/2 for x > 0, and that, when X is an exponential

random variable, E
[
esX

]
= 1/(1− s) for s < 1 [21], we have

Pr{XA → XB} ≤ Eh̃1

[
exp

(
−|h̃1|2‖XA(1)−XB(1)‖2

4N0

)]
Eh̃2

[
exp

(
−|h̃2|2‖XA(2)−XB(2)‖2

4N0

)]

=

(
4N0

4N0 + ‖XA(1)−XB(1)‖2
)(

4N0

4N0 + ‖XA(2)−XB(2)‖2
)
. (55)

When a repetition code is employed by user 1, the elements x1[1] and x1[2] of X are the same (but,

not, necessarily x2[1] and x2[2]). Assuming that 4-QAM is employed by both users, the average PEP does

not depend on the transmitted matrix X because of the symmetry of 4-QAM. Thus, the transmit matrix

X can be chosen to be X0 �

⎡
⎣ x0000 0

0 x0000

⎤
⎦ where x0000 =

[√
P1

2
(1 + j)

√
P2

2
(1 + j)

]T
. An upper

bound for the SER can then be derived in a similar way to the analysis of Section VI by considering all

transitions that lead to an incorrect decision for x1. Using (55), after some algebra, it can be shown that

p
e1,user 1 rep.,JMD,UB =

k(SIR)

SNR2 , (56)

where

k(α) = 9 +
35α

1 + α
+

16α

2 + α
+

8α

1 + 2α
+

32α2

(1 + α)2
+

16α2

(2 + α)2

+
32α2

(1 + α)(2 + α)
+

8α2

(1 + 2α)(1 + α)
+

8α2

(2 + α)2
.

(57)

Again, k(α) is a monotonically increasing function of α and can be bounded as

9 = k(0) ≤ k(α) < k(∞) = 156. (58)

This bound in this case can be loose. However, it is interesting to note that nevertheless the diversity

order is equal to 2 even when the second user does not use a diversity scheme, as long as the joint MD

detector is employed by the user of interest.
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If a repetition code is employed by both users, and they are synchronized, λ̄1 = λ̄2 = ‖xA − xB‖.

Therefore (54) becomes

Pr{xA → xB} = Eh̃1,h̃2

⎡
⎢⎢⎣Q

⎛
⎜⎜⎝
√√√√(

|h̃1|2 + |h̃2|2
)
λ2
1

2N0

⎞
⎟⎟⎠
⎤
⎥⎥⎦ . (59)

The random variable ‖h̃‖2 = |h̃1|2 + |h̃2|2 follows a Chi-squared distribution with 4 degrees of freedom.

It can be shown that, at high SNR [21],

Pr{xA → xB} = E‖h̃‖2

⎡
⎣Q

⎛
⎝
√

‖h̃‖2λ̄2
1

2N0

⎞
⎠
⎤
⎦ ≈

⎛
⎝ 3

2

⎞
⎠ 1

(λ̄2
1/N0)2

=
3

(‖xA − xB‖2/N0)2
. (60)

By the union bound of probabilities,

pe1,rep.,JMD,UB ≈ 27

16

1

SNR2 +
51

16

1

(SNR + INR)2
+

3

2

1

(SNR + 2INR)2
+

3

2

1

(2SNR + INR)2
. (61)

Thus, for sufficiently high SNR, the probability of error can be bounded by

Pr{x̂1 �= x1} <≈ l(SIR) · 1

SNR2 , (62)

where

l(α) =
27

16
+

51

16

α2

(α + 1)2
+

3

2

α2

(α+ 2)2
+

3

2

α2

(2α + 1)2
. (63)

Note that the bound of (62) is approximate. Similar to k(α), l(α) is a monotonically increasing function

of (α) and can be bounded as follows:

27

16
= l(0) ≤ l(α) < l(∞) =

27

4
. (64)

Thus, when a simple repetition scheme is employed by both the user of interest and the interfering user,

the joint MD detector achieves diversity of order 2. Moreover, the bound on the power loss is much

smaller compared to the case when the interfering user does not employ a transmit diversity scheme.

In general, when user 1 employs M1-QAM and user 2 employs a constellation of M2 points, the

following upper bounds can be derived, along the lines of Section VI-C.

pe1,user 1 rep.,JMD,UB ≈ (M1 − 1)M2
2

(
4N0

4N0 +
6P1

M1−1

)2

=
4(M1 − 1)3M2

2

(2(M1 − 1) + 3SNR)2
<

4(M1 − 1)3M2
2

9SNR2 ,

(65)

when only the user of interest employs a repetition scheme, and

pe1,rep.,JMD,UB ≈ (M1 − 1)M2
3(

6P1

N0(M1−1)

)2 =
(M1 − 1)3M2

12SNR2 (66)
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for the repetition scheme that involves both the user of interest and the interferer. Finally, we note that

the above analysis can be easily extended to the case with repetition code over d time slots and with

advanced diversity coding schemes. Table II summarizes the main results of Sections VI and VII.

VIII. SIMULATION RESULTS

In this section, the performance of various detectors is evaluated by Monte Carlo simulation to verify the

theoretical results. Results for the AWGN case are shown first. Fig. 1 shows the SER of the optimal ML

(and also joint MD) detector when 2-PAM is used by both transmitters in a two-user IC for various SIR

levels. As expected, the detector performs best when SIR is infinite, i.e., when there is no interference.

As the interference power increases for the fixed desired signal power, the performance of the detector

degrades until SIR = 1. As the interference power increases beyond the signal power, the performance

actually improves. Thus, optimal ML (also joint MD) detection implicitly subtracts the interference when

SIR is small. Note that the detection is not subject to an error floor, regardless of the value of SIR.

Fig. 2 shows the SER performance when 4-PAM is used at both transmitters. Both a low-interference

case (SIR = 3dB) and a high-interference case (SIR = −3dB) are considered. In both cases, the MD and

ML detectors perform well, while the interference-ignorant and the SIC detectors exhibit error floors. This

agrees with Proposition 1, as SIRth,II = 9.54dB, SIRth,SIC,1 = −9.54dB and SIRth,SIC,2 = 15.56dB for

4-PAM, and SIR = ±3dB are in the range where both conventional detectors fail to perform satisfactorily.

Thus, the use of the joint MD or ML detectors is crucial for enabling 4-PAM signaling in this SIR range

over the IC, which would otherwise be impossible. A similar phenomenon occurs for the 3-user IC as

shown in Fig. 3, where the SER with all three users employing 2-PAM is plotted. As can be seen, the

joint MD and the optimal ML detectors perform well for SIR = 1 dB and −1 dB, while both the

interference-ignorant and the SIC detectors exhibit an error floor.

For the performance of various detectors in a fading environment, Fig. 4 shows the SER when both

users employ 4-QAM and SIR = 12dB. As can be seen, in the absence of the interference, the SER curve

follows the theoretical 1/SNR curve quite well. The presence of interference increases the SER. However,

when the joint MD or the optimal ML detector are used, the SER curve continues to behave as c/SNR.

Theoretical calculation in Section VI-C suggests c = f(SIR) = 4.49, which agrees with the numerical

simulation as shown in the figure. Note that the interference-ignorant detector, the SIC detector, and the

ordered SIC detector all have error floors. The figure also shows that when the joint MD detector tries to
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detect both users’ signals, the SER is approximated by the theoretical curve g(SIR)/SNR = 20/SNR.

Figs. 5 and 6 show the performance of various detectors when both users employ QAM with (M1,M2) =

(16, 4) and (16, 16). In both figures, the simulation results again agree reasonably well with the theoretical

approximate upper bound (46). In the figure, the ordered SIC is based on the instantaneous minimum

distance of the received constellations of user 1 and 2. As can be seen, both the interference-ignorant and

SIC detectors show error floors. Moreover, Fig. 6 shows that the interference-ignorant detector is limited

by SINR for 16-QAM even though the exact analysis was done only for PSK in Section VI-B.

Fig. 7 considers a 3-user IC with all three users employing 4-QAM, and SIR = P1

P2+P3
= 12dB.

Simulation shows that the SER of the joint MD detector follows the theoretical upper bound very well,

which is M3f(2SIR)/SNR = 4f(2 × 101.2)/SNR ≈ 18.46/SNR since P1/P2 = 2SIR, whereas the

interference-ignorant detector shows an error floor in the presence of two interferers.

Fig. 8 shows the performance of various detectors when repetition coding is used by both users. Here

the modulation scheme is 4-QAM for both users. As can be seen in the figures, with repetition coding,

the diversity order becomes 2 when the joint MD detector is used. On the other hand, the SER for the

interference-ignorant detector is approximated by 3
2SINR2 , which is interference limited.

IX. CONCLUSION

This paper analyzed the performance of the joint MD and the optimal ML detectors for the Gaussian IC

where discrete constellations are used by the transmitters. Unlike the interference-ignorant detector, these

joint detectors exploit knowledge of the distribution of the interference rather than treating the interference

as Gaussian noise. Furthermore, unlike the SIC detector, no explicit decision on the interfering signal is

made by the detectors, thereby avoiding error propagation. The SER performance of these detectors was

compared analytically and by simulation. In AWGN channels, the joint MD and the optimal ML detectors

perform well in the presence of interference for almost all SIR values, whereas the performance of the

interference-ignorant and the SIC detectors suffers from error floors for some SIR values. These results

suggest that an optimal detector for the Gaussian IC should neither completely ignore nor completely

decode the interference—it should do something in-between.

The absence of error floors for the optimal ML and the joint MD detectors makes their use attractive

when the channel varies constantly. This paper shows that their use in fading channels significantly

improves the SER performance as compared to conventional detectors in the sense that the SER be-



21

comes inversely proportional to the SNR rather than the SINR. In other words, joint detection turns an

interference-limited channel into a noise-limited channel. This is particularly desirable in distributed BWC

systems where sophisticated joint receivers can be used to improve spectral efficiency. In such systems

joint detection can even be performed at a central unit by relying on the backbone that conveys the signals

received at the distributed locations.

Moreover, it was shown that when advanced joint detectors are employed, full diversity gains can be

achieved even in the presence of interference. This implies that the use of transmit diversity schemes is

advantageous as compared to orthogonalization schemes that avoid interference systematically and offers

a distributed BWC the flexibility to provide multiple simultaneous connections with full diversity gains.

Therefore, although advanced detection schemes require more information about interferers and are more

complex to implement, the improved performance can make their use attractive in future distributed BWC

systems.
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TABLE I

SIR THRESHOLD VALUES FOR THE INTERFERENCE-IGNORANT DETECTOR AND THE SIC DETECTOR

(M1,M2) SIRth,II (dB) SIRth,SIC,1 (dB) SIRth,SIC,2 (dB)

(2,2) 0 0 6.02

(2,4) 2.55 -6.99 8.57

(2,8) 3.68 -13.22 9.70

(4,2) 6.99 -2.55 13.01

(4,4) 9.54 -9.54 15.56

(4,8) 10.67 -15.77 16.69

(8,2) 13.22 -3.68 19.24

(8,4) 15.77 -10.67 21.80

(8,8) 16.90 -16.90 22.92

TABLE II

SER EXPRESSIONS FOR VARIOUS RECEIVERS AND TRANSMIT SCHEMES IN A FADING INTERFERENCE CHANNEL

Detector Probability of Error

Interference-Ignorant Detector P{x̂1 �= x1} <≈ 2
(
1− 1√

M1

)
M1−1
3SINR .

Joint MD for the desired signal P{x̂1 �= x1} <≈ (M1−1)2M2
6SNR .

P

⎧⎨
⎩

⎡
⎣ x̂1

x̂2

⎤
⎦ �=

⎡
⎣ x1

x2

⎤
⎦
⎫⎬
⎭

<≈ min{p
e,12,JMD,AUB1, pe,12,JMD,AUB2}

Joint MD for the desired signal and the interfering signal p
e,12,JMD,AUB1 = (M1−1)2M2

6SNR + 2
(
1− 1√

M2

)
M2−1
3INR ,

p
e,12,JMD,AUB2 = (M2−1)2M1

6INR + 2
(
1− 1√

M1

)
M1−1
3SNR .

Repetition coding (user 1), Joint MD for the desired signal P{x̂1 �= x1} <≈ 4(M1−1)3M2
2

9SNR2 .

Repetition coding (users 1 and 2), Joint MD for the desired signal P{x̂1 �= x1} <≈ (M1−1)3M2

12SNR2 .
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Fig. 1. SER for the optimal ML and the joint MD detector in AWGN channels for various SIR values when 2-PAM is used by both

transmitters. Curves for the optimal ML detector and the joint MD detector overlap.



24

10 15 20 25 30 35 40
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

S
ym

bo
l E

rr
or

 R
at

e 
(S

E
R

)

 

 

II, SIR = 3 dB
II, SIR = 12 dB
SIC, SIR = 3 dB
SIC, SIR = 12 dB
JMD, SIR = 3 dB
JMD, SIR = 12 dB
ML, SIR = 3 dB
ML, SIR = 12 dB
All Detectors, SIR = Inf dB

Fig. 2. SER for all 4 detectors in AWGN channels when 4-PAM is used by both transmitters.
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Fig. 3. SER for all 4 detectors in a 3-user AWGN IC when 2-PAM is used by all users. It is assumed that each interference has the same

power.
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Fig. 4. SER of various detectors in Rayleigh fading channels with 2 users employing 4-QAM and 4-QAM for SIR = 12 dB.
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Fig. 5. SER of various detectors in Rayleigh fading channels with 2 users employing 16-QAM and 4-QAM for SIR = 18 dB.
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Fig. 6. SER of various detectors in Rayleigh fading channels with 2 users employing 16-QAM and 16-QAM for SIR = 18 dB.



26

10 15 20 25 30 35 40 45
10

−4

10
−3

10
−2

10
−1

10
0

Average SNR (dB)

S
ym

bo
l E

rr
or

 R
at

e 
(S

E
R

)

3 users, 4 QAM, 4 QAM, 4 QAM, SIR=12 dB

 

 

II
JMD for 1 User
ML
No Interference
II, App. UB
JMD for 1 User, App. UB
No Interference, App. UB

Fig. 7. SER of various detectors in Rayleigh fading channels with three users all employing 4-QAM for SIR = 12 dB.
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Fig. 8. SER with repetition coding with both users employing repetition coding with 4-QAM for SIR = 6dB.
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